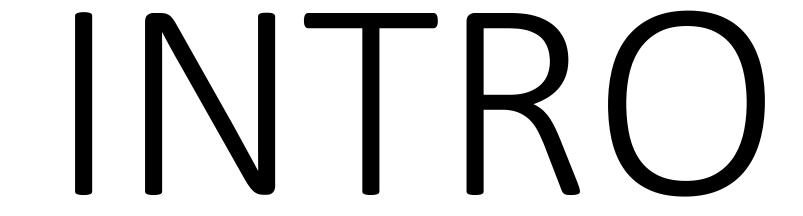
SCHEDULE

	Data		Tonio
	Date		Торіс
1.	Wed	01.03.	Lec-1: Introduction
2.	Mon	06.03.	Lec-2: Crystal Chemistry & Tolerance parameter
3.	Mon	06.03.	EXERCISE 1
4.	Wed	08.03.	Lec-3: Crystal Chemistry & BVS
5.	Fri	10.03.	Lec-4: Symmetry & Point Groups
6.	Mon	13.03.	EXERCISE 2
7.	Wed	15.03.	Lec-5: Crystallography & Space Groups (Linda)
8.	Fri	17.03.	Lec-6: XRD & Reciprocal lattice (Linda)
9.	Mon	20.03.	EXERCISE 3 (Linda)
10.	Fri	31.03.	Lec-7: Rietveld (Linda)
11.	Mon	03.04	EXERCISE 4: Rietveld (Linda)
12.	Wed	12.04.	Lec-8: ND & GI-XRD
13.	Fri	14.04.	Lec-9: XRR (Topias)
14.	Mon	17.04.	EXERCISE 5: XRR (Topias)
15.	Wed	19.04.	Lec-10: Synchrotron radiation & XAS & EXAFS
16.	Fri	21.04.	Mössbauer
17.	Fri	21.04.	EXERCISE 6
18.	Thu	27.04.	Seminars: XPS, FTIR, Raman
19.	Fri	28.04.	Seminars: ED, HRTEM, SEM, AFM
EXAN	Л		

TODAY

LINDA'S LECTURES & EXERCISES

- 15.03. WEDNESDAY: 14.15 16 (Ke3)
- 17.03. FRIDAY: 8.30 10 (Ke4)
- 20.03. MONDAY: 14.15 16 (Ke4)
- 31.03. FRIDAY: 8.30 10 (Ke4)
- 03.04. MONDAY: 10 13 (Ke3)
 - Two groups, 10-11.30 & 11.30-13

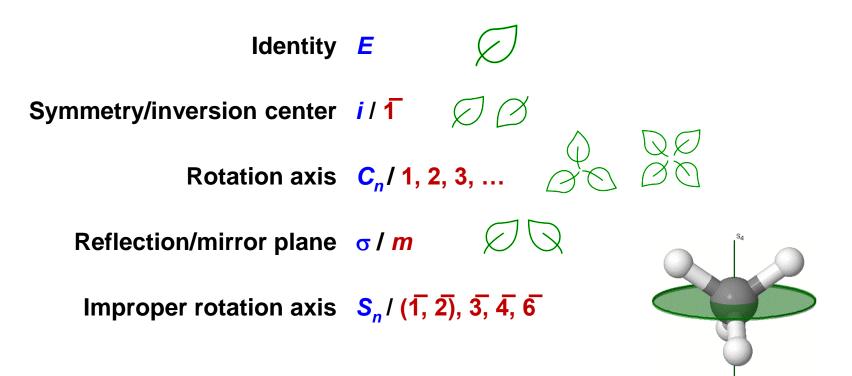

SEMINARS

- IR Fasiha Israr & Lisa Riedlsperger
- Raman Zonghang Song & Xueran Tao
- XPS Umaid Lone
- SEM Trang Pham & Erkka Koskenniemi
- AFM Joakim Kattelus & Matilda Antila
- HRTEM Luiza Souza & Henrik Stenbrink
- ED Christer Söderholm & Shadab Ishtiaq
- EELS Aleksi Rantanen & Jasmin Sonphasit

INSTRUCTIONS for SEMINAR PRESENTATIONS

- Topics: IR, Raman, XPS, SEM, AFM, HRTEM, ED, EELS
- Seminar presentation is mandatory
- Presentation slides will be put up in MyCourses afterwards
- Seminars are part of the course content and it is likely that there will be questions in the exam related to these seminars
- Given in a group of two students
- Evaluated in the scale: 10 ~ 20 points
- Presentation: 25+5 minutes
- Rough content of the presentation:
 - principle of the technique(s)
 - type of information gained
 - interpretation of the measured data
 - pros & cons
 - two to four research examples

(you will be given some relevant research papers for an example)


LECTURE 5: CRYSTALLOGRAPHY BASICS

- From "point-like" molecules to 3D crystals
- Translation in 3D crystals →
 NEW SYMMETRY OPERATIONS (glide planes & screw axes)
- From *Point groups* to *Space groups*
- Crystal lattice, lattice points & unit cell
- International Tables of Crystallography

Symmetry elements (Schönflies / Hermann-Mauguin)

RECALL FROM PREVIOUS LECTURE:

Point / Molecular symmetry >> One point remains unchanged

NOTE:

- Improper rotation axis 1 and inversion center 1 are equivalent

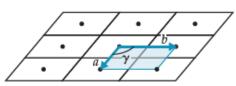
- Mirror plane m and improper rotation axis $\overline{2}$ are equivalent

CRYSTAL 2D

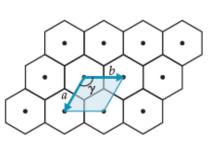
There are two things which make macroscopic (infinite) crystals different from discrete molecules in terms of symmetry: Translation & Space-filling

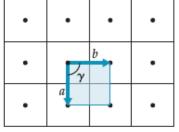
Translation in crystals

- Translation: move from one point to another (the entire object)
- This does not exist in molecules, but is the essence of macroscopic crystals exhibiting long-range order

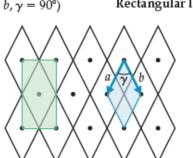


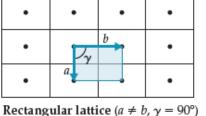
• Crystal lattice: regular, infinite pattern


There are two things which make macroscopic (infinite) crystals different from discrete molecules in terms of symmetry: Translation & Space-filling


Space-filling → 5 lattices

- Macroscopic crystals need to continuosly fill the space
- For molecules 5-fold rotation is possible, but not for crystals
 - Quasicrystals can have 5-fold rotation: 2-component lattice



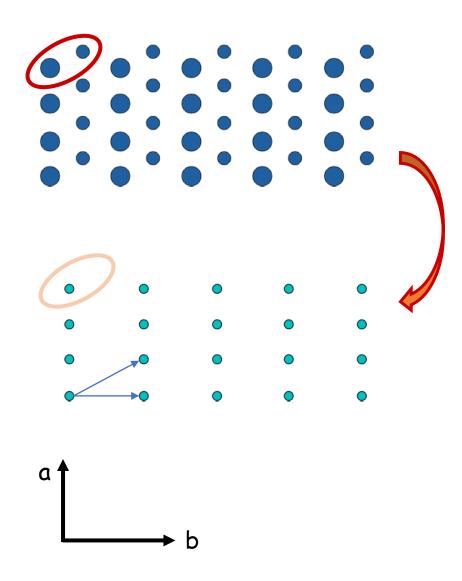

Oblique lattice ($a \neq b, \gamma = arbitrary$)

Square lattice ($a = b, \gamma = 90^{\circ}$)

Quasicrystal

Hexagonal lattice ($a = b, \gamma = 120^{\circ}$)

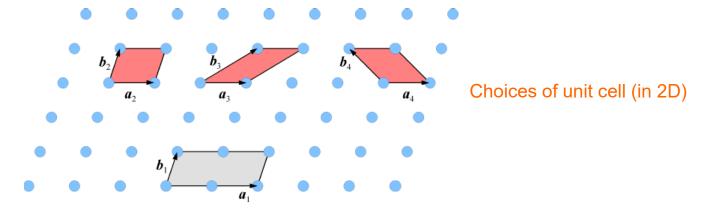
Rhombic lattice ($a = b, \gamma = arbitrary$) Centered rectangular lattice


The crystal lattice is the geometrical 'drawing board', which is then filled with constituents that build a pattern: lattice points, basis, and unit cell

Basis:

The atom (atom group) that is repeated

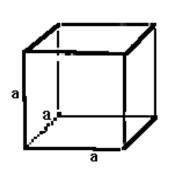
Lattice points

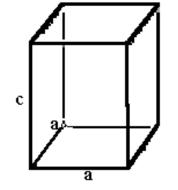

- The positions filled by the basis as a function of the symmetry operations for the lattice
- Each lattice point has identical environment + symmetry properties (=point group)

