ECON-C4200 - Econometrics II: Capstone

Lecture 6: Maximum likelihood approach to estimation

Otto Toivanen

1. Coin tosses

- Think of a tossing a coin that is potentially weighted, i.e., does not give the outcomes with 50% probability.
- Your task is to find out what the weight is.
- How to do this? Well, toss the coin lots and lots of times, record the outcomes.
- What then? Calculate the share of tails and heads, i.e., the average of tails / heads, i.e., the probability of getting tails / heads.

2. Bernoulli distribution

- More formally, you can think of what you did as a stochastic process with two possible outcomes, coded 0 and 1 .
- Such a process is called a Bernoulli process.

2. Bernoulli distribution

- More formally, you can think of what you did as a stochastic process with two possible outcomes, coded 0 and 1 .
- Such a process is called a Bernoulli process.
- It yields a sequence of 0 s and $1 \mathrm{~s} \ldots$

2. Bernoulli distribution

- More formally, you can think of what you did as a stochastic process with two possible outcomes, coded 0 and 1.
- Such a process is called a Bernoulli process.
- It yields a sequence of 0 s and $1 \mathrm{~s} \ldots$
- How to estimate the probability of 1 occuring?

3. Constructing the likelihood function

- How could we formalize this?
(1) Let's denote the probability of heads for any given coin toss with P. Then the probability of tails is $1-P$.
(2) Let us toss the coin N times, and index the coin tosses by i.
(3) Let us further denote the outcome of coin toss i by y_{i} which takes value $y_{i}=1$ if heads, $y_{i}=0$ if tails; $i=1, \ldots, N$.
- Given N coin tosses, our data are the outcomes y_{i}, and the unknown parameter is P.
- How can we estimate P ?

3. Constructing the likelihood function

- Let's start by applying the tool we know, i.e., Least Squares (LS):

$$
\begin{equation*}
\min _{P} \sum_{i}\left(y_{i}-P\right)^{2} \tag{1}
\end{equation*}
$$

- We recall from Econometrics I that the answer LS gives is

$$
\begin{align*}
\hat{P}^{L S} & =\frac{1}{N} \sum y_{i} \\
& =\frac{1}{N}(\underbrace{1+1+\ldots+1}_{n_{H}}+\underbrace{0+0+\ldots+0}_{N-n_{h}}) \tag{2}\\
& =\frac{n_{h}}{N}=\bar{y}
\end{align*}
$$

- In other words, LS gives the answer we would have calculated without knowledge of econometrics.

3. Constructing the likelihood function

- Let's take another approach and ask ourselves: With N coin tosses, what is the likelihood of getting n_{H} heads and $N-n_{H}=n_{T}$ tails, given P ?

3. Constructing the likelihood function

- Let's take another approach and ask ourselves: With N coin tosses, what is the likelihood of getting n_{H} heads and $N-n_{H}=n_{T}$ tails, given P ?
- Answer:

$$
\begin{equation*}
L=P^{n_{H}}(1-P)^{N-n_{H}} \tag{3}
\end{equation*}
$$

- Equation (3) is the Likelihood function (uskottavuusfunktio) for our data, and also our problem (of finding the best estimate of P).

3. Constructing the likelihood function

- What is the next step?
- Let's find the value for P that maximizes the likelihood of observing exactly n_{H} heads and $N-n_{H}$ tails.
- How to do this? By maximizing the likelihood function with respect to the unknown parameter P, i.e., by (recall $y_{i}=1$ if coin toss i gives heads, $y_{i}=0$ if tails):

$$
\begin{array}{rl}
\max _{P} & L=\prod_{i} P^{y_{i}}(1-P)^{1-y_{i}} \\
& =\underbrace{P \times P \times \ldots \times P}_{n_{H}} \times \underbrace{(1-P) \times(1-P) \ldots \times(1-P)}_{N-n_{H}} \\
& =P^{n_{H}}(1-P)^{N-n_{H}}
\end{array}
$$

- This can obviously be done, but often the likelihood function is difficult to work with.

3. Constructing the likelihood function

- Trick: let's use a monotonic transformation, i.e., let's take logs:

$$
\begin{align*}
\max _{P} \ln L & =\sum_{i}\left[y_{i} \ln P+\left(1-y_{i}\right) \ln (1-P)\right] \\
& =\sum_{n_{H}} \ln P+\sum_{N-n_{H}} \ln (1-P) \tag{5}\\
& =n_{H} \ln P+\left(N-n_{H}\right) \ln (1-P)
\end{align*}
$$

- Now do the differentiation and solve for P.

