

Collaboration for circular economy

Managing Circular Economy 20.3.2023

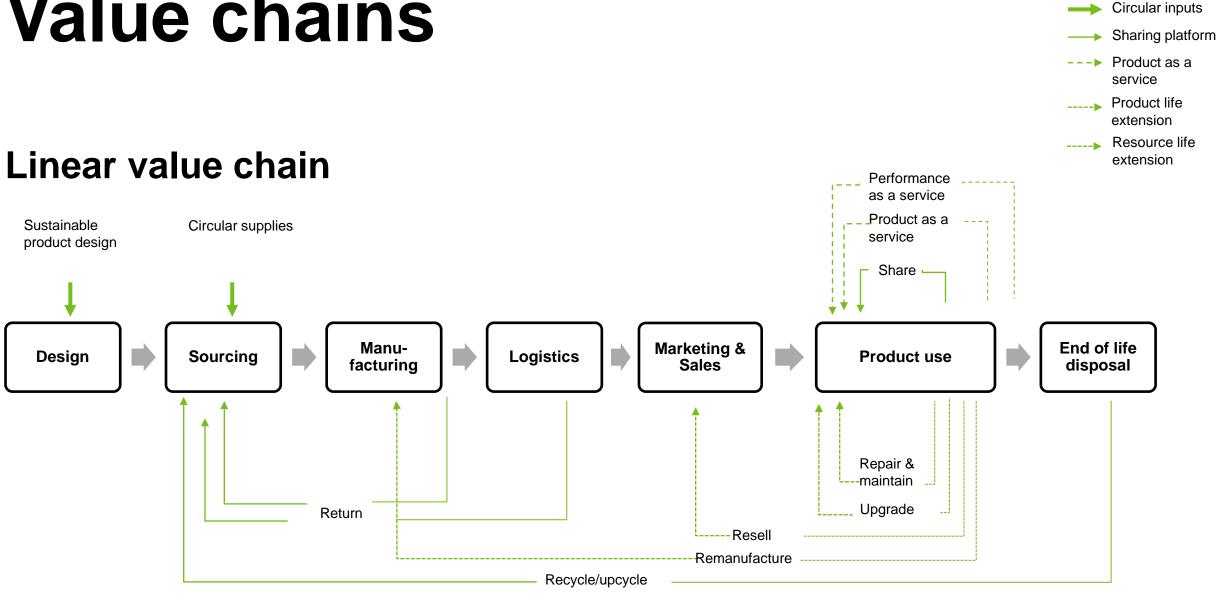
Samuli Patala

Outline

Today's session will focus on the role of collaboration for advancing circular business and the types of collaborations for CE.

- Circularity and collaboration in supply chains
- Beyond supply chains industrial symbiosis
- Intermediaries and local collaboration
- How to manage collaborative CE systems

Why do you think businesses might collaborate for sustainability and circularity?