The crystal lattice is the geometrical 'drawing board', which is then filled with constituents that build a pattern: lattice points, basis, and unit cell

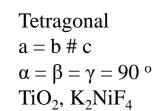
Unit cell

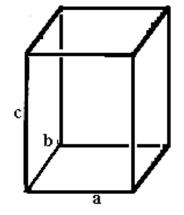
- Smallest possible part of the crystal lattice;
 - that repeats itself periodically;
 - to completely fills the lattice volume;
 - > and is enough to describe the entire lattice perfectly

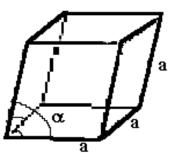



Choice of the unit cell not always unambiguous: several options

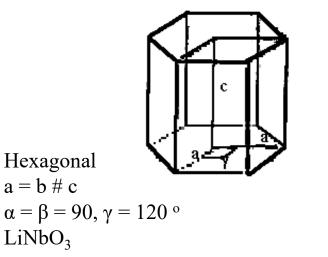
$2D \rightarrow 3D$

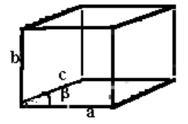

LATTICES IN 3D: CRYSTAL SYSTEMS (7)


No information on the positions of atoms

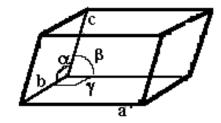


Cubic a = b = c $\alpha = \beta = \gamma = 90^{\circ}$ NaCl, MgAl₂O₄

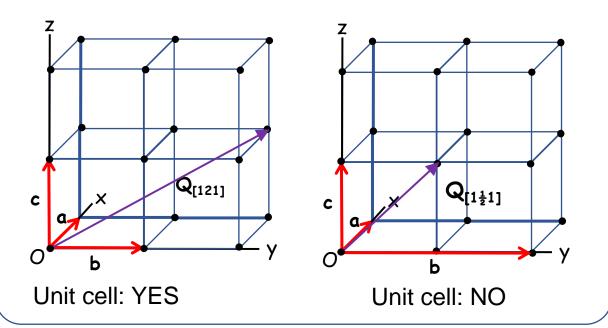


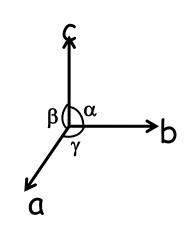


Orthorhombic a # b # c $\alpha = \beta = \gamma = 90^{\circ}$ YBa₂Cu₃O₇



Rhombohedral a = b = c $\alpha = \beta = \gamma \# 90^{\circ}$ BaTiO₃ (low-T)

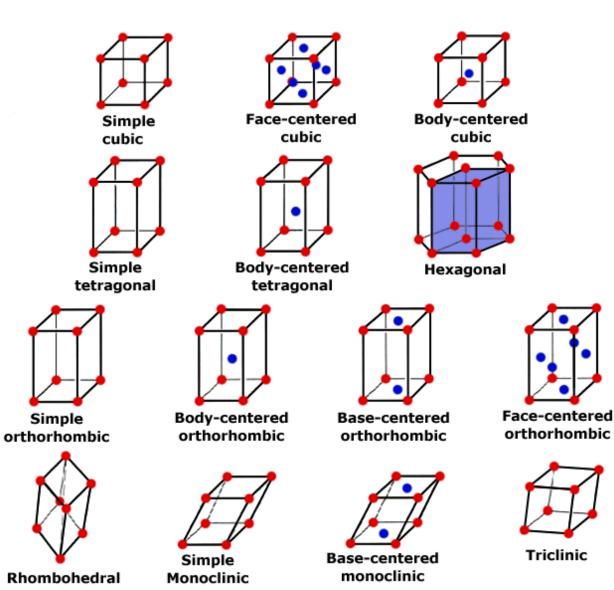



Monoclinic a # b # c $\alpha = \gamma = 90^{\circ}, \beta \# 90^{\circ}$ KH_2PO_4

Triclinic a # b # c α # β # γ # 90 °

Each LATTICE POINT should be able to be described with the vector $Q_{[uvw]} = ua + vb + wc$, where *u*, *v* and *w* all are INTEGER values

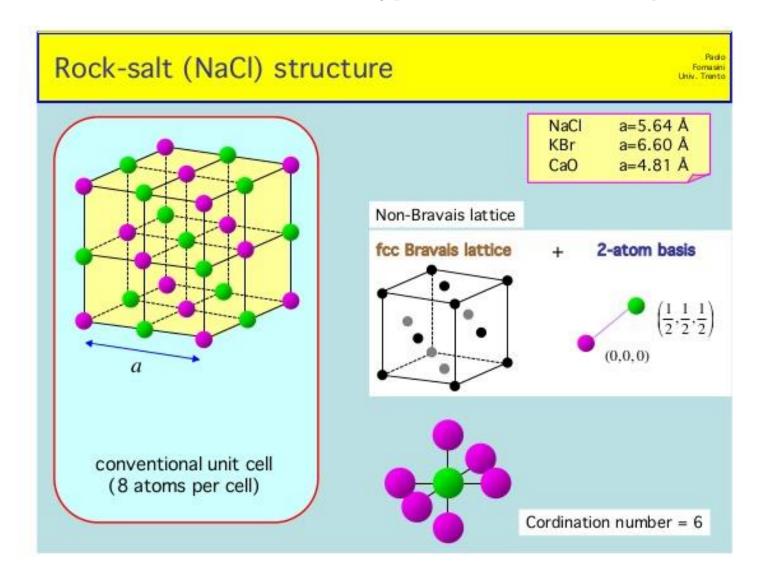
Lattice points = unit cell corners


What we need to tell about the UNIT CELL

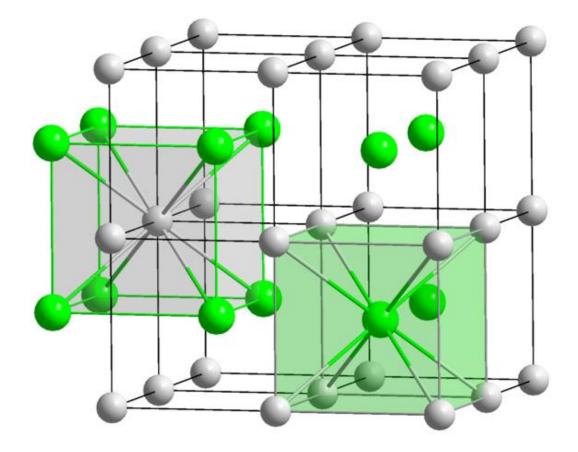
(basis)

- Shape & size of the unit cell *plus* the atomic positions in the unit cell
- Shape & size are given by:
 - Lattice parameters: *a*, *b* ja c
 - Angles between the axes: α , β ja γ

LATTICES IN 3D: BRAVAIS LATTICES (14)

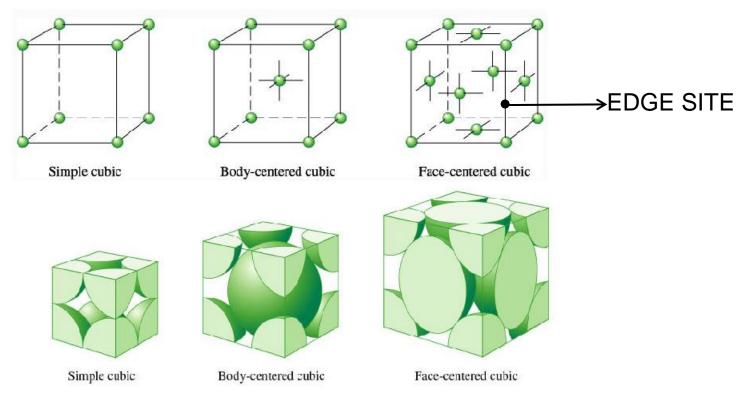

Basic stacking of lattice <u>sites</u> included (basis, not atoms)

Centering	Lattice points /cell	Abbre- viation
Primitive	1	Р
Base (A, B, or C) centered	2	А, В, С
Body centered	2	1
Hexagonal, rhombohedral	3	h / R
Face centered	4	F

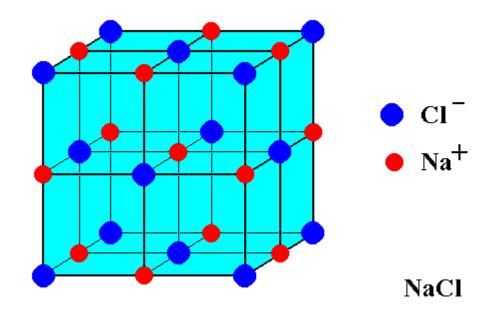

EXAMPLE

What is the Bravais lattice type of NaCI: Cubic F (basis: Na-CI)