3. Constructing the likelihood function

- The ML estimate of $P, \hat{P}^{M L}$, is:

$$
\begin{equation*}
\hat{P}^{M L}=\frac{n_{H}}{N}=\hat{P}^{L S} \tag{6}
\end{equation*}
$$

- Note: the ML estimate is not always equal to the LS estimate.

3. Constructing the likelihood function

- The idea underlying ML: construct the likelihood function.
- Ask: what parameter values are the likeliest to have lead to the data we observe?

4. ML estimation with observable characteristics

- Thus far we did not have any explanatory variables, i.e., observable characteristics of the observation units.
- To extend our coin example, assume that instead of tossing a single coin N times, you toss N different coins once each.
- Assume further that you observe some characteristics of each coin i. Denote the characteristics with \boldsymbol{X}.
- Let suppose you want to study how characteristics \boldsymbol{X} affect the probability of getting heads.

4. ML estimation with observable characteristics

- By now you know how to build a linear probability model for this setting.
- How could you introduce the explanatory variable into our ML setup?

4. ML estimation with observable characteristics

- By building on what we studied in the previous lecture.
- Step \#1: Assume that

$$
\begin{aligned}
& y_{i}=1 \Leftrightarrow \boldsymbol{X}_{i} \boldsymbol{\beta}+\epsilon_{i} \geq 0 \\
& y_{i}=0 \Leftrightarrow \boldsymbol{X}_{i} \boldsymbol{\beta}+\epsilon_{i}<0
\end{aligned}
$$

- Step \#2: assume a distribution for ϵ. Let's denote the CDF of ϵ with $F($.$) . Let's further assume it is symmetric.$

4. ML estimation with observable characteristics

- Step \#3: Now (due to the symmetry of $F($.$)) the probability of$ observing $y_{i}=1$ is

$$
1-F\left(-\boldsymbol{X}_{i} \boldsymbol{\beta}\right)=F\left(\boldsymbol{X}_{i} \boldsymbol{\beta}\right)
$$

- Notice that this is not that different from assuming the probability of observing $y_{i}=1$ is P.
- Indeed, I can replace P with $F\left(\boldsymbol{X}_{i} \boldsymbol{\beta}\right)$ in the likelihood function we just worked with.
- The difference is that the unknown parameters are now $\boldsymbol{\beta}$, not P.

4. ML estimation with observable characteristics

- We can now write the likelihood and the log likelihood functions as:

$$
\begin{gather*}
L=\operatorname{Pr}\left(Y_{1}=y_{1}, \ldots, Y_{N}=y_{N}\right)=\prod_{i} F\left(\boldsymbol{X}_{i} \boldsymbol{\beta}\right)^{y_{i}\left[1-F\left(\boldsymbol{X}_{i} \beta\right)\right]^{1-y_{i}}} \tag{7}\\
\ln L=\sum_{i}\left\{y_{i} \ln F\left(\boldsymbol{X}_{i} \beta\right)+\left(1-y_{i}\right) \ln \left[1-F\left(\boldsymbol{X}_{i} \beta\right)\right]\right\} \tag{8}
\end{gather*}
$$

- The marginal effect (wrt. to the $k^{\text {th }}$ expl. variable X_{k}) is now given by:

$$
\begin{equation*}
\frac{\partial F\left(\boldsymbol{X}_{\boldsymbol{i}} \boldsymbol{\beta}\right)}{\partial X_{k}}=f\left(\boldsymbol{X}_{\boldsymbol{i}} \boldsymbol{\beta}\right) \beta_{k} \tag{9}
\end{equation*}
$$

4. ML estimation with observable characteristics

- Key question: What is $F()$?
- Obviously, $F()$ is a cdf and hence $[0,1]$.
- $F()$ need not be symmetric (around 0), but most of the time is.

4. ML estimation with observable characteristics

- $F()$ could come from:
(1) Theory (= assumptions).
(2) Data (non- / semi-parametric regression).
(3) Past practice.

4. ML estimation with observable characteristics

- Does the choice matter $F()$ empirically?
- Experience shows that in most ("well-behaved") data sets and as long as $F($.$) symmetric, makes essentially no difference to marginal effects.$
- Key for being "well-behaved"; mean of the dependent variable neither "very" large nor "very" small.

5. Estimation

- If we assume that the error term has a normal distribution, then we are estimating a probit model.
- Another popular model is the logit model where error term has an extreme value distribution. This yields the following expression for the probability that $y_{i}=1$:

$$
\operatorname{Pr}(Y=1 \mid \boldsymbol{X}=\boldsymbol{x})=\frac{\exp (\boldsymbol{x} \boldsymbol{\beta})}{\exp (0)+\exp (\boldsymbol{x} \boldsymbol{\beta})}=\frac{\exp (\boldsymbol{x} \boldsymbol{\beta})}{1+\exp (\boldsymbol{x} \boldsymbol{\beta})}
$$

- Note that the $\exp (0)$ in the denominator is the exponential of the utility from choosing the outside good, which has been normalized to be zero.

