Conditional independence and undirected graphical models

Kaie Kubjas, 17.03.2023
Agenda

• Conditional independence
• Different ways to associate a statistical model with an undirected graph
 • Using conditional independence statements
 • Using factorizations of functions
• The relations between the different definitions
Graphical models example

* genes A, B, C
* Relationships
 - A regulates C
 - B regulates C

BIOLOGY

GRAPH

PROBABILISTIC MODEL

$P(A,B,C) = P(A)P(B)P(C|A,B)$

Genes ↔ Vertices ↔ Random variables
Relationships ↔ Edges ↔ Statistical dependencies
Correlation vs causation

- Genes regulated as $X \rightarrow Y \rightarrow Z$

- X and Z are correlated, but do not interact directly
Examples

- Gene association network
- Stock exchange
- Markov chains
- Hidden Markov models: DNA sequence alignment
Nonnegative matrix factorizations

- The set of $m \times n$ probability matrices of nonnegative rank at most r corresponds to the graphical model associated with the graph above, where Z is a hidden variable.

- X and Y are observed variables taking values in $[m]$ and $[n]$ respectively.

- Z is a hidden variable taking values in $[r]$.
Conditional independence
Soccer vs hair example

<table>
<thead>
<tr>
<th>soccer \ hair</th>
<th>bald</th>
<th>short</th>
<th>medium</th>
<th>lots</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 hours/wk</td>
<td>17</td>
<td>43</td>
<td>66</td>
<td>125</td>
</tr>
<tr>
<td>2 hours/wk</td>
<td>23</td>
<td>65</td>
<td>63</td>
<td>101</td>
</tr>
<tr>
<td>5 hours/wk</td>
<td>41</td>
<td>110</td>
<td>68</td>
<td>79</td>
</tr>
<tr>
<td>10 hours/wk</td>
<td>34</td>
<td>81</td>
<td>42</td>
<td>45</td>
</tr>
</tbody>
</table>

Is watching soccer independent from the length of the hair?
Soccer vs hair example

- Random variables X and Y with outcomes in $[m]$ and $[n]$

 Joint probabilities are recorded in the matrix $P = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{m1} & p_{m2} & \cdots & p_{mn} \end{pmatrix}$.

- X and Y are independent if and only if $P = \begin{pmatrix} P(X = i) \\ \vdots \\ P(Y = j) \end{pmatrix}$, i.e., if and only if P is of rank 1.
Soccer vs hair example

- This matrix is far from being rank one.

- If we slightly perturb the original matrix, we get

\[
\begin{pmatrix}
14 & 45 & 66 & 125 \\
23 & 65 & 62 & 100 \\
42 & 110 & 68 & 80 \\
31 & 80 & 44 & 45 \\
\end{pmatrix}
= \begin{pmatrix}
4 & 20 & 56 & 120 \\
3 & 15 & 42 & 90 \\
2 & 10 & 28 & 60 \\
1 & 5 & 14 & 30 \\
\end{pmatrix}
+ \begin{pmatrix}
10 & 25 & 10 & 5 \\
20 & 50 & 20 & 10 \\
40 & 100 & 40 & 20 \\
30 & 75 & 30 & 15 \\
\end{pmatrix}
\]

\[
= \begin{pmatrix}
4 \\
3 \\
2 \\
1 \\
\end{pmatrix}
[1 5 14 30] + \begin{pmatrix}
1 \\
2 \\
4 \\
3 \\
\end{pmatrix}
[10 25 10 5]
\]
Soccer vs hair example

\[
\begin{pmatrix}
14 & 45 & 66 & 125 \\
23 & 65 & 62 & 100 \\
42 & 110 & 68 & 80 \\
31 & 80 & 44 & 45
\end{pmatrix}
= \begin{pmatrix}
4 & 20 & 56 & 120 \\
3 & 15 & 42 & 90 \\
2 & 10 & 28 & 60 \\
1 & 5 & 14 & 30
\end{pmatrix}
+ \begin{pmatrix}
10 & 25 & 10 & 5 \\
20 & 50 & 20 & 10 \\
40 & 100 & 40 & 20 \\
30 & 75 & 30 & 15
\end{pmatrix}
\]

= \begin{pmatrix}
4 \\
3 \\
2 \\
1
\end{pmatrix}
\begin{pmatrix}
1 & 5 & 14 & 30
\end{pmatrix}
+ \begin{pmatrix}
2 \\
4 \\
3
\end{pmatrix}
\begin{pmatrix}
10 & 25 & 10 & 5
\end{pmatrix}

• This is a size-2 nonnegative factorization!