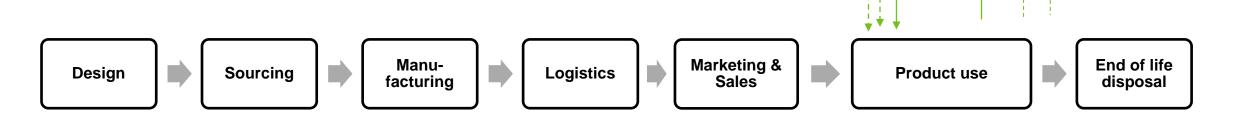


Sustainability in Business 201

Circularity and collaboration in supply chains

Value chains

Aalto University School of Business


Sustainable

Design

product design

Adapted from Sitra, 2022

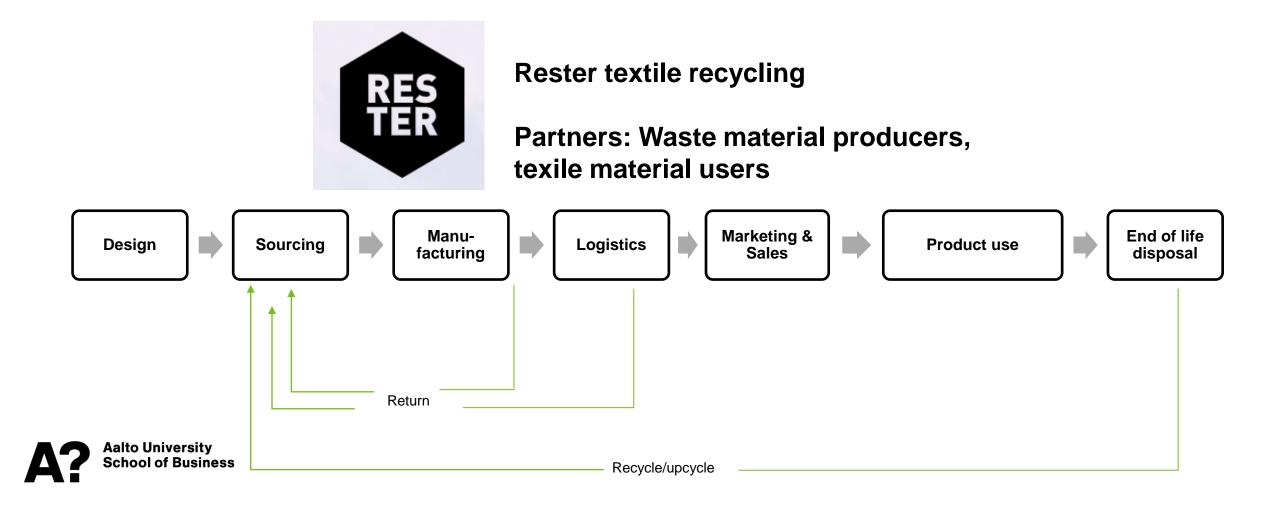
Collaboration and service/sharing models

C Lindström

Product as a service

Share 🗕

Lindström workwear rental


Partners: laundry and repair services

Collaboration and product life extension

Valtra remanufacturing **Partners: Product dealers ₩** Marketing & End of life Manu-Design Sourcing Logistics Product use facturing Sales disposal Repair & -maintain Upgrade Aalto Universitv hool of Business Resell Remanufacture

Collaboration and material life extension

Industrial symbiosis

Industrial symbiosis – circular economy in industrial firms

The objective of industrial symbiosis is to form closed-loop material cycles among industrial firms

Creating value from wastes and byproducts (Chertow and Ehrenfedd 2012)

• Other activities: Infrastructure, energy and utility sharing among a group of firms

Related terms: industrial ecology, eco-industrial park

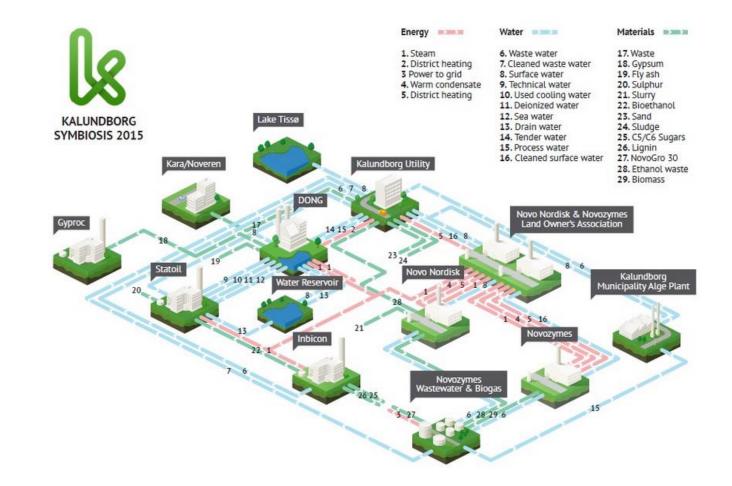
Cross-industrial collaboration is common, geographically focused

Case: Kalundborg

Collaboration among several managers of industrial firms in the Kalundborg area of Denmark started in the 1960.

Eventually, a formal association (Kalundborg Symbiosis) was formed to promote and develop the network

Annual environmental benefits:

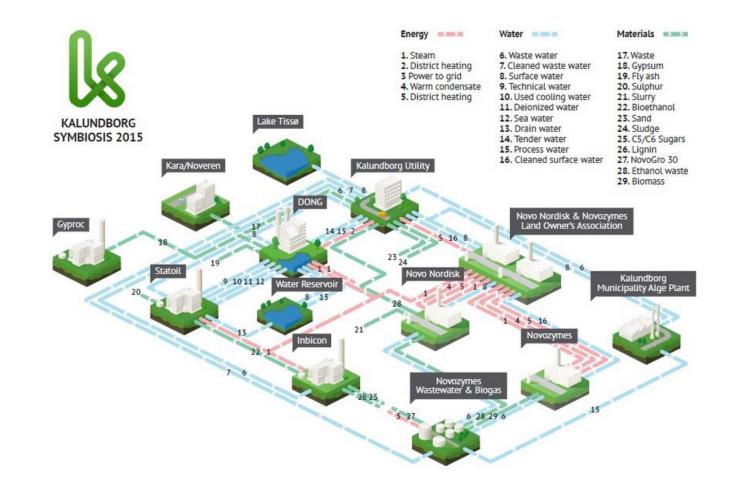

- CO2 emission reduced by 240.000 tons.
- 3 million m3 of water saved through recycling and reuse.
- 30.000 tons of straw converted to 5,4 million litres of ethanol.
- 150.000 tons of yeast replaces 70% of soy protein in traditional feed mix for more than 800.000 pigs.
- Recycling of 150.000 tons of gypsum from desulphurization of flue gas (SO2) replaces import of natural gypsum (CaSO4).

