ECON-C4200 - Econometrics II: Capstone Lecture 8: Regression Discontinuity

Otto Toivanen

Learning outcomes

- At the end of lecture 8, you understand
- 1 what Regression Discontinuity (RD) is
- $2\,$ what the difference between ${\color{black}{\textbf{sharp}}}$ and ${\color{black}{\textbf{fuzzy}}}\,{\color{black}{\textbf{RD}}}$ is
- 3 the important role graphs play in RD
- 4 how to implement a simple RD in a regression framework

The idea behind Regression Discontinuity

- To identify the causal effect of *D* on *Y*, we look for "identifying variation" in observational data.
- We have seen that an instrumental variable or a DID can provide such variation.
- Neither is however always easily aligned with an experiment.
- RD builds on variation that is "close to random" by utilizing man-made variation in the assignment of treatment status.

RD builds on there being

- a variable score or running variable which ranks the units;
- 2 a cutoff above which a unit receives (with a higher probability); and
- **3** a **treatment** which some units get and other units don't.

Some material

Sources:

- Cattaneo, M., Idrobo, N. & Titiunik, R. (2020). A practical introduction to regression discontinuity designs: Foundations. *Cambridge elements: Quantitative and computational methods for social sciences.* CUP
- Santoleri, P., Mina, A., Di Minin, A. & Martelli, I. (2023). The causal effects of r&d grants: Evidence from a regression discontinuity. *Review of Economics and Statistics*, forthcoming
- Kerr, W. R., Lerner, J. & Schoar, A. (2014). The consequences of entrepreneurial finance: Evidence from angel financings. *The Review of Financial Studies*, 27(1), 20–55 (not really RD, but close)

The role of the score

- Example: your comprehensive school GPA defined which high school(s) you were admitted to.
- Silliman, M. & Virtanen, H. (2022). Labor market returns to vocational secondary education. *American Economic Journal: Applied Economics*, 14(1), 197–224
- Think of the pupils at the **cut-off**: one has a marginally higher GPA and gets in, the other a marginally lower GPA and does not.
- They are for all practical purposes **equally good** → the cut-off acts as a randomization device.
- Note: it is OK if the score affects the outcome.

The score, the cut-off and receiving the treatment

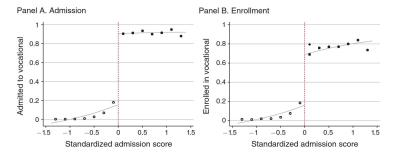


FIGURE 4. CUTOFFS

Source: Silliman and Virtanen, 2022

Score, cut-off and treatment assignment more formally

- Let's denote the score with X_i.
- Let's denote the cut-off *c*.
- **Important**: always normalize the cut-off to zero.
- Unit *i* gets the treatment if and only if $X_i \ge c$.
- Let's denote the treatment status with D_i .
- D_i is defined as

$$D_i = \mathbb{1}[X_i \ge c]$$

• A unit for which $D_i = \mathbb{1}[X_i \ge c]$ is **assigned** to the treatment group.

Treatment assignment vs. receiving the treatment

- It is one thing to be assigned to the treatment group.
- One may thereafter either receive or not receive the treatment.
- **Sharp RD**: assignment = received treatment.
- **Fuzzy RD**: assignment \neq received treatment.

The counterfactual: how to get the causal impact of the treatment

The fundamental problem of causal inference:

- For each observation unit, we only ever observe the outcome when the unit (does not) receive the treatment.
- What would have been the outcome of the unit selected into the treatment, had it not received the treatment?
- What would have been the outcome of the unit that was selected out of treatment, had it received the treatment?