• There could be one summand for women and one summand for men.

• This means that watching soccer is independent of the length of the hair given gender.

• This is an example of a conditional independence statement.
Setup

- Random vector $X = (X_1, \ldots, X_m)$

 - X takes values in a Cartesian product space $\mathcal{X} = \prod_{i=1}^{m} \mathcal{X}_i$

- Examples:

 - Weight X_1 and height X_2 of a person: $\mathcal{X} = \mathbb{R} \times \mathbb{R}$

 - Two results X_1, X_2 of rolls of a die: $\mathcal{X} = [6] \times [6]$
Setup

We assume that either:

- X has density $f(x) = f(x_1, \ldots, x_n)$ that is continuous on \mathcal{X}, or

- \mathcal{X} is a finite set and then $f(x)$ is the joint distribution $\mathbb{P}(X = x)$
Setup

• Given $A \subseteq [m] := \{1,2,\ldots,m\}$, let

 • $X_A = (X_a)_{a \in A}$

 • $\mathcal{X}_A = \prod_{a \in A} \mathcal{X}_a$

• Given a partition $A_1 \mid \cdots \mid A_k$ of $[m]$, let $f(x_{A_1}, \ldots, x_{A_k})$ denote f with some variables grouped together
Def: Let $A \subseteq [m]$. The marginal density $f_A(x_A)$ of X_A is obtained by integrating out $x_{[m] \setminus A}$

$$f_A(x_A) := \int_{x_{[m] \setminus A}} f(x_A, x_{[m] \setminus A}) dx_{[m] \setminus A}$$

for all x_A.

For discrete random variables, we replace the integral with sum:

$$f_A(x_A) := \sum_{x_{[m] \setminus A}} f(x_A, x_{[m] \setminus A})$$
Marginalization example

The corresponding joint probability matrix is

\[
\begin{pmatrix}
0.0170 & 0.0419 & 0.0659 & 0.1248 \\
0.0230 & 0.0649 & 0.0629 & 0.1008 \\
0.0409 & 0.1098 & 0.0679 & 0.0788 \\
0.0339 & 0.0808 & 0.0419 & 0.0449
\end{pmatrix}
\]

The marginal probability \(P_A(x_A) \) of \(X_A \) is

\[
\begin{pmatrix}
0.2495 \\
0.2515 \\
0.2974 \\
0.2016
\end{pmatrix}
\]
Conditioning

Def: Let $A, B \subseteq [m]$ be pairwise disjoint subsets and let $x_B \in \mathcal{X}_B$. The conditional density of X_A given $X_B = x_B$ is defined as

$$f_{A|B}(x_A | x_B) := \begin{cases} \frac{f_{A\cup B}(x_A, x_B)}{f_B(x_B)} & \text{if } f_B(x_B) > 0, \\ 0 & \text{otherwise} \end{cases}$$
Conditioning example

We start with the same joint probability matrix

\[
\begin{pmatrix}
0.0170 & 0.0419 & 0.0659 & 0.1248 \\
0.0230 & 0.0649 & 0.0629 & 0.1008 \\
0.0409 & 0.1098 & 0.0679 & 0.0788 \\
0.0339 & 0.0808 & 0.0419 & 0.0449
\end{pmatrix}
\]

The conditional density of \(X \) given \(Y = \text{bald} \) is

\[
\begin{pmatrix}
0.1478 \\
0.2000 \\
0.3565 \\
0.2957
\end{pmatrix}
\]

This is obtained by taking the first column of the joint probability matrix and dividing by 0.1148 (the sum of the entries in the first column)
Def: Let $A, B, C \subseteq [m]$ be pairwise disjoint subsets. We say that X_A is conditionally independent of X_B given X_C if and only if

$$f_{A\cup B \mid C}(x_A, x_B \mid x_C) = f_{A \mid C}(x_A \mid x_C)f_{B \mid C}(x_B \mid x_C)$$

for all x_A, x_B, x_C.

- The notation $X_A \perp\!\!\!\!\!\!\perp X_B \mid X_C$ (or $A \perp\!\!\!\!\!\!\perp B \mid C$) denotes that the random vector X satisfies the conditional independence (CI) statement that X_A is conditionally independent of X_B given X_C.
Soccer vs hair example

- X = random variable for the length of the hair
- Y = random variable for how much soccer one watches
- Z = random variable for the gender

In the soccer vs hair example: $X \perp Y \mid Z$
Marginal independence

- A statement of the form $X_A \perp \perp X_B := X_A \perp \perp X_B | X_{\emptyset}$ is called a marginal independence statement.