Your **EXERCISE** question

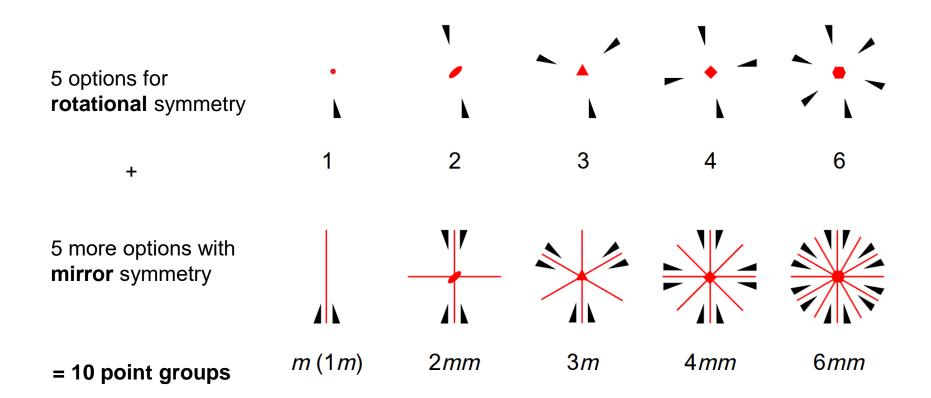

What is the Bravais lattice type of CsCl

Counting atoms

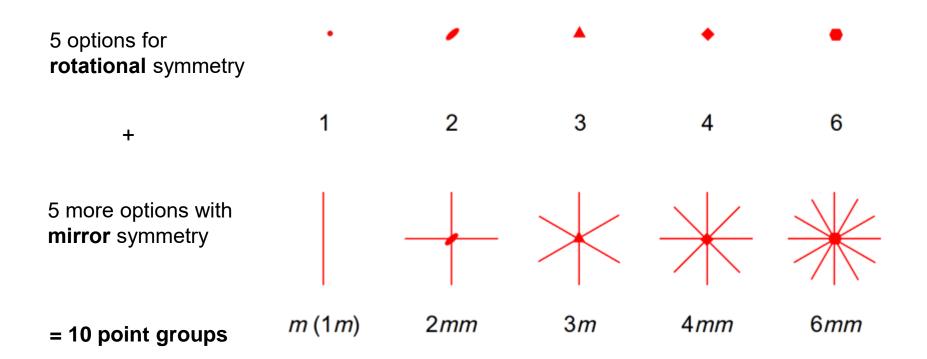

NUMBER of FORMULA UNITS in UNIT CELL (Z)

- typically 1 6, but can be tens or even hundreds
- atom inside unit cell: belongs only to one unit cell
- atom on unit cell face: belongs to two unit cells
- atom on unit cell edge: belongs to four unit cells
- atom on unit cell corner: belongs to eight unit cells

EXAMPLE


- How many NaCl formula units in unit cell?
- answer...

Lattice symmetry: POINT GROUPS


The 2D point groups

Crystallography fundamental rule of translation: units must stack without gaps!

The 2D point groups

Crystallography fundamental rule of translation: <u>units must stack without gaps!</u>

Point group graphical symbol shown in red

Repetition on 2D symmetry groups: https://slideplayer.com/slide/4380042/

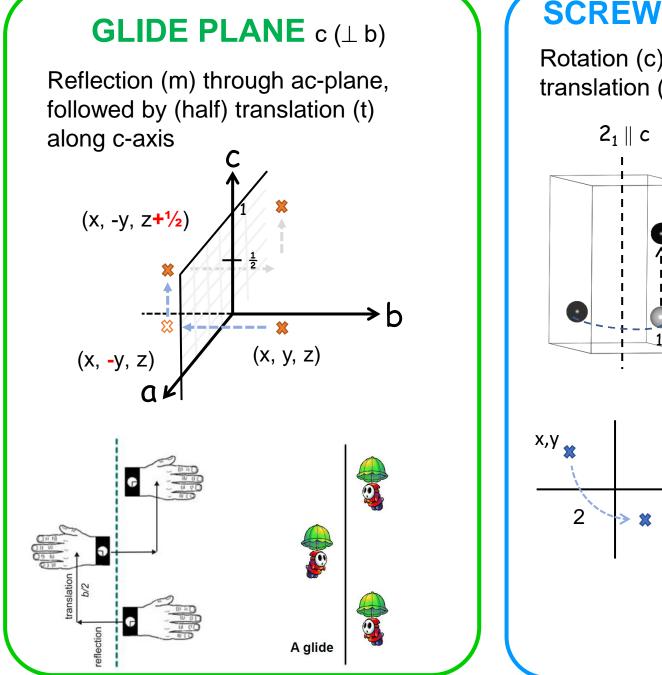
New symmetry in 3D

Additional translation symmetry elements in INFINITE LATTICES

Combining translation with other symmetry operations/elements

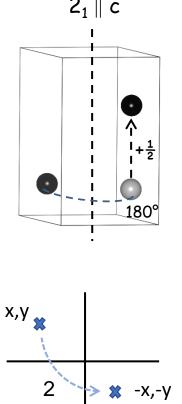
→ new symmetry operations/elements: glide planes & screw axes

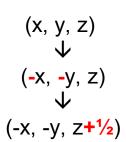
Screw axis

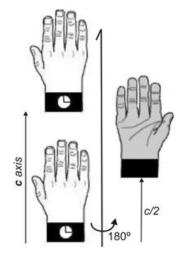

- Rotation plus translation

 n_m (2₁, 3₁, 3₂, 4₁, 4₂, 4₃, 6₁, 6₂, 6₃, 6₄, 6₅) For example: 2₁: rotation 180° and translation $\frac{1}{2}(m/n)$

Glide plane


- Reflection against a mirror plane plus (half) translation parallel to the plane


Axis glide plane: Diagonal glide plane: a, b, c (translations by $\frac{1}{2}a$, $\frac{1}{2}b$, $\frac{1}{2}c$ to each glide plane direction) $n [\frac{1}{2}(a+b), \frac{1}{2}(b+c), \frac{1}{2}(c+a)]$ $d [\frac{1}{4}(a+b), \frac{1}{4}(b+c), \frac{1}{4}(c+a)]$ (so-called diamond glide plane)



SCREW AXIS

Rotation (c) followed by translation (t)

Symmetry elements in 3D

Element	What it does	Possible in crystal system		
Identity (1)	-	All		
Inversion $(\overline{1})$	Inversion	All		
Mirror plane (m)	Mirror	All but triclinic		
2- fold rotation (2)	Rotate 180°	All but triclinic		
3-fold rotation (3)	Rotate 120°	Trigonal, Hexagonal and Cubic		
4-fold Rotation (4)	Rotate 90°	Tetragonal and Cubic		
6-fold Rotation (6)	Rotate 60°	Hexagonal		

ο

3

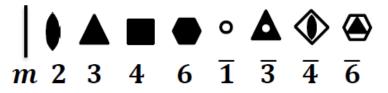
4

6

*Mirror plane*2 2-fold rotation
3 3-fold rotation
4 4-fold rotation
6 6-fold rotation

- $\overline{1}$ 1-fold improper rotation = inversion point
 - 3-fold improper rotation
 - 4-fold improper rotation
 - 6-fold improper rotation

POINT GROUPS (from historical reasons) DIFFERENT SYMMETRY SYMBOLS


Schoenflies (S) symbols

- were developed first
- in molecular symmetry & spectroscopy

Hermann-Mauguin (H/M) symbols

- in crystallography
- long and short forms

Graphical symbols

3D point group graphical symbols

Table 1.1 Symmetry elements of crystal point groups.

