ECON-C4200 - Econometrics II: Capstone Lecture 7: Machine learning and econometrics

Otto Toivanen

Learning outcomes

- At the end of lecture 7, you
- $1\,$ understand what ${\bf Big}\,\, {\bf data}$ is
- 2 what Machine learning is
- 3 how to approach **prediction** as opposed to estimation of **(causal) parameters**
- 4 what a Ridge regression is
- 5 what a Lasso regression is
- We utilize material from Stock, J. H. & Watson, M. W. (4th Edition). *Introduction to econometrics*.

What is Big data?

- When people talk about "Big data", they can mean many things:
 - 1 Data with very many observations (typically, millions or more)
 - **2** Data that contain lots of variables (typically hundreds or thousands).
 - 3 Data that contain what used to be nonstandard elements such text, voice, images.

What is Big data used for?

- There are numerous ways to use Big data, but by far, the most common usage is prediction in one form or the other:
 - What ads would you likely want to see (= what products might you buy)?
 - 2 How likely are you to repay your mobile phone loan? (Elisa)
 - **3** Is this you? recognition problems.
- Machine learning tools are also used for causal analysis both by computer scientists (the so-called Directed Acyclic Graph approach; see e.g. Paul Hunermund's MOOC) and econometricians (see e.g. Victor Chernozukov's work) but we concentrate on prediction.

What is Machine learning?

- Machine learning: using a computer and big data to "learn" (to predict as well as possible).
- Though the language used in machine learning is different from that used in econometrics, it (largely) builds on tools that are familiar to econometricians.
- A principle used (but not invented in) in machine learning is to divide data into
 - 1 a "training set" which is used to estimate the model and
 - 2 a "reserve set" (validation data / Out of sample data) which is used to compare the performance of different models.
- The objective is to predict as well as possible in the reserve set of data.
- **Caveat**: Machine learning utilizes a large variety of tools. We only cover a couple here which are directly based on regression.

Prediction vs. parameter estimation

- Letting go of the objective of unbiased and consistent parameters we can let go of the assumption E[ϵ|**X**] = 0.
- But we need a new assumption: Since we are using one (part of) data to estimate the model and then predict the outcomes in another (part of) data, those need to be similar (enough).
- The latter is called **O**ut-**o**f **S**ample (OOS) data (but also testing data, validation data).
- \rightarrow we assume that (X^{OOS}, Y^{OOS}) is drawn from the same distribution as the estimation data (X, Y).

Prediction vs. parameter estimation

- So far we have concentrated on what is needed to get unbiased and consistent estimates of β.
- In prediction, the objective is to get as accurate a prediction of the outcome as possible (in the reserve data); hence we do not care about possible biases any longer.
- However, now we need a new benchmark for what is good.
- Enter the "Oracle" who predicts as well as is possible.

Mean Squared Prediction Error

• To be more practical, let us define the Mean Squared Prediction Error (MSPE) as:

$$MSPE = \mathbb{E}[Y^{OOS} - \hat{Y}(X^{OOS})]^2$$

- Y^{OOS} = outcome in the reserve / OOS-data.
- X = the variables used for prediction.
- Notice: we estimate the model using the training data, then use the predictors (X^{OOS}) in the OOS data to predict the outcome Y^{OOS}.
- Notice how MSPE is close but different from MSE.

Oracle prediction

- The Oracle prediction is the prediction that minimizes MSPE.
- What is this in practice?

$$Y^{Oracle} = \mathbb{E}[Y^{OOS}|X^{OOS}]$$

• Why is this? Imagine this was not the case. Then we could predict the forecast error using X^{OOS} in which case the Oracle prediction could not have been the best possible one.

Standardized regression

- A standardized version of variable X is one that has
 - 1 mean zero and
 - 2 standard deviation of one.
- It is standard in machine learning to use standardized explanatory variables.
- It is also standard to use the **demeaned** version of Y, i.e., $Y \overline{Y}$.
- \rightarrow no constant needed.
- Note: if we were interested in the coefficients, they would measure the impact on Y of a one standard deviation change in X.

Standardized regression

• A standardized regression has the same form as a regular regression:

$$Y = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

- This allows the use of the same "tricks" as the regular regression: polynomials, logs, interactions, ...
- **Important**: many machine learning methods (including those we cover) depend on what variables the researcher initially "proposes": e.g., they do not on their own start to introduce higher orders of a polynomial.
- By using those tricks you can increase the number of explanatory variables k to the point where k > n, i.e., you have more explanatory variables than observations.
- OLS does not work if k > n (the rank condition is not satisfied, i.e., you have more unknowns (parameters) than you have equations).