The Potential Outcomes Framework

- It is one thing to be assigned to the treatment group.
- One may thereafter either receive or not receive the treatment.
- Sharp RD: assignment = received treatment.
- Fuzzy RD: assignment ≠ received treatment.

$$egin{aligned} Y_i &= (1 - D_i) imes Y_i(0) + D_i(1) \ Y_i &= Y_i(1) \; \textit{iff} \; X_i \geq c \ Y_i &= Y_i(0) \; \textit{iff} \; X_i < c \end{aligned}$$

• The 1 or 0 in Y(.) is the indicator for receiving (not receiving) the treatment.

Defining the counterfactual in Sharp RD

- Think of units with scores just above and just below the cut-off *c*.
- For all practical purposes they are the same regarding their score.
- If the minuscule difference in their score is not informative, they should identical in all possible respects but one: Their **treatment assignment**.
- Therefore one can assume that those individuals at the cut-off but just below provide the right counterfactual for the outcome of interest.
- The following then holds (under given assumptions):

$$\tau_{SRD} = \mathbb{E}[Y_i(1) - Y_i(0)|X_i = c]$$
(2)

$$\tau_{SRD} = \textit{lim}_{\epsilon \to 0} \mathbb{E}[Y_i(1)|X_i = c + \epsilon] - \textit{lim}_{\epsilon \to 0} \mathbb{E}[Y_i(0)|X_i = c - \epsilon]$$

Why use regression?

- Trade-off: units close to the cut-off very similar, but there are few of them.
- \rightarrow variance (excellent comparison, small N) -bias (less excellent comparison, (much) larger N) trade-off.
- If you include in your sample units further away from the cut-off c, you want to / need to control for their differences → regression.
- The simplest example with linear control of the score:

$$Y_i = \beta_0 + \tau D_i + \beta_1 D_i (X_i - c) + \beta_2 (1 - D_i) (X_i - c) + \epsilon_i \quad (3)$$

• Notice from equation () why you need to normalize the score to be zero at the cutoff.

Why use regression? / Interpretation of the estimate

• Important decisions:

1 What functional form to use for the "control function"?

- What data points to include, i.e., how far to go from the cut-off?
- With sufficient data, one should use **non-parametric** methods such as **local polynomial regression**.
- Nature of the estimate: it is a **local** of the average treatment effect, i.e., one cannot (easily) extrapolate it to observation away from the cut-off.

Santoleri, P., Mina, A., Di Minin, A. & Martelli, I. (2023). The causal effects of r&d grants: Evidence from a regression discontinuity. *Review of Economics and Statistics*, forthcoming

- What is the effect of R&D grants (subsidies) in inventive outcomes?
- Why would you want to subsidies private R&D? Externalities...
- Even if there is an effect, what is the mechanism? Funding problems, lower mc, certification, ...?

Setting

- EU Small and Medium Enterprise Instrument.
- 0.5 2.5M euros in funding (note: far too little information on the distribution of granted funding).
- External experts rank the applications, winners selected on budget availability.
- Competitions 2014 2017; outcomes measured in 2019.
- Outcomes:
 - Investment
 - 2 Investment in intangibles
 - 3 Patents (quality weights)
 - 4 Follow-on equity investment
 - 6 Firm growth
 - 6 Firm failure

Descriptive statistics

Source: Santoleri et al., 2023

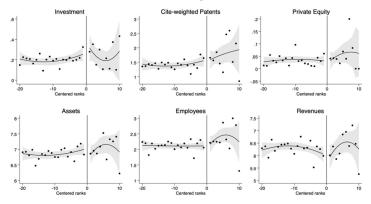
Panel A: comp	etitions (ra	w data)		
	Mean	$^{\rm SD}$	p50	Ν
# competitions				176
# applicants per competition	84.68	74.35	68	14904
# winning applicants per competition	4.09	3.08	3	719
Panel B: compet	itions (clea	ned data)		
	Mean	SD	p50	Ν
# competitions				176
# applicants per competition	63.04	56.97	50	11095
# winning applicants per competition	2.66	2.17	2	468
Panel C: applic	ants charac	teristics		
	Mean	SD	p50	Ν
Patents ^{Pre}	4.03	8.13	0	11095
Citw patents ^{Pre}	30.84	84.70	0	11095
Private Equity ^{Pre} (d)	0.04	0.18	0	8352
Private Equity ^{Pre} $(1,000 \in)$	170	1940	0	8352
Revenues $P_{re}^{P_{re}}$ (1,000 \in)	2944	7832	554	6238
Employees ^{Pre}	19.40	29.96	8	6700
Assets ^{Pre} $(1,000 \in)$	2932	5337	994	8411
Age^{Pre}	8.83	11.62	5	11313
High-Tech (d)	0.57	0.50	1	11024
Failure (d)	0.06	0.24	0	11402
IPO (d)	0.00	0.05	0	8432