System	Point group s	ymmetry	Symmetry elements	Number
	5	H/M		of opera- tions
Triclinic	$\begin{array}{c} C_1 \\ C_i = S_2 \end{array}$	$\frac{1}{1}$	$I = C_1$ $I, i(=S_2)$	1 2
Monoclinic	$C_{2} \\ C_{S} = C_{1k} = C_{1v} \\ C_{2k}$	2 m 2/m	I, C ₂ I, σ I, C ₂ , σ _h , i	2 2 4
Orthorhombic	C2+ D2 D2h	mm2 222 mmm	I, C ₂ , 2σ I, 3C ₂ I, 3C ₂ , 3σ, i	4 4 8
Tetragonal	$C_4 \\ S_4 \\ D_4 \\ C_{4v} \\ C_{4h} \\ D_{24} \\ D_{4h}$	4 422 4 <i>mm</i> 4/ <i>m</i> 42 <i>m</i> 4/ <i>mmm</i>	$\begin{array}{l} I, \ C_4 \\ I, \ S_4 \ (= C_2) \\ I, \ C_4 \ (= C_2), \ 2C_2', \ 2C_2'' \\ I, \ C_4, \ 2\sigma_{\psi}, \ 2\sigma_{d} \\ I, \ C_4 \ (= S_4), \ \sigma_h, \ i \\ I, \ S_4 \ (= C_2), \ 2C_2', \ 2\sigma_{d} \\ I, \ C_4 \ (= S_4), \ 2C_2', \ 2C_2'', \end{array}$	4 8 8 8 8
Trigonal	$C_3 \\ C_{3i} = S_6 \\ D_3 \\ C_{3v} \\ D_{3d}$	3 3 32 3m 3m	$\begin{array}{l} 2\sigma_{v}, 2\sigma_{d}, i\\ I, C_{3}\\ I, S_{6} (=C_{3}), i\\ I, C_{3}, 3C_{2}\\ I, C_{3}, 3\sigma_{v}\\ I, S_{6} (=C_{3}), 3C_{2}, 3\sigma_{d}, i \end{array}$	16 3 6 6 12
Hexagonal	$\begin{array}{c} C_6 \\ C_{3h} \\ D_6 \\ D_{3h} \\ C_{6h} \\ C_{6s} \\ D_{6k} \end{array}$	6 622 6/m 6/m 6/mmm	$ \begin{array}{l} I, \ C_6 \\ I, \ S_3 \ (=C_3), \ \sigma_k \\ I, \ C_6, \ 3C_2', \ 3C_2'' \\ I, \ C_3 \ (=S_3), \ 3C_2, \ 3\sigma_v, \ \sigma_k \\ I, \ C_6 \ (=S_6), \ \sigma_k, \ i \\ I, \ C_6, \ 3\sigma_v, \ 3\sigma_d \\ I, \ C_6 \ (=S_6), \ 3C_2', \ 3C_2', \\ \ 3\sigma_v, \ 3\sigma_d, \ \sigma_k, \ i \end{array} $	6 6 12 12 12 12 12 12 24
Cubic	$ \begin{array}{c} T \\ T_{h} \\ T_{d} \\ O \\ O_{h} \end{array} $	23 m3 43m 432 m3m	$ \begin{array}{l} I, \ 3C_2, \ 4C_3\\ I, \ 3C_2, \ 4C_3 \ (=S_6), \ 3\sigma_k, \ i\\ I, \ 3C_2 \ (=S_4), \ 4C_3, \ 6\sigma_d\\ I, \ 3C_2, \ 4C_3, \ 3C_4\\ I, \ 3C_2, \ 4C_3 \ (=S_6), \\ \ 3C_4 \ (=S_4), \ 3\sigma_k, \ 6\sigma_d, \ i \end{array} $	12 24 24 24 24

CRYSTAL CLASSES *i.e.* POINT GROUPS

(32)

	The 32 Po	int Groups	
1	4	3	6mm
ī	$\overline{4}$	32	$\overline{6}m2$
2	4/m	3m	6/mmm
m	422	$\overline{3}m$	23
2/m	4mm	6	$m\overline{3}$
222	$\overline{4}2m$	6	432
mm2	4/mmm	6/m	$\overline{4}3m$
mmm	3	622	$m\overline{3}m$

Th	e 32 Point Grou	ps (Schoenfli	es)
1 (C ₁)	4 (C ₄)	3 (C _{3i})	6mm (C _{6σν})
$\overline{1}$ (C _i = S ₂)	$\overline{4}$ (S ₄)	32 (D ₃)	$\overline{6}m2$ (D _{3oh})
2 (C ₂)	4/m (C _{4σh})	3m (C _{3σν})	6/mmm (D _{6oh})
m (C _σ)	422 (D ₄)	$\overline{3}m$ (D _{3d})	23 (T)
2/m (C _{2σh})	4mm (C _{4σν})	6 (C ₆)	$m\overline{3}$ (T _h)
222 (D ₂)	$\overline{4}2m~(D_{2d})$	$\overline{6} (C_{3\sigma h})$	432 (O)
2mm (C _{2σv})	4/mmm (D _{4h})	6/m (C _{6ơh})	$\overline{4}3m~(T_{d})$
mmm (D _{2σh})	3 (C ₃)	622 (D ₆)	$m\overline{3}m~(O_{h})$

Which point groups are possible for each lattice type?

System	Minimum Requirements
Cubic	Four 3-fold rotation axis
Tetragonal	One 4-fold rotation (or RI) axis
Orthorhombic	Three perpendicular 2-fold axis
Rhombohedral	One 3-fold rotation (or RI) axis
Hexagonal	One 6 fold rotation (or RI) axis
Monoclinic	One 2 fold rotation axis or mirror plane
Triclinic	none

System	Point groups					
Cubic	23 , $m\overline{3}$, 432 , $\overline{4}3m$, $m\overline{3}m$					
Tetragonal	4, $\overline{4}$, 4/m, 422, 4mm, $\overline{4}2m$, 4/mmm					
Orthorhombic	222, 2mm, mmm					
Trigonal	3, 3, 32, 3m, 3 <i>m</i>					
Hexagonal	6, $\overline{6}$, 6/m, 622, 6mm, $\overline{6}m2$, 6/mmm					
Monoclinic	2, m, 2/m					
Triclinic	1, 1					

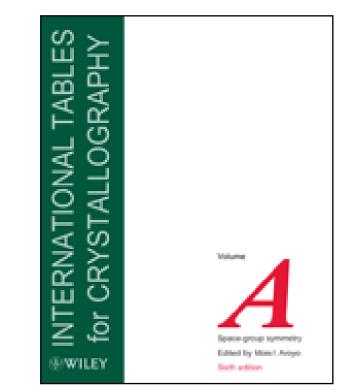
The building blocks of 3D

- 7 Crystal systems
 - = geometrical bodies (unit cells) that can stack in 3D
- & 14 Bravais lattices
 - = basic atomic arrangements within a unit cell
- & 32 Point groups
 - = geometrical symmetry operation systems within the unit cell

 \rightarrow 230 Space groups

= possible combinations of lattices and symmetry elements (impossible systems and doublets excluded)

→ SPACE GROUPS (230)