Prediction error

• Let's write the true regression as

$$Y^{OOS} = \beta_1 X_1^{OOS} + \ldots + \beta_k X_k^{OOS} + \epsilon$$

• After having estimated the model with the training data we obtain $\hat{\beta}$ and can calculate

$$\hat{Y}^{OOS} = \hat{\beta}_1 X_1^{OOS} + \dots + \hat{\beta}_k X_k^{OOS}$$

- The prediction error has two sources:
 - **1** The error term e^{OOS}
 - **2** The estimation error in the parameters (coefficients): $\beta_k \hat{\beta}_k$.

Prediction error

- Let's denote the variance of the error term in the OOS data with $\mathbb{E}[\epsilon^{OOS}] = \sigma_{\epsilon}^2$.
- This source of prediction error will be there even if we estimate the parameters exatly, i.e., $\beta_k \hat{\beta}_k = 0$ for all k.
- $\rightarrow \sigma_{\epsilon}^2$ is the MSPE of the Oracle forecast.
- What is the prediction error of our estimated model?

$$Y^{OOS} - \hat{Y}^{OOS} = (\beta_1 - \hat{\beta}_1)X_1^{OOS} + ... + (\beta_k - \hat{\beta}_k)X_k^{OOS} + \epsilon^{OOS}$$

MSPE

• The MSPE of the estimated model is then

$$MSPE = \sigma_{\epsilon}^2 + [(eta_1 - \hat{eta_1})X_1^{OOS} + ... + (eta_k - \hat{eta_k})X_k^{OOS}]^2$$

• For OLS, MSPE is approximately given by

$$MSPE_{OLS} \simeq \left[1 + \frac{k}{n}\right]\sigma_{\epsilon}^2$$

- OLS has a problem: fixing the sample size *n*, MSPE is increasing in the number of predictors *k*.
- ullet ightarrow need for an estimator for which MSPE increases at a slower rate.

The principle of Shrinkage

- It has been known for a long time (since 1950s) that by allowing bias, one can reduce MSPE compared to MSPE_{OLS}.
- With uncorrelated Xs, these estimators produce coefficients of the form

$$\hat{\beta}^{JS} = c\hat{\beta}$$

where $JS = James-Stein^1$ and 0 < c < 1.

• The Principle of Shrinkage says that we can reduce MSPE by biasing the coefficients towards zero, i.e., **shrinking** them.

¹ see James, W. & Stein, C. (1961). Estimation with quadratic loss. *Proc. Fourth Berkeley Symp. Math. Statist. Prob*, *1*, 361–379.

The bias-variance tradeoff

- One can show that in estimation, there is a trade-off between variance (of the prediction) and bias.
- This has been known for a long time, but has gained (even) more prominence with machine learning, due to its emphasis on prediction (see e.g. Giorgos Papachristoudis).
- One can show that we can rewrite the prediction error as

$$MSPE = \mathbb{E}[Y - \hat{f}(X^{OOS})]^2 = bias[\hat{f}(X^{OOS})]^2 + variance[\hat{f}(X^{OOS})] + \sigma_{\epsilon}^2$$

where $f(X^{OOS})$ is our model, e.g.,

$$f(X^{OOS}) = \beta_1 X_1^{OOS} + \dots + \beta_k X_k^{OOS} + \epsilon$$

The bias-variance tradeoff

- What happens when you increase shrinkage, i.e., decrease c?
- You increase bias by definition $\hat{\beta}^{JS} c\hat{\beta}$.
- At the same time, variance (of the prediction) decreases.
- With a large number of predictors *k*, the decrease in variance can overweigh the increase in bias.
- This would lead to a lower MSPE.
- The estimators we cover all rely on the shrinkage principle.

Estimating a machine learning model

- **1** Split your data into **estimation** (training) and **testing** data.
- 2 Choose your model.
- **3** Estimate your model with the estimation (training) data.
- 4 Calculate the predicted values of Y, \hat{Y} , for the testing data
- G Calculate MSPE using the testing data by summing up the squares of the prediction errors (Y − Ŷ) and dividing by n_{test}, the number of observations in the testing data.
- **6** Go back to step #2 and repeat until you cannot decrease MSPE no more.

Estimation of MSPE with cross-validation

- Best practice is to use k -fold (SW call this m-fold) cross validation.
- Example m = 10: Divide data into 10 equally sized subsamples.
- Estimate the data leaving one subsample out.
- Predict for the subsample you left out.
- Leave next subsample out, repeat.
- Repeat until you've predicted for all subsamples.
- Sum up the subsample MSPEs to get the MSPE of your estimator.

