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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems on the plate model:

O

Reissner-Mindlin and Kirchhoff plate models.

Derivation of the plate equations by using the principle of virtual work, integration by
parts, and the fundamental lemma of variation calculus. Plate equilibrium and

constitutive equations in their tensor forms.

Component representations of the plate equations in (x,y,z)— and (r,¢,n)—coordinate

systems.

Approximate series solutions to plate equations.
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5.1 PLATE MODELS

Kinematic assumption: Line segments perpendicular to the mid/reference-plane remain
straight in deformation (Reissner-Mindlin) and perpendicular to the mid-plane (Kirchhoff).

Then, line segments move as rigid bodies according to T =Gy + 6y x 5.

Kinetic assumption: Normal stress in the thickness direction is negligible.
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The kinematic assumption means that the normal line segments to the mid-plane move as
rigid bodies in deformation. In terms of displacement of the translation point z =0 and small
rotation of the line segments, displacement of a particle (x,y,z) Is given by
0 =(ui +Vvj +Wk)+(# +0])x(zk) in which the translation and rotation components
depend on the mid-plane position (X,Y). The kinetic assumption of the plate model is

o, =0.

In the Kirchhoff model, line segments are assumed to remain normal to the mid-plane in

deformation which brings the Kirchhoff constraints (VW+a@y =0, @y = 6, x k)

oW ow
Y xz =&+¢9=O and 7/yz :E—¢:O.

The modeling error in the Kirchhoff plate model is larger than that of the Reissner-Mindlin

plate model!
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BENDING MODE OF KIRCHHOFF PLATE

Kirchhoff model is the practical choice for the bending of thin isotropic and homogeneous
simply supported plates. Assuming that the origin of the transverse axis is placed at the mid-
plane, the boundary value problem for bending of a simply supported plate loaded by

distributed transverse force b, is given by

vévéw—b—“:o in Q,
2
w=0 and Da—\;V:O on 0Q
on
o EtS o 0
In which D = N the bending stiffness of the plate and V=V, +&,—.
12(1-v*°) on
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EXAMPLE 5.1 Consider bending of a simply supported Kirchhoff plate in the rectangle
domain Q =(0,L)x(0,H). Thickness t, Young’s modulus E, and Poisson’s ratio v, and

distributed load b in direction of z —axis are constants. Derive the double sine series

solution of the form w(x,y)=>"", Z‘}o:l wi; sin(izx / L)sin(jzy/H).

Answer Wij:16%%[(i)2+(l_ll)2]_2 i, je{l,35,..3, w;=0 otherwise.

ijz° L
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The double sine series satisfies the simply supported boundary conditions ‘a priori’.
Elimination of the stress resultants gives the fourth order differential equation for the
transverse displacement

0w o'w  o'w b Et3

—+2 + =—, where D= :
ox*  oxley® oy* D 12(1-v2)

The series solution is based on the orthogonality properties of the sine and cosine functions

(like) / Cronecker delta

joL Sin(i”%)sm(jﬂ%)dx=5ij% and IOL sin(iﬂ%)dx=%[l—(—1)i]
J-OH sin(iﬂ%)sin(jﬂﬁ)dy=5ﬁ% and IOH Sin(iﬂ%)dy:%[l_(_l)i]
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When the series approximation is substituted into the equilibrium equation, the outcome is
* © 212 . o Xy . .. Y. b
Zizl Z j=1 Wij [( ) + (—) ] Sm(mt)sm(Jﬂﬁ) =5

The unknown coefficient can be solved by multiplying both sides of the equation by
sin(kzx/L)sin(lzry/H), integrating over the domain Q=(0,L)x(0,H), and using

orthogonality of sine functions:

b LH

”22[(_) ( )]=5”7[1(1)][1(1)] =

b 1 1 .
Wij =16 . . 1, j€{1,3,5,...}, Wi; =0 otherwise. €

Diiz ()7 + (1)
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5.2 PLATE EQUATIONS

Virtual work expression of plate, principle of virtual work, integration by parts, and the

fundamental lemma of variation calculus give (&, is the normal to the mid-plane):

Vo-F+b=0 inQ, cdd

VO°|\7|—§n‘|E=O inQ,

> > > >

Stress resultants are symmetric so that F=F, and M =M,.. Constitutive equations

M =M (Uy,6,), F = F(ly,6,) are needed for a closed equation system!
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In terms of the stress and external force resultants, virtual work densities of the plate model

(&g =Gy x€, < 6y =8,xady) are given by

i O. ou ol
SWEy = (i : E cowgt=—1 b and SWES =—4 b - E
ok|. (M oay C oay M

where the strain measures of the plate model are € =Vly+€,09 and K =Vyay and

gradient operator V=V, +€,0/0n.