Case: Kalundborg

https://www.youtube.com/ watch?v=ZCdf-TbB0hI

Industrial symbiosis network developed in the Kalundborg area in Denmark over several decades starting from 1960s

Definitions


Chertow, 2000: "Industrial symbiosis engages traditionally separate industries in a collective approach to competitive advantage involving physical exchange of materials, energy, water and by-products."

Lombardi & Laybourn, 2012: "IS engages diverse organizations in a network to foster eco-innovation and long-term culture change. Creating and sharing knowledge through the network yields mutually profitable transactions for novel sourcing of required inputs, value-added destinations for non-product outputs, and improved business and technical processes."

Sustainability in Business 2018

Case: Kalundborg

Case: NISP

- National Industrial Symbiosis Programme (NISP) launched in 2005 in the UK
- First industrial symbiosis programme at national level
- International Synergies organized workshops for potential companies around the country
- Material database helps to discover new symbiosis opportunities
- Coordinators help with the emergence of symbiosis even after the possibility has been identified, e.g. consulting

(Paquin & Howard-Grenville, 2012)

Officially started in 2014

• The test phase included three resource synergy workshops in different geographical locations, over 600 potential resource synergies recognized

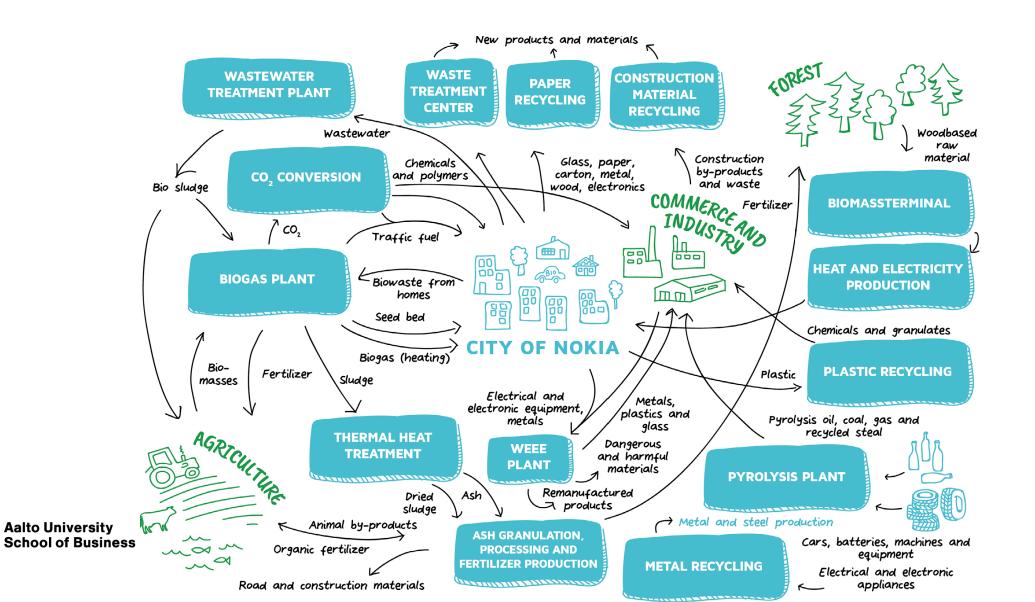
Coordinated by Motiva, Sitra and regional intermediaries