Machine learning estimators in this course

- We will cover two shrinkage based regression approaches commonly used in machine learning:
 - 1 Ridge regression
 - **2** Least Absolute Selection and Shrinkage Operator (Lasso).
- Both **penalize** some coefficients, but do this differently.
- We use the empirical examples in SW (ch.14, newest edition).

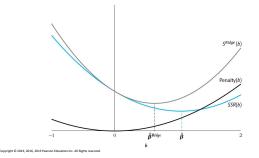
The Ridge regression

• The principle of ridge regression is to penalize coefficients with large squared values by minimizing the following objective function:

$$S^{Ridge}(b; \lambda_{Ridge}) = \sum_{i} \left[Y - (\beta_1 X_1 + ... + \beta_k X_k)\right]^2 + \lambda_{Ridge} \sum_{j} b_j^2$$
(1)

- The second sum $\sum_j b_j^2$ is over the coefficients b_j , j = 1, ..., k.
- The term $\lambda_{Ridge} \sum_{j} b_{j}^{2}$ is the **penalty** term.
- One can show that if the regressors are uncorrelated, the ridge regression coefficients take the James-Stein form.

Ridge regression with k = 1



The figure is for k = 1. SSR(b) = unpenalized residual sum of squares; S^{Ridge}(b) = the ridge MSPE (objective fcn.)

Lasso

• While Ridge penalizes large values of squared coefficients, Lasso penalizes large coefficients with large **absolute** values:

$$S^{Lasso}(b; \lambda_{Lasso}) = \sum_{i} \left[Y - (\beta_1 X_1 + \dots + \beta_k X_k)\right]^2 + \lambda_{Lasso} \sum_{j} |b_j|$$
(2)

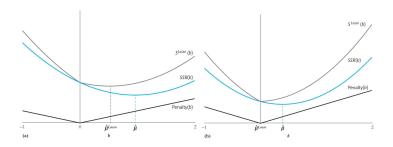
- The second sum $\sum_{j} |b_j|$ is over the coefficients b_j , j = 1, ..., k.
- The term $\lambda_{Lasso} \sum_{j} b_{j}^{2}$ is the **penalty** term.
- Thus Lasso and ridge very similar in appearance.

Lasso

- Lasso treats large and small coefficients differently:
- It shrinks large coefficients somewhat less than ridge.
- It shrinks small coefficients to zero.
- Lasso therefore in essence "tries to get rid" of variables that affect the outcome only a little.
- Lasso seeks to produce a sparse model and therefore works well when the true model is sparse.
- This is a wonderful property when k >> n, i.e., you have many more regressors than you have observations.

Lasso

Figure: LHS: large coefficients, RHS: small coefficients



- Stock and Watson also cover principal components regression.
- Briefly, the idea is to "shrink" the number of regressors using so-called **principal components** analysis.
- Once k < n, OLS can be used.

SW empirical example: Predicting school level test scores

- Data: school level data on California elementary district data set with additional variables describing the schools, the students and the districts.
- There are 3 932 observations: Half of the (1 966) are used for out-of-sample prediction.
- The data has 817 predictors.

SW school level test score data

Main variables (38)

Fraction of students eligible for free or reduced-price lunch Fraction of students eligible for free lunch	Ethnicity variables (8): fraction of students who are American Indian, Asian, Black, Filipino, Hispanic, Hawaiian, two or more, none reported
Fraction of English learners	Number of teachers
Teachers' average years of experience	Fraction of first-year teachers
Instructional expenditures per student	Fraction of second-year teachers
Median income of the local population Student-teacher ratio	Part-time ratio (number of teachers divided by teacher full-time equivalents)
Number of enrolled students	Per-student expenditure by category, district
Fraction of English-language proficient students	level (7) Per-student expenditure by type, district level (5)
Ethnic diversity index	Per-student revenues by revenue source, district level (4)
+ Squares of main variables (38)	
+ Cubes of main variables (38)	
+ All interactions of main variables ($38 \times 37/2 = 703$)	
Total number of predictors $= k = 38 + 38 + 38 + 703 = 817$	

SW empirical example: Predicting school level test scores

• Three sets of predictors are used:

- Small k = 4: Student-teacher ratio, median local income, teacher's avg. years of experience, instructional expenditures / student.
- **2** Large k = 817: See the table.
- 3 Very large k = 2065: Additional school and demographic variables, squares, cubes, interactions.
- For the Very large data set, k > n.