Table 1: Descriptive statistics on SME Instrument competitions and applicants

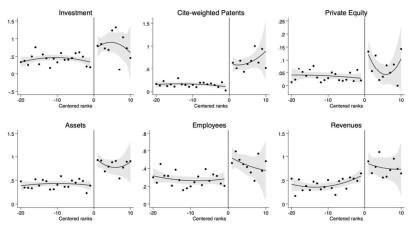
Comparing treated and control firms

Source: Santoleri et al., 2023

Fig. 1: RDD plots before and after the grant



Panel A. Pre-grant



Panel B. Post-grant

RD estimation equation

• The authors estimate the following model:

$$Y_{ic}^{Post} = \alpha + \beta \operatorname{Grant}_{ic} + f(\operatorname{Rank}_{ic}) + \gamma Y_{ic}^{pre} + \delta_c \operatorname{epsilon}_{ic}$$
(4)

where $-r \leq Rank_{ic} \leq r$.

- $Grant_{ic}$ = treatment status of firm *i* in competition *c*.
- Y_{ic}^{Post} = post-treatment outcome of firm *i* in competition *c*.
- Y_{ic}^{Pre} = pre-treatment outcome of firm *i* (to reduce variance).
- *Rank_{ic}* = centered rank of firm *i* in rank *c*.
- f(Rank_{ic}) = polynomial control for centered ranks, allowed to differ on either side of cut-off. Either linear of quadratic.
- *r* = **bandwidth**, i.e., how far from the cut-off lies the furthest observation included in the estimation sample.

	(1) All	(2) All	(3) All	$^{(4)}_{\pm 10}$	$(5) \pm 10$	$^{(6)}_{\pm 5}$	$(7) \pm 5$
Grant	$\begin{array}{c} 0.437^{***} \\ (0.129) \end{array}$	0.369^{*} (0.211)	0.388^{***} (0.090)	$\begin{array}{c} 0.481^{***} \\ (0.169) \end{array}$	0.481^{*} (0.274)	0.677^{***} (0.224)	$\begin{array}{c} 1.595^{***} \\ (0.524) \end{array}$
$\operatorname{Rank} \times \operatorname{Grant}$ $\operatorname{Rank}^2 \times \operatorname{Grant}$ Rank quintiles	Yes No No	Yes Yes No	No No Yes	Yes No No	Yes Yes No	Yes No No	Yes Yes No
N R-squared BIC	$6873 \\ 0.05 \\ 20231.97$	$6873 \\ 0.05 \\ 20241.51$	$6873 \\ 0.05 \\ 20242.34$	$1241 \\ 0.20 \\ 3760.74$	$1241 \\ 0.20 \\ 3770.39$	$698 \\ 0.26 \\ 2116.04$	698 0.27 2122.26