- It corresponds to the factorization of densities

\[
f_{A \cup B}(x_A, x_B) = f_A(x_A)f_B(x_B).
\]

- This is the same as the independence of random variables.
Conditional independence axioms

• Suppose a random vector X satisfies a set of conditional independence statements. Which other conditional independence relations must the same random vector satisfy?

• There are some easy conditional independence implications, which are called the conditional independence axioms or conditional independence rules.
Conditional independence axioms

Prop: Let $A, B, C, D \subseteq [m]$ be pairwise disjoint subsets. Then

- **(symmetry)** $X_A \perp X_B \mid X_C \implies X_B \perp X_A \mid X_C$

- **(decomposition)** $X_A \perp X_{B \cup D} \mid X_C \implies X_A \perp X_B \mid X_C$

- **(weak union)** $X_A \perp X_{B \cup D} \mid X_C \implies X_A \perp X_B \mid X_{C \cup D}$

- **(contraction)** $X_A \perp X_B \mid X_{C \cup D}$ and $X_A \perp X_D \mid X_C \implies X_A \perp X_{B \cup D} \mid X_C$
Prop (Intersection axiom): Suppose that $f(x) > 0$ for all $x \in \mathcal{X}$. Then

$$X_A \perp X_B \mid X_{CUD} \text{ and } X_A \perp X_C \mid X_{BUD} \implies X_A \perp X_{BUC} \mid X_D.$$

- The condition $f(x) > 0$ for all x is stronger than necessary.

- For discrete random variables, precise conditions can be given which guarantee that the intersection axiom holds. This is done using algebra!
Undirected graphical models
Graphs

- Graph $G = (V, E)$
- Nodes or vertices V
- Edges $E \subseteq V \times V$
- A graph is undirected if $(u, v) \in E$ implies that $(v, u) \in E$
- Corresponding random vector $X = (X_v : v \in V)$
 - X takes values in $\mathcal{X}_V = \prod_{v \in V} \mathcal{X}_v$
Graphical models

In the graphical model associated to a graph G:

- an edge (u, v) of the graph G expresses some sort of dependence between the vertices u and v;

- a non-edge (u, v) of the graph G expresses some sort of conditional independence between the vertices u and v.
• A path between vertices u and w in a graph G is a sequence of vertices $u = v_1, v_2, \ldots, v_k = w$ such that each $(v_{i-1}, v_i) \in E$.

• A pair of vertices $a, b \in V$ is separated by a set of vertices $C \subseteq V \setminus \{a, b\}$ if every path from a to b contains a vertex in C.

• Let A, B, C be disjoint subsets of V. Then A and B are separated by C, if a and b are separated by C for any $a \in A$ and $b \in B$.
Poll: Let G be a graph with nodes $\{1,2,3,4\}$ and edges $(1,2), (2,3), (2,4), (3,4)$. Which of the following sets are separators for the nodes 1 and 4?

1. $\{2\}$
2. $\{3\}$
3. $\{2,3\}$
4. $\{1,2,3,4\}$
Poll: Let G be a graph with nodes $\{1,2,3,4\}$ and edges $(1,2), (2,3), (2,4), (3,4)$. Which of the following sets are separators for the nodes 1 and 4?

1. $\{2\}$ - Correct
2. $\{3\}$
3. $\{2,3\}$ - Correct
4. $\{1,2,3,4\}$
Pairwise Markov property

Let $G = (V, E)$ be an undirected graph.

Def: The pairwise Markov property associated to G consists of all conditional independence statements $X_u ⊥ ⊥ X_v | X_{V \setminus \{u, v\}}$, where (u, v) is not an edge of G. It is denoted G_{pairs}.

Example: The pairwise Markov property associated to G is:

1. $\{1 \perp \perp 3 | (2,4), 1 \perp \perp 4 | (2,3)\}$
2. $\{1 \perp \perp 3 | 2, 1 \perp \perp 4 | 2\}$
3. $\{1 \perp \perp 3 | (2,4)\}$
4. $\{1 \perp \perp 4 | (2,3)\}$
Let $G = (V, E)$ be an undirected graph.

Def: The **pairwise Markov property** associated to G consists of all conditional independence statements $X_u \perp X_v | X_{V \setminus \{u, v\}}$, where (u, v) is not an edge of G.