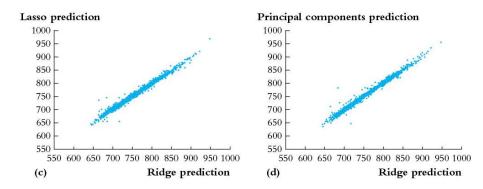
Predictor Set	OLS	Ridge Regression	Lasso	Principal Components
Small $(k = 4)$				
Estimated λ or p	_	_	_	_
In-sample root MSPE	53.6	_	_	_
Out-of-sample root MSPE				ore predictors – .S when $k > n$
Large $(k = 817)$		-		
Estimated λ or p	_	2233	4527	46
In-sample root MSPE	78.2	39.5	39.7	39.7
Out-of-sample root MSPE	64.4	38.9	39.1	39.5
Very large $(k = 2065)$				
Estimated λ or p	_	3362	4221	69
In-sample root MSPE	_	39.2	39.2	39.6
Out-of-sample root MSPE		39.0	39.1	39.6

Predictor Set	OLS	Ridge Regression	Lasso	Principal Components
Small $(k = 4)$				
Estimated λ or p	-	2. The cross	-validated M	ISPE,
In-sample root MSPE	53.6	computed w	ith the estim	nation
Out-of-sample root MSPE	52.9	sample, is a out-of-sampl		ate of the
Large (k = 817)				
Estimated λ or p	-	2233	4527	46
In-sample root MSPE	78.2	39.5	39.7	39.7
Out-of-sample root MSPE	64.4	38.9	39.1	39.5
Very large (k = 2065)				
Estimated λ or p	-	3362	4221	69
In-sample root MSPE	-	39.2	39.2	39.6
Out-of-sample root MSPE	_	39.0	39.1	39.6

Predictor Set	OLS	Ridge Regression	Lasso	Principal Components
Small $(k = 4)$				
Estimated λ or p	-	3. Lasso, Rid	ge, and Po	Call
In-sample root MSPE	53.6	provide big improvements over		
Out-of-sample root MSPE	52.9	OLS		
Large $(k = 817)$				
Estimated λ or p	-	2233	4527	46
In-sample root MSPE	78.2	39.5	39.7	39.7
Out-of-sample root MSPE	64.4	38.9	39.1	39.5
Very large (k = 2065)				
Estimated λ or p	-	3362	4221	69
In-sample root MSPE	-	39.2	39.2	39.6
Out-of-sample root MSPE	_	39.0	39.1	39.6

Predictor Set	OLS	Ridge Regression	Lasso	Principal Components
Small $(k = 4)$				
Estimated λ or p	<u> </u>	4. For these dat		
In-sample root MSPE	53.6	have very simila		
Out-of-sample root MSPE	52.9			le in general. las a very sligt
Large $(k = 817)$		edge		
Estimated λ or p	-	2233	4527	46
In-sample root MSPE	78.2	39.5	39.7	39.7
Out-of-sample root MSPE	64.4	38.9	39.1	39.5
Very large (k = 2065)				
Estimated λ or p		3362	4221	69
In-sample root MSPE		39.2	39.2	39.6
Out-of-sample root MSPE		39.0	39.1	39.6

Predictor Set	OLS	Ridge Regression	Lasso	Principal Components	
Small $(k = 4)$					
Estimated λ or p	_	5 For these da	ata there is	sn't much	
In-sample root MSPE	53.6		5. For these data, there isn't much gain to using the very large data		
Out-of-sample root MSPE	52.9	set, however this will not be true in general.			
Large (k = 817)					
Estimated λ or p	_	2233	4527	46	
In-sample root MSPE	78.2	39.5	39.7	39.7	
Out-of-sample root MSPE	64.4	38.9	39.1	39.5	
Very large $(k = 2065)$					
Estimated λ or p	_	3362	4221	69	
In-sample root MSPE	_	39.2	39.2	39.6	
Out-of-sample root MSPE	_	39.0	39.1	39.6	



Copyright © 2019, 2016, 2013 Pearson Education Inc. All Rights reserved.

Summary

- Many machine learning tools are based on regressions.
- They are designed for prediction, not unbiased estimation of coefficients of interest.
- Machine learning tools are especially useful when there is a large number of predictors / regressors / explanatory variables relative to the size of the data (and one only cares about prediction).
- Ridge and Lasso both utilize the shrinkage principle which builds on the bias-variance tradeoff.
- They easily outperform OLS in prediction in most cases and produce smaller MSPE.