Virtual work expression of plate Is obtained as integral of the density expression over the

plate domain QcR? (mid-plane)
oW =— jQ [F : (Vo +8,6@n). + M : (Vdan ), J0A+

IQ (6-5U0+C-5@O)dA+jaQ (E.5UO+|\_] ‘50_50)(:]8.
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Integration by parts gives an equivalent form (the aim is remove the derivatives acting on
the variations), retaining the original rotation variable with @, = &, x €, and using the vector

identity a- (b x¢)=(axb)-C gives
awsz [(Vo-F +b)-8ly+(Vy-M —&, -F +€)- 5@ JdA+
jaQ [(-fi-F+F)-Slg+(-A-M +M)-d@glds =
avv:jQ [(Vo-F+b)-8ly—[(Vo-M —&,-F +C)x&,]- 56, JdA+
jaQ [(—fi-F +F) Sty —[(-A-M + M) x&,]- 56,]ds.

Principle of virtual work and the fundamental lemma of variation calculus imply the

equilibrium equations and boundary conditions
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VO . |E+6:O in Q
, equilibrium egs.

(Vo-M —&,-F+C)x€,=0 in O

/

i-F-F=0 or Uy—Uy=0 onoQ

> boundary conditions

(i-M-M)x&,=0 or 6y—6y=0 on&Q

/

Above, underbars denote given boundary values. Boundary conditions specify either a

Kinematic quantity or its work conjugate kinetic (force like) quantity.

5-13



RESULTANT DEFINITIONS

Stress and external force resultants are integrals over the thickness (&, = 6, x &, ). Stress

resultant definition gives the constitutive equations:

= 1 1 n|= c E\ c
E:jc‘} dn:_[ Edn:‘i:«, 9:80,
M n n n? K C B| K

b ~[1 .
{ } =j f {n}dn, external force and moment per unit area

Ot

{ E } _I f{l}dn. external force and moment per unit length
n

Elasticity tensor E is assumed to satisfy the minor and major symmetries and condition

6,6, : E =0 which implies that the kinetic assumption oy, =0 is satisfied ‘a priori’.
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STRESS RESULTANTS

Using the conventional notation for the components in the (X,Yy,n) coordinate system,

assumption o, =0 and representation F = N +&,Q+ Qg;
T .
_ i N N i
J Ny Nyy J{ ]
LT ! Mux  Myy ([T i !
M=q_ ; ,and Q= ;
i) [Myx My (] J

The first and second indices of the components of M do not have the same interpretation
as those of &.
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BENDING MODE OF KIRCHHOFF PLATE

Equilibrium equations of the Kirchhoff plate model can be deduced from the Reissner-
Mindlin equations. However, boundary conditions are somewhat tricky and they require

derivation from the virtual work densities:

tangential
Vo‘@+bn =0 and Q=Vo°|\7| in €, \/n
\ normal
oW
Mpn—M,=0 or —+6,=0 on 0Q, _
on [ OCY
Qn_Q"‘@i(Mns_Ms):O or w—w=0 on 0Q.
= 0S

Constituive equation of the moment resultant M = —B : VyVyw follow from the Reissner-

Mindlin model, Kirchhoff constraint @ +Vow=0, and assumes that ¢ =o.
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The equilibrium equation can be deduced from the Reissner-Mindlin equations by
separating the thin-slab and bending modes of plate with F =N +&,Q+Q€, and

b =b+&,b, (€ =0 for simplicity). Then
Vo-F+b=0 and Vj-M-6,-F=0 <
Vo-N+by=0, Vy-Q+hb,=0, and Vg-M-Q=0 =
Vo-(Vo-M)+b,=0. €

The biharmonic equation for the transverse displacement of literature follows from the

constitutive equation of homogeneous and isotropic material

2 .
Vo (Vo-M)+b, =0 and M:—;—ZE:VOVOW — DV3Viw-b,=0. €
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https://en.wikipedia.org/wiki/Biharmonic_equation

5.3 CARTESIAN COORDINATES

Reissner-Mindlin model bending mode equilibrium and constitutive equations in (X, y,n)

coordinates follow from the coordinate system invariant forms.