Facilitates industrial symbiosis across Finland

http://www.industrialsymbiosis.fi/

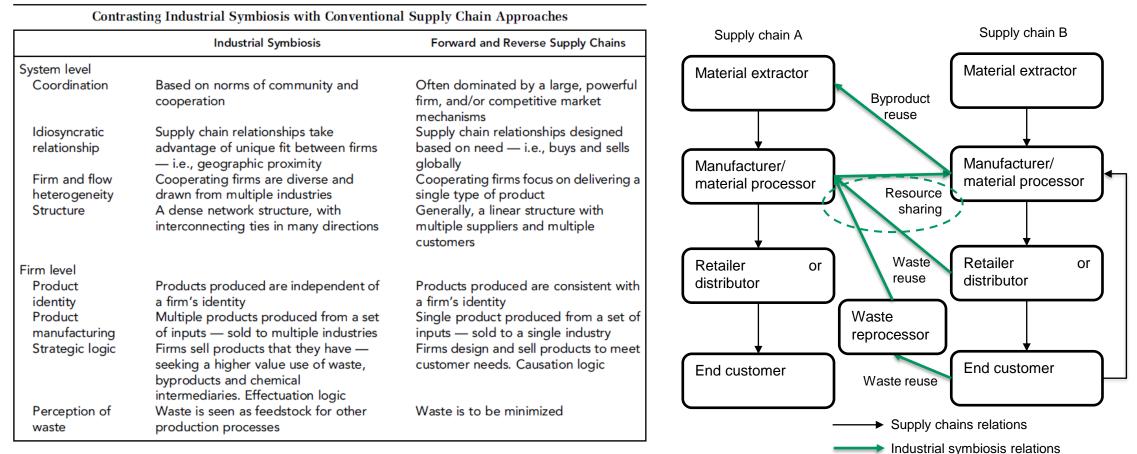
Samuli Patala 3/19/2023

Examples in Finland


- EnviGrow Park, Forssa
- HSY Ekomo
- Eco3, Nokia

https://www.sitra.fi/en/articles/nine-steps-toestablish-an-eco-industrial-park/

Eco3 - Nokia



Examples globally (Chertow & Ehrenfeld, 2012)

Area	Types of industrial activities involved
Guyama, Puerto Rico	Coal-fired power plant, chemical refining, pharmaceuticals
Shenzen Huaqiang Holdings Ltd., China	Sugar refining, alcohol, pulp and paper mill, cement, alkali recovery, agriculture
Ulsan, Korea	Oil, chemicals, incineration, metal processing, paper mill
Styria, Austria	Sawmills, mining, textiles, chemicals, power plant, board industry, plastic production, ceramic industry, cement plant, material dealers, iron manufacturing, agriculture associations
Tianjin Economic Development Area, China	Pharmaceuticals, food and beverages, electronics, machinery, others
Rotterdam Harbor, Netherlands	Chemicals, cement, oil refining, incinerator

Industrial symbiosis operational logic

Bansal & McKnight, 2009

Industrial symbiosis challenges

Cross-industrial CE opportunities can be difficult to uncover

-> need to share resource information between firms

The quality and quantity of byproducts might be difficult to optimize compared to main products

-> Intermediaries might be needed to achieve scale and quality needs

Many diverse actors involved, difficult to govern

-> local collaboration and systemic governance can facilitate this

Drivers and enablers for industrial symbiosis

Drivers for industrial symbiosis

	Kalundborg	NISP
Emergence conditions	Shortage of fresh water as input material Stringent environmental regulatory framework Geographical concentration of companies producing high volume of a wide variety of waste flows Extended macroculture of cooperation, past experience of cooperation Multiplexity increases the importance of collective sanctions and reputation	Landfill space scarcity Growing importance to environmental issues in regulatory framework The large size of the network limits the potential development of social mechanisms such as macroculture of cooperation, reputation or collective sanctions The existence of a coordinator might offers some guarantees of 'fair play' and contribute to the learning process

Domenech and Davies, 2011

Intermediaries and industrial symbiosis

Intermediaries are organizations that facilitate industrial symbiosis without directly being involved in the exchanges

Roles: (Zaoual & Lecocq, 2018)

- Revealing value in industrial symbiosis
- Generating trust
- Activating industrial symbiosis
- Institutionalizing the practices

Intermediary challenges

(Patala et al. 2020):

- Openness dilemma
- Value creation dilemma

International Synerg<mark>ies</mark>

industrial ecology solutions

Patala, S.; Salmi, A.; Bocken, N. 2020. Intermediation dilemmas in facilitated industrial symbiosis. *Journal of Cleaner Production,* forthcoming.

Importance of local collaboration

- Close mental distance (Ashton, 2008)
- Informal relations
- Opportunities for deeper collaboration
- Champions (Kokoulina et al. 2019)
 - Institutional
 - Network
 - Power
 - Expertise

Aalto University

School of Business

System-level governance in circular economy

Need for system-level governance in CE

Challenges with industrial circular economy:

- Lacking information: e.g. firms may have deep knowledge of their supply chain, but CE business often requires new, cross-industry relations
- Economies of scale: material flows may be too small for viable business
- A diverse set of actors involved (firms from various supply chains, public sector, non profits) with various governance mechanisms. No one party has clear authority over others.
- -> system-level, polycentric governance of resources is needed for effective CE!