		Triclinic					Tetragonal	I						
(For the enlarged unit cells, click here)						(For the enlarged	C- and F-centred unit	cells, click <u>here</u>)						
1. <u>P 1</u>	2. <u>P-1</u>				75. <u>P 4</u>	76. <u>P 41</u>	77. <u>P 4</u> 2	78. <u>P 4</u> 3	79. <u>7 4</u>					
		Monoclini	c		80. <u>7 4</u> 1	81. <u>P -4</u>	82. <u>7 -4</u>	83. <u>P 4 / m</u>	84. <u>P 4₂ / m</u>			Hexagonal		
(For a f	uller list with alternativ	e unique axes, origins,	, or enlarged unit cells	click here)	85. <u>P 4 / n</u>	86. <u>P 4₂ / 8</u>	87. <u>I 4 / m</u>	88. <u>[4₁ / a</u>	89. <u>P 4 2 2</u>	168. <u>P 6</u>	169. <u>P 61</u>	170. <u>P 65</u>	171. <u>P 6</u> 2	172. <u>P 64</u>
3. P 1 2 1	4. P 1 21 1	5.C121	6. P 1 m 1	7. P 1 c 1	90. <u>P 4 2₁ 2</u>	91. <u>P 4₁ 2 2</u>	92. <u>P 4₁ 2₁ 2</u>	93. <u>P 4₂ 2 2</u>	94. <u>P 4₂ 2₁ 2</u>	173. <u>P 6</u> 3	174. <u>P -6</u>	175. <u>P 6 / m</u>	176. <u>P 6₃ / m</u>	177. <u>P 6 2 2</u>
8. C 1 m 1	9. C 1 c 1	10. P 1 2 / m 1	$11. P 1 2_1 / m 1$	12. C12/m1	95. <u>P 43 2 2</u>	96. <u>P 4₃ 2₁ 2</u>	97. <u>I 4 2 2</u>	98. <u>I 41 2 2</u>	99. <u>P 4 m m</u>	178. <u>P 6₁ 2 2</u>	179. <u>P 6₅ 2 2</u>	180. <u>P 6₂ 2 2</u>	181. <u>P 64 2 2</u>	182. <u>P 6₃ 2 2</u>
13. P12/c1	14. P 1 21 / c 1	15. C 1 2/e 1			100. <u>P 4 b m</u>	101. <u>P 4₂ c m</u>	102. <u>P 4₂ n m</u>	103. <u>P 4 c c</u>	104. <u>P 4 n c</u>	183. <u>P 6 m m</u>	184. <u>P 6 c c</u>	185. <u>P 63 c m</u>	186. <u>P 63 m c</u>	187. <u>P -6 m 2</u>
13. 14/01					105. <u>P 4₂ m c</u>	106. <u>P 4₂ è c</u>	107. <u>I 4 m m</u>	108. <u>I 4 c m</u>	109. <u>I 41 m d</u>	188. <u>P -6 c 2</u>	189. <u>P -6 2 m</u>	190. <u>P -6 2 c</u>	191. <u>P 6 / m m m</u>	192. <u>P 6 / m e e</u>
	0	rthorhom	bic		110. <u>I 41 c d</u>	111. <u>P -4 2 m</u>	112. <u>P -4 2 c</u>	113. <u>P -4 2₁ m</u>	114. <u>P -4 21 c</u>	193. <u>P 63 / m c m</u>	194. P 63 / mm c			
	(For a fuller list w	ith alternative axes an	d origins click <u>here</u>)		115. <u>P -4 m 2</u>	116. <u>P -4 c 2</u>	117. <u>P -4 b 2</u>	118. <u>P -4 n 2</u>	119. <u>I -4 m 2</u>			C -14-		
16. <u>P 2 2 2</u>	17. <u>P 2 2 2</u> 1	18. <u>P 2₁ 2₁ 2</u>	19. <u>P 2₁ 2₁ 2₁</u>	20. <u>C 2 2 2</u> 1	120. <u>I -4 c 2</u>	121. <u>I -4 2 m</u>	122. <u>I -4 2 d</u>	123. <u>P 4 / m m m</u>	124. <u>P 4 / m c c</u>			Cubic		
21. <u>C 2 2 2</u>	22. <u>F 2 2 2</u>	23. <u>I 2 2 2</u>	24. <u>7 2₁ 2₁ 2₁</u>	25. <u>P m m 2</u>	125. <u>P 4 / n b m</u>	126. <u>P 4 / n n c</u>	127. <u>P 4 / m b m</u>	128. <u>P 4 / m n c</u>	129. <u>P 4 / n m m</u>	195. <u>P 2 3</u>	196. <u>F 2 3</u>	197. <u>7 2 3</u>	198. <u>P 2₁ 3</u>	199. <u>7 2₁ 3</u>
26. <u>P m c 21</u>	27. <u>P c c 2</u>	28. <u>P m a 2</u>	29. <u>P c a 21</u>	30. <u>Pnc2</u>	130. <u>P4/ncc</u>	131. <u>P 4₂ / m m c</u>	132. <u>P 4₂ / m c m</u>	133. <u>P 4₂ / n b c</u>	134. <u>P 4₂ / n n m</u>	200. <u>P m -3</u>	201. <u>P n -3</u>	202. <u>F m -3</u>	203. <u>F d -3</u>	204. <u>Im-3</u>
31. <u>P m n 2</u> 4	32. <u>P b a 2</u>	33. <u>P n a 2</u> 1	34. <u>P n n 2</u>	35. <u>Cmm 2</u>	135. <u>P 42 / m b c</u>	136. <u>P 4₂ / m n m</u>	137. <u>P 42/nm c</u>	138. <u>P 4₂ / n c m</u>	139. <u>I 4 / m m m</u>	205. <u>P a -3</u>	206. <u>I a -3</u>	207. <u>P 4 3 2</u>	208. <u>P 4₂ 3 2</u>	209. <u>F 4 3 2</u>
36. <u>Cm c 21</u>	37. C c c 2	38. <u>A m m 2</u>	39. A b m 2	40. <u>A m a 2</u>	140. <u>I 4 / m c m</u>	141. <u>I 4₁ / am d</u>	142. <u>[4₁/acd</u>			210. <u>F 41 3 2</u>	211. <u>7 4 3 2</u>	212. <u>P 4₃ 3 2</u>	213. <u>P 4₁ 3 2</u>	214. <u>I 4₁ 3 2</u>
41. <i>A b a 2</i>	42. Fmm 2	43. F d d 2	44. Imm 2	45. [b a 2			Trigonal			215. P -4 3 m	216. F -4 3 m	217. I -4 3 m	218. P -4 3 n	219. F -4 3 c
46. I m a 2	47. P m m m	48. P n n n	49. P c c m	50. Pban	(For the R-cer	ntred cells with hexago	onal axes and the large	r H-centred trigonal co	ells, click <u>here</u>)	220. I -4 3 d	221. Pm-3m	222. P n -3 n	223. Pm-3n	224. P n -3 m
51. Pmma	52. P n n a	53. P m n a	54. P c c a	55. P b a m	143. <u>P 3</u>	144. <u>P 3</u> 1	145. <u>P 3</u> 2	146. <u>R 3</u>	147. <u>P -3</u>	225. Fm -3 m	226. Fm -3 c	227. F d -3 m	228. F d -3 c	229. Im -3 m
56. <u>P c c n</u>	57. Pbcm	58. P n n m	59. <u>P m m n</u>	60. Pbcn	148. <u>R -3</u>	149. <u>P 3 1 2</u>	150. <u>P 3 2 1</u>	151. <u>P 3₁ 1 2</u>	152. <u>P 31 2 1</u>	230. <u>I a -3 d</u>				
61. <u>P b c a</u>	62. P n m a	63. <u>Cmcm</u>	64. C m c a	65. <u>Cmmm</u>	153. <u>P 3₂ 1 2</u>	154. <u>P 3₂ 2 1</u>	155. <u>R 3 2</u>	156. <u>P 3 m 1</u>	157. <u>P 3 1 m</u>					
66. C c c m	67. C m m a	68. C c c a	69. F m m m	70. F d d d	158. <u>P 3 c 1</u>	159. <u>P 3 1 c</u>	160. <u>R 3 m</u>	161. <u>R 3 c</u>	162. <u>P -3 1 m</u>					
71. <u>I m m m</u>	72. <u>I b a m</u>	73. <u>I b c a</u>	74. <u>I m m a</u>		163. <u>P -3 1 c</u>	164. <u>P -3 m 1</u>	165. <u>P -3 c 1</u>	166. <u>R -3 m</u>	167. <u>R -3 c</u>					

From: http://img.chem.ucl.ac.uk/sgp/large/sgp.htm

All space group diagrams and tables online: http://img.chem.ucl.ac.uk/sgp/large/sgp.htm

BIBLE OF CRYSTALLOGRAPHY

- Space groups (and the characteristic information in 2 pages) are listed in International Tables for Crystallography
- Next-next slide: Space Group P4/mmm as an example

https://it.iucr.org/

P 4/m n	ım.	D_{4h}^{1}	4/ <i>m</i> m m	Tetragonal
No. 123	ġ	P 4/m 2/m 2/m	Patterson	symmetry P4/mmm
	.#%- %			
Origin at centre (4/m.m.m.)			
Asymmetric unit Symmetry operati		y≤ł; 0≤z≤ł; x≤y		
(1) 1 (5) 2 0, y, 0 (9) 1 0, 0, 0 (13) @ x, 0, z	(2) 2 0.0,z (6) 2 x,0,0 (10) m x,y,0 (14) m 0,y,z	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Maximal non-ison I [2]P 422 [2]P 4/m 11([2]P 4/m 1 [2]P 42m [2]P 42m	P4/m) 1; 1; 1;	s 2; 3; 4; 5; 6; 7; 8 2; 3; 4; 9; 10; 11; 12 2; 3; 4; 13; 14; 15; 16 2; 5; 6; 11; 12; 13; 16 2; 7; 8; 11; 12; 13; 14		
[2]P 2/m 2/m	1(Pmmm) 1;	2; 5; 6; 9; 10; 13; 14 2; 7; 8; 9; 10; 15; 16		
[2]C4/mmd	(a'=2a, b'=2b)	imc(c'= 2c); [2]P 4/mcm(c [P 4/mbm); [2]C 4/awm(a'= c'= 2c)(I 4/mmm); [2]F 4/m	= 2a, b' = 2b)(P4/nmm);	
Maximal isomorph	tic subgroups of	lowest index		
IIe [2]P4/mmm	(e'=2e); [2]C4/	mmm(a'=2a,b'=2b)(P4/n	(mm)	
Minimal non-isom	orphic supergrou	ps		
I [3]Pm3m II [2]]4/mmm				
I [2]14/mmm				