Example: The pairwise Markov property associated to G is:

1. $\{1 \perp 3 | (2, 4), 1 \perp 4 | (2, 3)\}$ - Correct
2. $\{1 \perp 3 | 2, 1 \perp 4 | 2\}$
3. $\{1 \perp 3 | (2, 4)\}$
4. $\{1 \perp 4 | (2, 3)\}$
Pairwise Markov property

- Let $G = (V, E)$ be an undirected graph.
- We consider random vectors $X_V = (X_v)_{v \in V}$ taking values in $\mathcal{X}_V = \prod_{v \in V} \mathcal{X}_v$.
- Moreover, we assume that the probability distributions of the random vectors belong to a statistical model.
 - Example 1: $|V|$-dimensional multivariate normal distributions
 - Example 2: Discrete random vectors on on a fixed discrete set
- The first statistical model that we consider consists of all such random vectors that also satisfy the pairwise Markov property relative to G.
Multivariate normal distribution

Let PD_m be the set of $m \times m$ symmetric positive definite matrices.

Def: Suppose $\mu \in \mathbb{R}^m$ and $\Sigma \in PD_m$. Then a random vector $X = (X_1, \ldots, X_m)$ is distributed according to the multivariate normal distribution $\mathcal{N}_m(\mu, \Sigma)$ if it has the density function

$$
\phi_{\mu, \Sigma}(y) = \frac{1}{(2\pi)^{m/2} |\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2} (y - \mu)^T \Sigma^{-1} (y - \mu) \right\}.
$$
Prop: The conditional independence statement $X_A \perp\!\!\!\perp X_B \mid X_C$ holds for a multivariate normal random vector $X \sim \mathcal{N}(\mu, \Sigma)$ if and only if the submatrix $\Sigma_{A \cup C, B \cup C}$ of the covariance matrix Σ has rank $\#C$.

Multivariate Gaussian random variables

- The CI statement $X_u \perp\!\!\!\perp X_v \mid X_{V\setminus\{u,v\}}$ is equivalent to the matrix $\Sigma_{V\setminus\{u\}, V\setminus\{v\}}$ having rank $|V\setminus\{u, v\}|$ or equivalently $\det(\Sigma_{V\setminus\{u\}, V\setminus\{v\}}) = 0$.

- This is equivalent to $(\Sigma^{-1})_{u,v} = 0$.

- The pairwise Markov property holds for a Gaussian distribution if and only if the entries of the concentration matrix corresponding to non-edges are zero.
Multivariate Gaussian random variables

Which form do the concentration matrices of a Gaussian distribution obeying the pairwise Markov property have?

1. \[
\begin{pmatrix}
 k_{11} & 0 & k_{13} & k_{14} \\
 0 & k_{22} & 0 & 0 \\
 k_{13} & 0 & k_{33} & 0 \\
 k_{14} & 0 & 0 & k_{44}
\end{pmatrix}
\]

2. \[
\begin{pmatrix}
 k_{11} & k_{12} & 0 & 0 \\
 k_{12} & k_{22} & k_{23} & k_{24} \\
 0 & k_{23} & k_{33} & k_{34} \\
 0 & k_{24} & k_{34} & k_{44}
\end{pmatrix}
\]
Multivariate Gaussian random variables

Which form do the concentration matrices of a Gaussian distribution obeying the pairwise Markov property have?

1. \[
\begin{pmatrix}
k_{11} & 0 & k_{13} & k_{14} \\
0 & k_{22} & 0 & 0 \\
k_{13} & 0 & k_{33} & 0 \\
k_{14} & 0 & 0 & k_{44}
\end{pmatrix}
\]

2. \[
\begin{pmatrix}
k_{11} & k_{12} & 0 & 0 \\
k_{12} & k_{22} & k_{23} & k_{24} \\
0 & k_{23} & k_{33} & k_{34} \\
0 & k_{24} & k_{34} & k_{44}
\end{pmatrix}
\]

- Correct
Def: The global Markov property associated to G consists of all conditional independence statements $X_A \perp X_B \mid X_C$ for all disjoint sets A, B, and C such that C separates A and B in G. It is denoted $\mathcal{C}_{\text{global}}$.

Example: The global Markov property associated to G is:

1. $\{1 \perp (3,4) \mid 2\}$

2. $\{1 \perp 3 \mid (2,4), 1 \perp 4 \mid (2,3)\}$

3. $\{1 \perp 3 \mid (2,4), 1 \perp 4 \mid (2,3), 1 \perp (3,4) \mid 2\}$
Def: The global Markov property associated to G consists of all conditional independence statements $X_A \perp X_B | X_C$ for all disjoint sets A, B, and C such that C separates A and B in G.