QX 00
OX () i 11 ox
ay M, 1 v 0 X
M,, OM,y o¢
: XX 4 -Q, +=0, <M, r=D|v 1 0 ;. ——L L. and
OX oy X y . oy
My My My ][00 30150 a4
. ) 90 ¢
oy OX y Oy OX|
Q aa_w+9 Et’
gty & > 1n Q.  (notation D = 5 )
Qy 6_W_¢ 12(1-v?)
Loy
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EXAMPLE 5.2 Consider the plate strip clamped at its ends and loaded by its own weight.
Determine the deflection w and rotation & of the plate according to the Reissner-Mindlin
model. Thickness, width, and length of the plate are t, H, and L, respectively (H > L).
Density p, Young’s modulus E, and Poisson’s ratio v are constants. Assume that the stress-
resultants, displacement, and rotations depend on x only.

|&

YA

i

X, X

t(L X) X

Answer w(x)=-pg(L - x)x(

and 9(x) = 12 —3Lx+2
24D ) and 0(x) = 2DX( x+2x°)
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According to the assumption, derivatives with respect to y vanish. The equilibrium and

constitutive equations simplify to

dQ, dM 4 dé dw .
—ot=0, —=-0Q, =0, M,, =D—, and =Gt(—+8@0) in (O,L),
dx £9 dx Qx XX dx Qy (dX +0) (O,L)

Boundary value problem for the transverse displacement and rotation, obtained by

eliminating the stress resultants,

2
D?—Gt(— 0)=0, Gt(d W d9) ogt=0 in (O,L), w=6=0 on {0,L}.
x? dx?

gives (use the Mathematica notebook)

t(L X)X
24D

w(x) = —pg(L - x)x[ 1 and O(x) = 2= 5 U2 —3Lx+2¢2). €
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KIRCHHOFF PLATE EQUATIONS

Equilibrium and constitutive equations of the bending mode according to the Kirchhoff

model follow from the Reissner-Mindlin equations

a§X+a§yy+bn o0
X ( i T
M, 1 v 0 X
My, My 0¢
: 8XX+ - —QX>:O,<Myy>:DV 1 0 3 —5 >, and
X y
1

My My My ][00 28150 a4

N B v _99
oy OX y Oy OX|
a_W_|_9 -
ox _ Kirchhoff
. =0 In Q, )
ow 4 constraints!
Loy
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EXAMPLE 5.3 Consider the plate strip clamped at its ends and loaded by its own weight.
Determine the deflection w and rotation & of the plate according to the Kirchhoff model.
Thickness, width, and length of the plate are t, H , and L, respectively (H > L). Density
£, Young’s modulus E, and Poisson’s ratio v are constants. Assume that the stress-

resultants, displacement, and rotations depend on x only.

Z,7 1g

Answer w(x)z——[t)(L—x)zx2 and 6(x) =



According to the assumption, derivatives with respect to y vanish, and the set of partial

differential equations becomes a set of ordinary differential equations. The relevant

differential equations and the boundary conditions are

dQy dM do dw .
—oqt=0, —=-0Q,=0, M,, =D , =0 in (OL),
dx LY X Qy XX dx ' dx + ©O,L)

w=6=0 on {0,L}.

Solution to W can be obtained, e.g., by eliminating the rotation and the stress resultants

4
Dd—W+pgt:0 in (O,L) and W=d—W=O on {O,L} =
dx? dx

gt (L— x)2x2

W)=,

€
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5.4 CURVILINEAR COORDINATES

Equilibrium and constitutive equations of the bending mode according to the Reissner-

Mindlin model in (r,#,n) coordinates follow from the coordinate system invariant forms:

Q

0
LA Ty,
r- or ol (M
r 3
1.0(rM ) 5|V|r¢ t
— —M |- =0, <M . :=—|E
< r[ o Og ol =Qr =0 M¢¢ 12[ l;
1 a(er¢) 8M¢¢ | rg
g Ml
Q %wq’ E
r . .
{Q¢}_Gt<1@_ > in Q.  (notation [E]G =
rog ) i
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The component representations of quantities in the (r,@,Nn) coordinate system are

N N M M _ 8T i
= € Qr - € rr rg || ©r € or
Q = _ ) M = _ _ ) VO =9 = 9 1 a }
€] |Qy €y | My My, |8 €] |10
I 09
T - — (= _ ) - =T o o o
CH-R - 1 v 0]|6&F& €€ T €4Er €€y T C4Er
E=18850 —=|v 1 088, 1 +18:8 +8.8yr G &8, +8néy
1-v
6.8, 10 0 0Jl58,] (8.8 +68,] |88 +&&,