Table 3: The effects on investment

Panel A: Citw-patents	(1) All	(2) All	(3) All	$^{(4)}_{\pm 10}$	$^{(5)}_{\pm 10}$	$^{(6)}_{\pm 5}$	$^{(7)}_{\pm 5}$
Grant	$\begin{array}{c} 0.203^{***} \\ (0.068) \end{array}$	0.282^{**} (0.117)	$\begin{array}{c} 0.148^{***} \\ (0.051) \end{array}$	$\begin{array}{c} 0.147^{*} \\ (0.085) \end{array}$	$\begin{array}{c} 0.236^{*} \\ (0.138) \end{array}$	$\begin{array}{c} 0.314^{***} \\ (0.113) \end{array}$	0.390^{*} (0.230)
$Rank \times Grant$ $Rank^2 \times Grant$ Rank quintiles	Yes No No	Yes Yes No	No No Yes	Yes No No	Yes Yes No	Yes No No	Yes Yes No
N R-squared BIC	$11095 \\ 0.36 \\ 23502.73$	$11095 \\ 0.36 \\ 23516.83$	$11095 \\ 0.36 \\ 23509.32$	$1822 \\ 0.45 \\ 4221.02$	$1822 \\ 0.45 \\ 4234.39$	$1050 \\ 0.51 \\ 2318.97$	$1050 \\ 0.51 \\ 2332.66$
Panel B: Private Equity	(1) All	(2) All	(3) All	$^{(4)}_{\pm 10}$	$^{(5)}_{\pm 10}$	$^{(6)}_{\pm 5}$	$^{(7)}_{\pm 5}$
Grant	0.070^{**} (0.028)	0.126^{***} (0.045)	0.036^{**} (0.015)	0.080^{***} (0.027)	$\begin{array}{c} 0.123^{***} \\ (0.047) \end{array}$	$\begin{array}{c} 0.117^{***} \\ (0.039) \end{array}$	0.157^{*} (0.085)
$Rank \times Grant$ $Rank^2 \times Grant$ Rank quintiles	Yes No No	Yes Yes No	No No Yes	Yes No No	Yes Yes No	Yes No No	Yes Yes No
N R-squared BIC	8352 0.07 -5077.46	8352 0.07 -5071.33	8352 0.07 -5058.36	1358 0.17 -600.21	1358 0.17 -588.55	784 0.27 -337.13	784 0.27 -324.29

Table 4: The effects on cite-weighted patents and external equity

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Panel A: Assets	All	All	All	± 10	± 10	± 5	± 5
Grant	0.561^{***}	0.578^{***}	0.437^{***}	0.477***	0.570^{***}	0.545^{***}	1.037***
	(0.065)	(0.099)	(0.050)	(0.095)	(0.150)	(0.138)	(0.321)
$Rank \times Grant$	Yes	Yes	No	Yes	Yes	Yes	Yes
$Rank^2 \times Grant$	No	Yes	No	No	Yes	No	Yes
Rank quintiles	No	No	Yes	No	No	No	No
N	7306	7306	7306	1311	1311	743	743
R-squared	0.77	0.77	0.77	0.74	0.74	0.74	0.74
BIC	17860.70	17875.35	17862.13	2990.32	3002.53	1682.91	1691.63
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Panel B: Employees	All	All	All	± 10	± 10	± 5	± 5
Grant	0.330***	0.256^{***}	0.219^{***}	0.283***	0.318^{**}	0.242^{**}	0.234
	(0.062)	(0.092)	(0.038)	(0.081)	(0.132)	(0.120)	(0.222)
$Rank \times Grant$	Yes	Yes	No	Yes	Yes	Yes	Yes
$Rank^2 \times Grant$	No	Yes	No	No	Yes	No	Yes
Rank quintiles	No	No	Yes	No	No	No	No
N	5493	5493	5493	962	962	548	548
R-squared	0.79	0.79	0.79	0.80	0.80	0.83	0.83
BIC	9093.99	9109.37	9108.84	1472.89	1485.45	730.64	743.24

Table 5: The effects on firm growth

Generalizations / robustness tests

- (Above median) firm age, firm size (proxies for "financial vulnerability").
- Country of origin / NUTS2 above or below median GDP/capita.
- Grant size: effects increasing in grant size.
- Note: is it OK to model the treatment as 0/1?