Hint: Problem set 3, Problem 2: Superconducting phase

The square of the term representing the Kinetic energy should be treated as a dot product. Consider the usual kinetic energy equation $K . E=\frac{1}{2} m \vec{v}^{2}$. Here the velocity \vec{v} is a vector quantity, the square of which should give a scalar quantity. Thus, we alway consider square of a vector as a dot product.

$$
\begin{equation*}
\left(-i \hbar \vec{\nabla}-q^{*} \vec{A}\right)^{2}=\left(-i \hbar \vec{\nabla}-q^{*} \vec{A}\right) \cdot\left(-i \hbar \vec{\nabla}-q^{*} \vec{A}\right) \tag{1}
\end{equation*}
$$

When you evaluate equation 1, you will get following terms:
(a) $\vec{\nabla} \cdot \vec{\nabla} \Psi(\vec{r}, t)=\vec{\nabla} \cdot(i \Psi(\vec{r}, t) \vec{\nabla} \theta(\vec{r}, t))$

Here, you will use product rule for vector calculus (look up vector calculus identities on wikipedia).
$\vec{\nabla} \cdot(\psi \vec{A})=\psi(\vec{\nabla} \cdot \vec{A})+(\vec{\nabla} \psi) \cdot \vec{A}$
Remember to consider i as a constant when evaluating the product rule. With Coulomb gauge, we can apply the following identity: $\vec{\nabla}^{2} \theta=0$.
(b) $\vec{\nabla} \cdot(\vec{A} \psi)=(\vec{\nabla} \cdot \vec{A}) \psi+\vec{A} \cdot(\vec{\nabla} \psi)$

With Coulomb gauge, we have $\vec{\nabla} \cdot \vec{A}=0$.
(c) $\vec{A} \cdot \vec{\nabla} \psi=\vec{A} \cdot(\vec{\nabla} \psi)$, that is, evaluate the gradient and leave the vector A as it is.
(d) $\left(q^{*} \vec{A}\right) \cdot\left(q^{*} \vec{A}\right)=\left(q^{*} \vec{A}\right)^{2}$. You can leave it as it is.

With these, you should be able to complete this exercise. We have used few identities by invoking Coulomb gauge. It would be a good idea to check what that is and why we can use these identities (you can find these information on Wikipedia). If possible, add these explanations in your solution.