Example: The global Markov property associated to G is:

1. $\{1 \perp (3,4) | 2\}$
2. $\{1 \perp 3 | (2,4), 1 \perp 4 | (2,3)\}$
3. $\{1 \perp 3 | (2,4), 1 \perp 4 | (2,3), 1 \perp (3,4) | 2\}$ - Correct
Global Markov property

- Let $G = (V, E)$ be an undirected graph.
 - We consider random vectors $X_V = (X_v)_{v \in V}$ taking values in $\mathcal{X}_V = \prod_{v \in V} \mathcal{X}_v$.
- Moreover, we assume that the probability distributions of the random vectors belong to a statistical model.
 - Example 1: $|V|$-dimensional multivariate Gaussian distributions.
 - Example 2: Discrete random vectors on discrete sets.
- The second statistical model that we consider consists of all such random vectors that also satisfy the global Markov property relative to G.
Markov properties

- It always holds $\mathcal{C}_{\text{pairs}} \subseteq \mathcal{C}_{\text{global}}$.

Example:

- $\mathcal{C}_{\text{pairs}} = \{ 1 \perp 3 \mid (2,4), 1 \perp 4 \mid (2,3) \}$
- $\mathcal{C}_{\text{global}} = \mathcal{C}_{\text{pairs}} \cup \{ 1 \perp (3,4) \mid 2 \}$
Prop (Intersection axiom): Suppose that $f(x) > 0$ for all x. Then

$$X_A \perp X_B \mid X_{C \cup D} \text{ and } X_A \perp X_C \mid X_{B \cup D} \implies X_A \perp X_{B \cup C} \mid X_D.$$

• The condition $f(x) > 0$ for all x is stronger than necessary.
Markov properties

Theorem: If the distribution \(P \) of a random vector \(X \) satisfies the intersection axiom, then \(P \) obeys the pairwise Markov property for \(G \) if and only if it obeys the global Markov property for \(G \).
Multivariate Gaussian random variables

For multivariate Gaussian random variables with non-singular covariance matrix, the density function is strictly positive.

⟹ the intersection axiom holds

⟹ the Markov properties are equivalent in this class of distributions
Next we want to characterize all the distributions that satisfy the Markov properties for a given graph.

Hammersley-Clifford theorem relates the implicit description of a graphical model through Markov properties to a parametric description.
Let $G = (V, E)$ be an undirected graph.

A subset of vertices $C \subseteq V$ is a **clique** if $(i, j) \in E$ for all $i, j \in C$.

The set of **maximal cliques** of G is denoted $\mathcal{C}(G)$.

For each $C \in \mathcal{C}(G)$, we introduce a continuous nonnegative **potential function** $\phi_C : \mathcal{X}_C \to \mathbb{R}_{\geq 0}$.
Maximal cliques

Example: Which are maximal cliques of G?

1. \{1\}
2. \{1,2\}
3. \{1,2,3\}
4. \{2,3,4\}
Maximal cliques

Example: Which are maximal cliques of G?

1. $\{1\}$ - Correct

2. $\{1,2\}$ - Correct

3. $\{1,2,3\}$

4. $\{2,3,4\}$ - Correct
Factorization property

Def: The distribution of X factorizes according to the graph G if its probability density function $f(x)$ can be written as

$$f(x) = \frac{1}{Z} \prod_{C \in \mathcal{C}(G)} \phi_C(x_C),$$

where ϕ_C are some potential functions and $Z < \infty$ is the normalizing constant.
Factorization property

\[f(x) = \frac{1}{Z} \prod_{C \in \mathcal{C}(G)} \phi_C(x_C) \]

Example: A distribution factorizes according to \(G \) if its density \(f(x) \) can be written as

\[f(x) = \frac{1}{Z} \phi_{12}(x_1, x_2) \phi_{234}(x_2, x_3, x_4). \]
Factorization property

• Let \(G = (V, E) \) be an undirected graph.

 • We consider random vectors \(X_V = (X_v)_{v \in V} \) taking values in \(\mathcal{X}_V = \prod_{v \in V} \mathcal{X}_v \).

• Moreover, we assume that the probability distributions of the random vectors belong to a statistical model.

 • Example 1: \(|V| \)-dimensional multivariate Gaussian distributions.

 • Example 2: Discrete random vectors on discrete sets.

• The third statistical model that we consider consists of all such random vectors whose distributions factorize according to \(G \).
Theorem (Hammersley-Clifford): A distribution with positive and continuous density f satisfies the pairwise Markov property on the graph G if and only if it factorizes according to G.

- The Gaussian case is completely covered by the Hammersley-Clifford theorem.
- All distributions on a discrete space are considered continuous.
- What happens in the discrete case?
• Lauritzen “Graphical Models”

• Maathuis, Drton, Lauritzen, Wainwright “Handbook of Graphical Models”

• Koller and Friedman “Probabilistic Graphical Models”