5. Estimation

- One cannot estimate probit or logit with OLS.
- One needs either
(1) maximum likelihood (this is what the Stata probit / logit functions do).
(2) nonlinear least squares (usually not used)
(3) generalized method of moments (sometimes used).
- Let's estimate the VI decision of cinema's in Gil's data with OLS, probit and logit.
- Unlike OLS, where we can solve for the coefficients using matrix algebra, ML models require (numerical) optimization.

How to calculate the ME?

(1) The derivative is going to depend on X.
(2) Different ME for each possible value of X.
(3) How to average?

How to calculate the ME?

- Many solutions:
(1) Only at the mean of X (and other variables).
(2) At some interesting value of X.
(3) Some avg example: weighted avg.

Stata commands for OLS, probit and logit

Stata code

```
regr vi_ever capacity_1000, robust
probit vi_ever capacity_1000
margins
logit vi_ever capacity_1000
margins
```


OLS results

Probit results

. probit vi_ever capacity_1000

| Iteration 0: | \log likelihood $=-269.08833$ |
| :--- | :--- | :--- |
| Iteration 1: | \log likelihood $=-229.07358$ |
| Iteration 2: | \log likelihood $=-228.75776$ |
| Iteration 3: | \log likelihood $=-228.75752$ |
| Iteration 4: | \log likelihood $=-228.75752$ |

Probit regression	Number of obs	$=$	393
	LR chi2(1)	=	80.66
	Prob > chi2	=	0.0000
Log likelihood $=-228.75752$	Pseudo R2	=	0.1499

| vi_ever | Coef. | Std. Err. | z | $P>\|z\|$ | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| capacity_1000 | .5689945 | .0698458 | 8.15 | 0.000 | .4320993 | .7058897 |
| $Z_{\text {_cons }}$ | -1.108613 | .1320205 | -8.40 | 0.000 | -1.367369 | -.8498576 |

- margins

Predictive margins \quad Number of obs $=393$
Model VCE : OIM
Expression : Pr(vi_ever), predict()

	MarginDelta-method Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf. Interval]		
_cons	.4314227	.0225493	19.13	0.000	.3872268	.4756185

Logit results

Iteration 0:	\log	likelihood $=$	-269.08833
Iteration 1:	\log	likelihood $=$	-228.60832
Iteration 2:	log	likelihood =	-228.44027
Iteration 3:	log	likelihood =	-228.44013
Iteration 4:	\log	likelihood =	-228.44013

Logistic regression	Number of obs	$=$
	LR chi2(1)	$=$
Log likelihood $=-228.44013$	Prob $>$ chi2	$=$

vi_ever	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf. Interval]	
capacity_1000	.9644566	.1268482	7.60	0.000	.7158387	1.213075
$Z_{\text {_cons }}$	-1.843564	.2296731	-8.03	0.000	-2.293715	-1.393413

- margins

Predictive margins \quad Number of obs $=393$
Model VCE : OIM
Expression : Pr(vi_ever), predict()

| | MarginDelta-method
 Std. Err. | z | $\mathrm{P}>\|\mathrm{z}\|$ | [95\% Conf. Interval] | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| _cons | .4351145 | .0224736 | 19.36 | 0.000 | .3910671 | .4791619 |

Stata commands different marginal effects

Stata code

```
probit vi_ever capacity_1000
margins
margins , atmeans
logit vi_ever capacity_1000
margins
margins , atmeans
```


Probit results

```
margins
```

Predictive margins
Model VCE : OIM

Expression : Pr(vi_ever), predict()

	MarginDelta-method Std. Err.	z	$P>\|z\|$	[95\% Conf. Interval]		
cons	.4314227	.0225493	19.13	0.000	.3872268	.4756185

Logit results

. margins

Predictive margins	Number of obs
Model VCE	OIM
Expression $: ~ P r\left(v i _e v e r\right), ~ p r e d i c t() ~$	393

| MarginDelta-method
 Std. Err. | z | P>\|z| | [95\% Conf. Interval] | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | .4351145 | .0224736 | 19.36 | 0.000 | .3910671 | .4791619 |

Probit, Logit, ...?

- One can use any cumulative density function (cdf).
- Most popular are probit and logit.
- Differences in ME between probit and logit small. If you only are interested in ME (and especially with large data), OLS works OK.
- Choice may depend on convenience / prior practice.

Why not LPM?

- Sometimes you are interested in the actual parameters, not only the ME.
- Example: estimating the demand for a good in order to understand substitution patterns.