Research approach

- Aqualitative multiple case study of three circular economy systems in
 - Finland (FISS, Finnish Industrial Symbiosis System)
 - Spain (Basque Circular Economy, BCE)
 - USA (Devens eco-industrial park)
- 90+ interviews, archival data and observations

Case: Devens Eco-Industrial Park

- Started as a Redevelopment project of an army base, located close to Boston, MA
- Close to 100 organizations in the area have been involved
- Coordinated by Devens Eco-Efficiency Center and Devens Enterprise Commision

Samuli Patala 3/19/2023

Case: Basque Circular Economy

Self-organized group of organizations undertaking projects and other collective activities for CE

Started in 2013

150 organizations have been involved

Samuli Patala 3/19/2023

Findings

Mutual adjustments

- Role adjustments
- Governance logic adjustments
- Temporal frame adjustments

Practices for collective agency

- Protocols and shared strategies
- Building and sharing systemic knowledge

Structures for sharing

- Platforms for sharing resources
- Master plan for the systemic optimization of resources

Conclusions

Advancing CE can be facilitated by collective governance mechanisms, where residual resources have some elements of commons

- Resource ownership remains private but knowledge on how to use them can be shared
- Some resources (e.g. shared facilities) may even be collectively owned

Recommendations for businesses:

- 1. Openness and adaptation to new forms of collaboration
- 2. Building inter-organizational coordination processes

Aalto University School of Businese Ogi: <u>https://nbs.net/p/how-to-accelerate-the-</u> <u>circular-economy-nbsp-c8143695-20a1-4c98-87b6-</u>

How could new technologies facilitate CE collaboration?

(Discuss in groups)

Your text here

- CE business can involve collaboration within and outside supply chains
- Industrial symbiosis is a systemic form of collaborating for interindustry CE opportunities
 - Can involve different operational logic compared to supply chains, and may need deep local networks and intermediaries
- Building systemic governance models can help overcome the challenges related to CE collaboration

Further information

Kalundborg: http://www.symbiosis.dk/en/

FISS: <u>https://teollisetsymbioosit.fi/finnish-industrial-symbiosis-system-fiss/</u>

Devens: <u>https://devensecoefficiencycenter.wordpress.com/</u>

Eco3: https://eco3.fi/en/

References

- Ashton, W.S., Bain, A.C., 2012. Assessing the "Short Mental Distance" in Eco-Industrial Networks. Journal of Industrial Ecology 16, 70–82. <u>https://doi.org/10.1111/j.1530-9290.2011.00453.x</u>
- Bansal, P., McKnight, B., 2009. Looking forward, pushing back and peering sideways: analyzing the sustainability of industrial symbiosis. Journal of Supply Chain Management 45, 26–37.
- Doménech, T., Davies, M., 2011. The role of Embeddedness in Industrial Symbiosis Networks: Phases in the Evolution of Industrial Symbiosis Networks. Business Strategy and the Environment 20, 281–296. <u>https://doi.org/10.1002/bse.695</u>
- Kokoulina, L., Ermolaeva, L., Patala, S., Ritala, P., 2018. Championing processes and the emergence of industrial symbiosis. Regional Studies 0, 1–12. <u>https://doi.org/10.1080/00343404.2018.1473568</u>
- Paquin, R.L., Howard-Grenville, J., 2012. The Evolution of Facilitated Industrial Symbiosis. Journal of Industrial Ecology 16, 8 3–93. <u>https://doi.org/10.1111/j.1530-9290.2011.00437.x</u>
- Patala, S., Hämäläinen, S., Jalkala, A., Pesonen, H.-L., 2014. Towards a broader perspective on the forms of ecoindustrial networks. Journal of Cleaner Production 82, 166–178. <u>https://doi.org/10.1016/j.jclepro.2014.06.059</u>
- Patala, S., Salmi, A., Bocken, N., 2020. Intermediation dilemmas in facilitated industrial symbiosis. Journal of Cleaner Production 121093. <u>https://doi.org/10.1016/j.jclepro.2020.121093</u>
- Walls, J.L., Paquin, R.L., 2015. Organizational Perspectives of Industrial Symbiosis A Review and Synthesis. Organization Environment 28, 32–53. <u>https://doi.org/10.1177/1086026615575333</u>
- Zaoual, A.-R., Lecocq, X., 2018. Orchestrating Circularity within Industrial Ecosystems: Lessons from Iconic Cases in Three Different Countries. California Management Review 60, 133–156. <u>https://doi.org/10.1177/0008125617752693</u>