C	ONT	INUED					1	No.	123	P 4/m m m
G	enera	itors select	ed (I);	1(1,0,0); 1(0,1	,0); t(0,	0,1); (2);	(3);	(5); (9)	
Po	sitio	ns								
Ma Wy Sik	tiple ckolt type	ty. leter, ieter		C	oordinate	15				Reflection conditions
16		1 (1) (5) (9)	x,y,z I,y,I I,Ş,I X,J,Z	(2) £, j (6) x, j (10) x, y (14) £, y	1.2 () 2 ()	(3) J.x.z (7) y.x.z 1) y.x.z 5) J.x.z	(4) y.x., (8) g.x., (12) f.x.; (16) y.x.;	2		General: no conditions
										Special:
8	t	.m.,	x,‡,z X,‡,z	X, 2, 2 X, 2, Z	1,x,z 1,x,ž	1,8,2 1,8,2				no extra conditions
8	8	, m ,	x,0,z X,0,ž	5.0.2 5.0.2	5, x, 0 5, x, 0	0.x.z 0.x.z				no extra conditions
8	,	m	3,1,2 3,1,2	3,3,2 3,3,2	X,X,Z X,X,Z	x,X,Z X,X,Z				no extra conditions
8	9	<i>m</i>	$x,y,rac{1}{x},y,rac{1}{x}$	$\begin{array}{c} \overline{x}, \overline{y}, \frac{1}{2} \\ \overline{x}, \overline{y}, \frac{1}{2} \end{array}$	ÿ.x.‡ y.x.‡	$rac{y, \mathfrak{K}, lat}{y, \mathfrak{K}, lat}$				no extra conditions
8	P	m	$\substack{x,y,0\\x,y,0}$	$\begin{array}{c} \vec{x}, \vec{y}, 0 \\ x, \vec{y}, 0 \end{array}$	ÿ,x,0 y,x,0	y,£,0 ÿ,£,0				no extra conditions
4	0	m 2m .	x.+.+	#.+.+	$_{\pm,x,\pm}$	±.x.±				no exita conditions
4		m 2m .	x,±,0	1.1.0	9.x.f	1.1.0				no extra conditions
4	11	m 2m .	x,0,±	1,0,1	0,x,†	0,1,1				no extra conditions
4	1	$m \ 2m$.	2,0,0	0,0,1	0,x,0	0,1,0				no extra conditions
4	k	<i>m</i> .2 <i>m</i>	$x, x, \frac{1}{2}$	1,1,1	X,x,±	$_{X,\overline{x},\frac{1}{2}}$				no extra conditions
4	1	m.2m	x, x, 0	1,1,0	<i>X,X,</i> 0	x,x,0				no extra conditions
4	1	2mm .	$0, \sharp, t$	1,0,z	0,1,2	$^{1.0, t}$				hkl: h+k=2n
2	h	4.m.m	1,1,2	1.1.2						no extra conditions
2	8	4 <i>m.m</i>	0,0,2	0,0,2						no extra conditions
2	f	mmm.	$^{0,{1\over2},0}$	0,0,£						hkl: h+k=2n
2	e	mmm.	0,1,1	1,0,1						$hkl: h+k=2\pi$
1	d	4/mmm	1.1.1							no extra conditions
1	e	4/10.00.00	±.±.0							no extra conditions
1	Ď	4/mmm	0,0,1							no extra conditions
Ē	a	4/m.m.m	0,0,0							no extra conditions
Syn	umet	ry of spec	cial proje	ctions						
g'= Onj	a gin a	001] p 4n b'=b at 0.0,z red on prec		ge)	4	long [100] = b b' rigin at x,	= e			Along [110] $p 2mm$ a'=i(-a+b) $b'=cOrigin at x,x,0$

EXAMPLES of INFORMATION

- Space group number: 123
- Name: P4/mmm
- Complete name: P 4/m 2/m 2/m; showing the symmetry elements (4-fold rotation axis, mirror planes)
- Crystal system: tetragonal
- Lattice type: P (primitive)
- Site symmetry of the highest-symmetry site: D_{4h}
- Asymmetric unit (basis): smallest closed part of space the entire space is filled by applying all symmetry operations

CONTINUED

Origin at 0,0,z

(Continued on preceding page)

P4/mmm

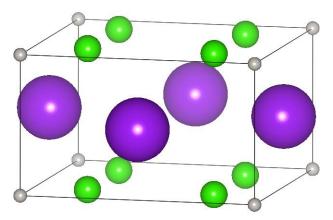
On the second page:

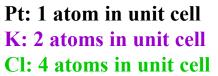
- List of possible sites for the atoms
- These are indicated/named by: multiplicity, Wyckoff letter & site symmetry
- Not all sites are actually occupied by an atom
- On the top: general site (16u)
- At the bottom: the highest symmetry site (1a)
- Multiplicity: number of identical sites

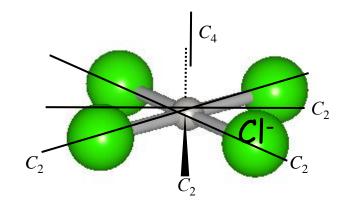
	i tion plicity			Co	ordinate	\$		Reflection conditions
Vycl	off le ymme	tter,						General:
16	и	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$, y, Z , ÿ, Z	(2) $\vec{x}, \vec{y},$ (6) $x, \vec{y},$ (10) $x, y,$ (14) $\vec{x}, y,$. Z (1 Z (1	3) ȳ,x,z 7) y,x,z̄ 1) y,x̄,z̄ 5) ȳ,x̄,z	(4) y, \bar{x}, z (8) $\bar{y}, \bar{x}, \bar{z}$ (12) \bar{y}, x, \bar{z} (16) y, x, z	no conditions
								Special:
8	t	.m .	$\begin{array}{c} x, \frac{1}{2}, z\\ \bar{x}, \frac{1}{2}, \bar{z} \end{array}$	$\overline{x}, \frac{1}{2}, z$ $x, \frac{1}{2}, \overline{z}$	$\frac{1}{2}, x, z$ $\frac{1}{2}, x, \overline{z}$	$\frac{1}{2}, \overline{x}, z$ $\frac{1}{2}, \overline{x}, \overline{z}$		no extra conditions
8	\$. <i>m</i> .	x,0,z $\bar{x},0,\bar{z}$	$\bar{x},0,z$ $x,0,\bar{z}$	$\begin{array}{c} 0, x, z\\ 0, x, \overline{z} \end{array}$	$\begin{array}{c} 0, \bar{x}, z\\ 0, \bar{x}, \bar{z} \end{array}$		no extra conditions
8	r	<i>m</i>	x,x,z x̄,x,z̄	<i>x</i> , <i>x</i> , <i>z</i> <i>x</i> , <i>x</i> , <i>z</i>	\bar{x}, x, z x, x, \bar{z}	$x, \overline{x}, \overline{z}$ $\overline{x}, \overline{x}, \overline{z}$		no extra conditions
8	q	<i>m</i>	$\begin{array}{c} x, y, \frac{1}{2} \\ \bar{x}, y, \frac{1}{2} \end{array}$	$ar{x},ar{y},rac{1}{2}\ x,ar{y},rac{1}{2}$	$\overline{y}, x, \frac{1}{2}$ $y, x, \frac{1}{2}$	$y, \overline{x}, \frac{1}{2}$ $\overline{y}, \overline{x}, \frac{1}{2}$		no extra conditions
8	р	<i>m</i>	x,y,0 x̄,y,0	$\bar{x}, \bar{y}, 0$ $x, \bar{y}, 0$	$\overline{y}, x, 0$ y, x, 0	$y, \bar{x}, 0$ $\bar{y}, \bar{x}, 0$		no extra conditions
4	0	m 2m .	$x, \frac{1}{2}, \frac{1}{2}$	$\bar{x}, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, x, \frac{1}{2}$	$\frac{1}{2}, \bar{x}, \frac{1}{2}$		no extra conditions
4	n	m 2m .	$x, \frac{1}{2}, 0$	$\bar{x}, \frac{1}{2}, 0$	$\frac{1}{2}, x, 0$	$\frac{1}{2}, \bar{x}, 0$		no extra conditions
4	m	<i>m</i> 2 <i>m</i> .	$x, 0, \frac{1}{2}$	$\bar{x}, 0, \frac{1}{2}$	$0, x, \frac{1}{2}$	$0, \bar{x}, \frac{1}{2}$		no extra conditions
4	l	m 2m .	x,0,0	x ,0,0	0,x,0	0,\$,0		no extra conditions
4	k	<i>m</i> .2 <i>m</i>	$x, x, \frac{1}{2}$	$\bar{x}, \bar{x}, \frac{1}{2}$	$\overline{x}, x, \frac{1}{2}$	$x, \overline{x}, \frac{1}{2}$		no extra conditions
4	j	<i>m</i> .2 <i>m</i>	x,x,0	x , x ,0	$\bar{x}, x, 0$	x, x , 0		no extra conditions
4	i	2 <i>m m</i> .	$0, \frac{1}{2}, z$	$\frac{1}{2}, 0, z$	$0, \frac{1}{2}, \overline{z}$	$\frac{1}{2}, 0, \bar{z}$		hkl: h+k=2n
2	h	4 <i>m m</i>	$\frac{1}{2}, \frac{1}{2}, z$	$\frac{1}{2}, \frac{1}{2}, \overline{z}$				no extra conditions
2	8	4 <i>m m</i>	0,0,z	0,0, <i>ī</i>				no extra conditions
2	f	mmm.	0, <u>‡</u> ,0	±,0,0				hkl: h+k=2n
2	e	mmm.	$0, \frac{1}{2}, \frac{1}{2}$	1,0,1				hkl: h+k=2n
1	d	4/ <i>m m m</i>	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$			`		no extra conditions
1	с	4/ <i>m m m</i>	½,½,0					no extra conditions
1	b	4/ <i>m m m</i>	$0,0,\frac{1}{2}$					no extra conditions
			0,0,0					no extra conditions

 $a' = \frac{1}{2}(-a+b)$ Origin at x, x, 0

Origin at x,0,0

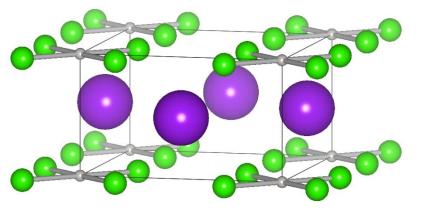

EXAMPLE: Potassium tetrachloroplatinate(II): K₂PtCl₄

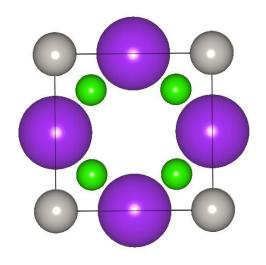

Space group: P4/mm (No. 123) Lattice parameters: a = b = 7.023 Å, c = 4.1486 Å Atomic positions: Pt 1a: 0,0,0 K 2e: $0,\frac{1}{2},\frac{1}{2}$ Cl 4j: x,x,0; x = 0.23247


- (a) Draw the unit cell with the atoms.
- (b) Draw the projection of the unit cell in *c*-axis direction.
- (c) Theoretical density is 3.37 g/cm³. Calculate Z? ($N_A = 6.022 \times 10^{23}$; atomic weights: K 39.098; Pt 195.22; Cl 35.453)
- (d) Calculate the distances: Pt-Pt, Pt-K, Pt-Cl.
- (e) What is the coordination number of platinum?
- (f) What is the site symmetry of platinum?

P 4/m n	ım.	D_{4h}^{1}	4/ <i>m</i> m m	Tetragonal
No. 123	3	P 4/m 2/m 2/m	Patterson	symmetry P4/mmm
	.#%- %			
Origin at centre (4/m.m.m.)			
Asymmetric unit Symmetry operati		y≤ł; 0≤z≤ł; x≤y		
(1) 1 (5) 2 0, y, 0 (9) 1 0, 0, 0 (13) @ x, 0, z	(2) 2 0.0,z (6) 2 x,0,0 (10) m x,y,0 (14) m 0,y,z	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Maximal non-ison I [2]P 422 [2]P 4/m 11([2]P 4m [2]P 42m [2]P 4m 2	P4/m) 1; 1; 1;	s 2; 3; 4; 5; 6; 7; 8 2; 3; 4; 9; 10; 11; 12 2; 3; 4; 13; 14; 15; 16 2; 5; 6; 11; 12; 13; 16 2; 7; 8; 11; 12; 13; 14		
[2]P 2/m 2/m [2]P 2/m 12/	1(Pmmm) 1;	2; 5; 6; 9; 10; 13; 14 2; 7; 8; 9; 10; 15; 16		
[2]C4/mmd	(a'=2a,b'=2b)	(mc(c'= 2c); [2]P 4/mcm(c (P4/mbm); [2]C 4/awm(a'= c'= 2c)(I 4/mmm); [2]F 4/m	= 2a, b' = 2b)(P4/nmm);	
Maximal isomorph	tic subgroups of	lowest index		
IIe [2]P4/mmm	(e'=2e); [2]C4/	mmm(a'=2a,b'=2b)(P4/n	(mm)	
Minimal non-isom	orphic supergrou	ps		
I [3]Pm3m II [2]]4/mmm				
I [2]14/mmm				

c	ONT	INUED					1	No.	123	P 4/m m m
G	enera	itors select	ed (I);	1(1,0,0), 1(0,1	,0); t(0,	0,1); (2);	(3);	(5); (9)	
Po	sitio	ns								
Ma Wy Sik	tiple ckolt type	ty. leter, ietry		C	oordinate	5				Reflection conditions
16		1 (1) (5) (9)	x,y,z I,y,I I,J,I X,J,I	(2) x, j (6) x, j (10) x, y (14) x, y	13 () 3 ()	(3) §.x.z (7) y.x.ž 1) y.K.ž 5) §.K.z	(4) y,x, (8) g,x, (12) f,x, (16) y,x,	2		General: no conditions
										Special:
8	t	.m.,	x,‡,z X,‡,ž	$\stackrel{\mathfrak{X},\frac{1}{2},\xi}{\mathfrak{X},\frac{1}{2},\xi}$	1,x,2 1,x,2	1,8,2 1,8,2				no extra conditions
8	8	, m ,	x,0,z X,0,ž	5.0.2 x,0.2	0,x,z 0,x,ž	0.1.1 0.1.1				no extra conditions
8	,	m	3,1,2 3,1,2	3,3,z 3,3,2	X,X,Z X,X,Z	x,X,Z X,X,Z				no extra conditions
8	q	<i>m</i>	x,y,‡ X,y,‡	X, 9, 1 X, 9, 1	9.x.† y.x.†	y,R.1 9,R.1				no extra conditions
8	P	m	x,y,0 x,y,0	x,y,0	ÿ,x,0 y,x,0	y,£,0 ÿ,£,0				no extra conditions
4	0	m 2m .	x.+.+	#.+.+	+.x.+	±.8,±				no exita conditions
4		m 2m .	x,±,0	1.1.0	9.x.f	1.1.0				no extra conditions
4	11	m 2m .	x,0,±	£,0,±	0,x,†	0,1,1				no extra conditions
4	1	$m \ 2m$.	<i>x</i> ,0,0	0.0,1	0,x,0	0,1,0				no extra conditions
4	k	<i>m</i> .2 <i>m</i>	x,x,‡	<i>1,1,</i> }	X,x,±	$_{X,\overline{x},\frac{1}{2}}$				no extra conditions
4	1	m.2m	$_{x,x,0}$	1,1,0	<i>X,X,</i> 0	x,x,0				no extra conditions
4	1	2mm.	$0, \pm, z$	1,0,z	0,1,2	1.0,5				hkl: h+k=2n
2	h	4 <i>m</i> .m	1,1,2	1.1.2						no extra conditions
2	8	4 <i>m</i> m	0,0,2	0,0,#						no extra conditions
2	f	mmm.	$^{0,\frac{1}{2},0}$	1,0,0						hkl: h+k=2k
2	e	m.m.m.,	$0, \frac{1}{2}, \frac{1}{2}$	1,0,1						hkl: h+k=2n
1	d	4/mmm	1.1.1							no extra conditions
1	e	4/mmm	±.±.0							no extra conditions
1	Ď	4/mmm	0,0,1							no extra conditions
F	a	4/m.m.m	0,0,0							no extra conditions
Syn	omet	ry of spec	ial proje	ctions						
g'= Onj	a gin a	001] p 4n b'=b t 0.0,z red on prec		ge)	4	$\begin{array}{llllllllllllllllllllllllllllllllllll$	= e			Along [110] $p 2mm$ a'=i(-a+b) $b'=cOrigin at x,x,0$





Site symmetry of Pt: D_{4h}

Bond lengths: Pt-Pt: $(1-0)^2 \cdot 4.15$ Å Pt-K: $\sqrt{[(0.5-0)^2 \cdot 7.023$ Å + $(0.5-0)^2 \cdot 4.149$ Å] = 4.08Å Pt-Cl: $\sqrt{[(0.232-0)^2 \cdot 7.023$ Å + $(0.232-0)^2 \cdot 7.023$ Å] = 2.30Å

ab-projectio (seen from *c*-direction)

K₂PtCl₄

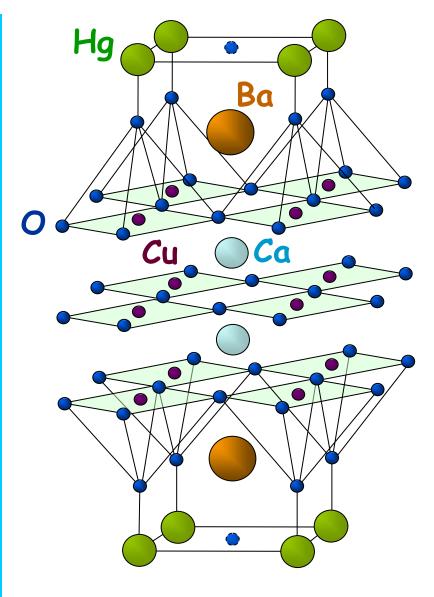
- ρ = 3.37 x 10⁶ g/m³
- V = 7.023 Å x 7.023 Å x 4.1486 Å = 204.62 x 10^{-30} m³
- M = (2 x 39.098 + 195.22 + 4 x 35.453) g/mol = 415.228 g/mol
- $Z = (V \times \rho \times N_A) / M = 1$
- Distances: Pt-Pt: 4.15 Å

Pt-K: 4.08 Å

Pt-Cl: 2.31 Å (\rightarrow chemical bond)

- CN(Pt) = 4
- PI site symmetry: D_{4h}

WHAT WE LIKE TO KNOW ABOUT THE CRYSTAL STRUCTURE


CRYSTALLOGRAPHY

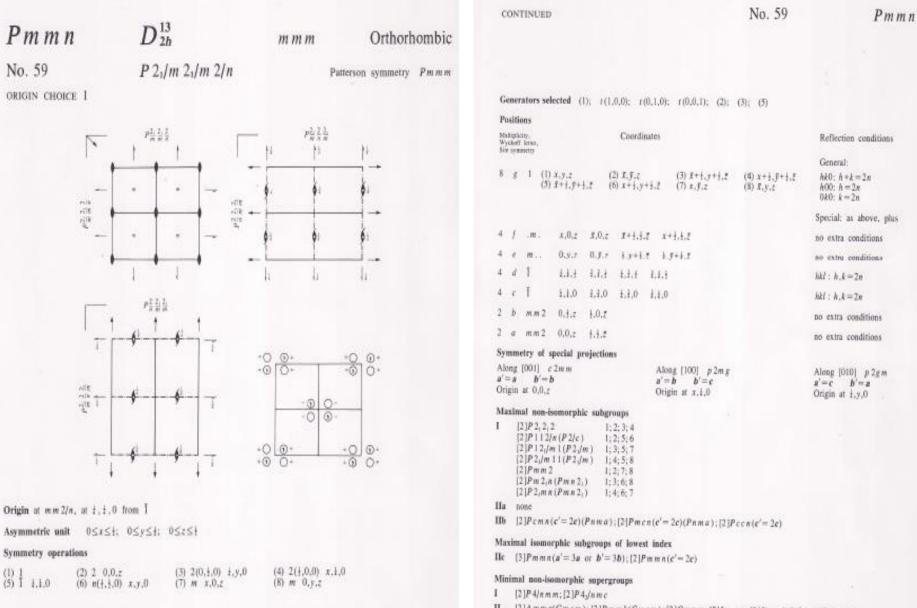
- symmetry
- unit cell
- Iattice parameters
- number of formula units in unit cell
- space group
- etc.

CRYSTAL CHEMISTRY

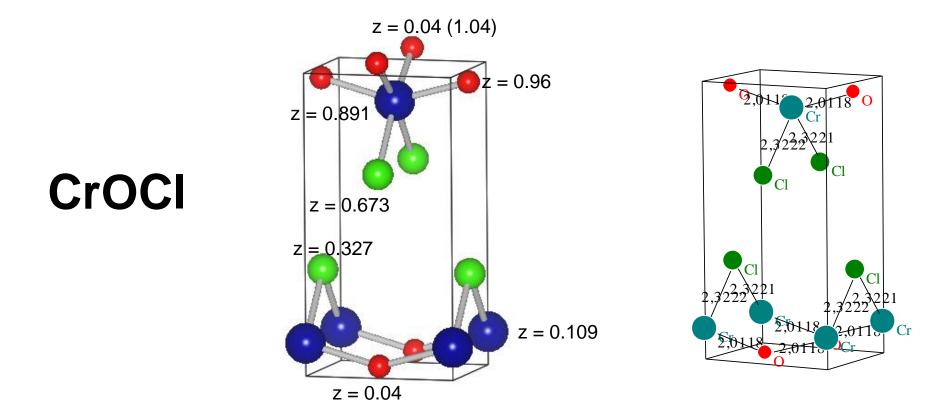
- coordination numbers
- coordination polyhedra
- bond lengths/angles
- occupation factors
- etc.

Discussed in Lecture 2!

 $HgBa_2Ca_2Cu_3O_{9-\delta}$


EXAMPLE: Chromium oxychloride CrOCI

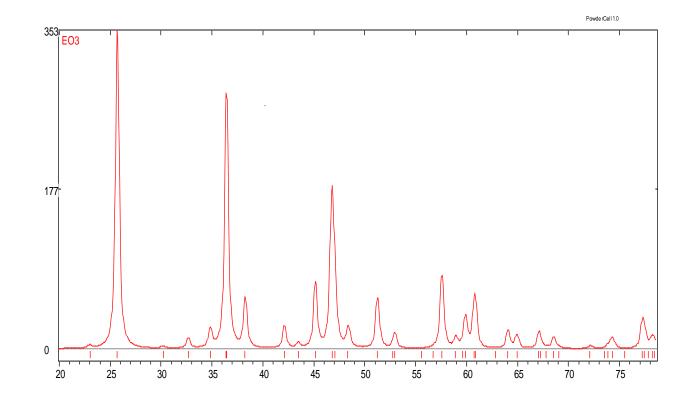
Space group *Pmmn* (No. 59)


Lattice parameters: a = 3.88 Å, b = 3.20 Å, c = 7.72 Å (Z = 2) Atomic positions:

Cr	2a	<i>z</i> = 0.109
CI	2b	<i>z</i> = 0.327
0	2b	<i>z</i> = 0.960

- (a) Draw the unit cell.
- (b) Give for chromium:
 - bond lengths
 - coordination numbers
 - site symmetry
- (c) Calculate BVS for chromium. [R⁰ values: Cr^{III}-O^{-II}: 1.724, Cr^{III}-CI^{-I}: 2.08]

II [2]Auma(Cwcm); [2]Bmmb(Cmcm); [2]Cmmm; [2]Immm; [2]Pmmb(2a'=a)(Pmma); [2]Pmma(2b'=b)

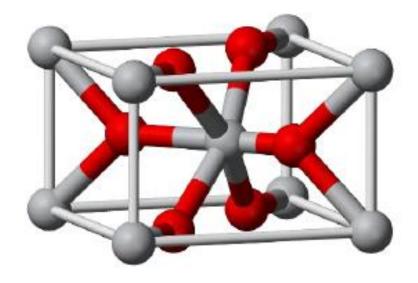


Chromium bonding

2xCr-Cl: $\sqrt{\{(0.891-0.673)x7.72 \text{ Å}\}^2 + \{0.5x3.20 \text{ Å}\}^2 = 2.3222 \text{ Å} 2xCr-O: <math>\sqrt{\{(0.960-0.891)x7.72 \text{ Å}\}^2 + \{0.5x3.88 \text{ Å}\}^2 = 2.0118 \text{ Å} 2xCr-O: \sqrt{\{[(1-0.891)+0.04]x7.72 \text{ Å}\}^2 + \{0.5x3.20 \text{ Å}\}^2 = 1.9706 \text{ Å} \}}$

CN(Cr) = 6Cr site symmetry: C_{2v} BVS(Cr): +2.985

CrOCI: simulated XRD pattern based on the structure data



Your **EXERCISE** question

White balls are Ti atoms, red balls are oxygen atoms.

Unit cell parameters: a = b = 4.5937 Å, c = 2.9587 Å; all angles 90°.

- (a) What is the crystal system?
- (b) What is the formula of the compound?
- (c) Please calculate the density.

Some extra slides...

CLASSIFICATIONS

"Macroscopic shape of the crystal"
 → "Point group for the lattice" → 7 CRYSTAL SYSTEMS
 (can fill the space without holes; no information of the lattice points/atoms)

CRYSTAL SYSTEM & LATTICE POINTS (historical importance)

- Combination of crystal system and lattice type \rightarrow 14 Bravais lattices
- Lattice type: positions of <u>lattice points</u> (≠ atoms) within the cell considered: primitive (P), body-centered (I), face-centered (F), base-centered (A/B/C), rhombohedral (R)

CRYSTAL SYSTEM & SYMMETRY (most important in crystallography)

- Possible combinations of point symmetry elements (which leave one point fixed)
 - \rightarrow 32 (geometric) cystal classes
 - \rightarrow describe completely the symmetry of macroscopic crystals

There are an infinite number of **three-dimensional point groups**, but the crystallographic restriction results in there being only 32 crystallographic point groups.

 Considering also the translational symmetry operations in 3D → 230 space groups

Crystal System	# of Point Groups	# of Crystal Lattices	
Cubic	5	3	
Tetragonal	7	2	
Orthorhombic	3	4	
Monoclinic	3	2	
Triclinic	2	1	
Hexagonal	7	1	
Trigonal	5	1	
Totals	32	14	

Supporting material

Mathematical descriptions of 2D point groups: <u>https://www.cryst.ehu.es/plane/get_point_genpos.html</u> <u>https://en.wikipedia.org/wiki/Point_groups_in_two_dimensions</u>