Direct calculation (basis vectors are not constants) gives
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oMy My
. . [ or 0
‘70 -M __(?;:.{_f-} !:< ¢6
€] r|o(rMyy) oMy,
or o0¢
f T
3 érér 1 v
M:;—ZE:E:< €8 ¢ D|v 1
\é»¢_>r +é’l’_»¢ _O
T Low_
) . (& rog
Q=te,-E:&= Gt (-
€
r @+0¢
L or
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KIRCHHOFF PLATE EQUATIONS

Equilibrium and constitutive equations of the bending mode according to the Kirchhoff

model follow from the Reissner-Mindlin equations

3 \ ]

1[8(rQr) + Q¢]+bn %

r or ol ( ) or
Mrr

oM
r- or o¢ o r ¢

o(rM oM
1.00Myg) Mgy vy 20
r-or o¢ or |

91— Qr

V-

> and

r O¢

r¢]_Q¢

\

( aW 9
or Kirchhoff

3 L =0. ]
1 ow 0 constraints!

rog

5-27



The various forms in literature follow after elimination of rotations or stress resultants in the
generic forms. For example, solving for the shear forces in terms of the moment resultants

and eliminating the rotations in the constitutive equations by using the Kirchhoff constraints

gives first
(%W 10w 10%w,)
—+V— +——
(D 0 A S or ror rog
Q] 1 E(rM”Ha_ngW_MW M 2w 1,0w 10%w
{Q }:—< 5 5 > <|\/|¢¢>:—D<V—2-|'—(a +— 2)>:>
Z f —(er¢)+—M¢¢+Mr¢ M or r r r8¢
L or ol U o 106w
Q-v)—=(==)
or rog
2o 10,0, 10°.10, 0, 1 0° b Biharmonic
VOVO\N:[_ (r )+ 2 EL (r )+ 2 Z]W:_n- -
ror or rsg9g° ror or rcog D equation
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EXAMPLE 5.4 A simply supported circular plate of radius R is loaded by its own weight
as shown in the figure. Write down the boundary value problem giving as its solution the

transverse displacement. Use Kirchhoff plate equations in the polar coordinate system.

Problem parameters E, v, p and t are constants. Assume that w depends on the radial

19

coordinate only.

Answer:

[——( —)][——( —)] =0in (O,R), My (R)=W(R)=-M(0)=-Q,(0)=0

r dr
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Assuming rotation symmetry, the bending mode equilibrium equation and the boundary

conditions of circular simply supported plate of isotropic homogeneous material simplify to

1d, d,1d, d by, - .
[FE(rd_)][__(rE)]W_B_O in (O,R),

r~rdr
d2w 1 dw
M., =-D(——+v=—"-)=0 and w=0 on {R},
rr (dl’2 Vl’dl’) { }
0 ——D(d3W+1d2W— Lawy 65 M ——D(dz—led—W)—o on {0}
r dr® rdr? r2dr’ T dr®  rdr |

The generic solution to the equilibrium equation in terms of integration constants a, b, c,

and d (obtained by repeated integrations) is W=a+ br? +cr? (1-logr)+dlogr.
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EXAMPLE 5.5 A simply supported circular plate of radius R is loaded by a point force P
acting at the midpoint as shown in the figure. Determine the displacement of the plate at the
midpoint by using the Kirchhoff plate model in the polar coordinate system. Problem
parameters E, v and t are constants. Assume that the solution depends on the radial

coordinate only. Use the generic solution w(r) =a+ br? +cr2(1— logr)+dlogr.

P

2 2
Answer: w(0)=- L PR 3+V:—i£(3+v)(l—v)
167 D 1+v Ar Et3

5-31




Let us consider first solution on an annular domain of outer radius R which is simple
supported on the outer boundary and loaded by constant distributed force (_Q =—P/(27¢) on
the inner boundary r =¢. Assuming rotation symmetry, the bending mode equilibrium

equation and the boundary conditions simplify to

1d d..1d d .
——r—)(=—r—)w=0 in (gR),
(rdrrdr)(rdrrdr)W (8 )

M (R)=0, w(R)=0 and —Q(¢)-Q=0, ~M(¢)=0

d3w ld2W 1 dw d2W 1 dw
where =—-D(——+= — and M,, =-D(——+v=—").
QI‘ (d|’3 r dr2 r2 dl’) rr (d|’2 Vr dr)

The generic solution to the biharmonic equation (obtained by repeated integrations) contains
parameters a, b, ¢, and d to be determined from the boundary conditions. When the solution

to the linear equations
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~Q,()-Q == (P-8cDx) =0,
= 27e

~M,, (¢) =—32[d —dv+&2(c—cv—2b—2bv)+2ce?(L+v)loge] =0,
&

M (R) :%[d —dv+ RZ(C—CV—Zb—va)+ZCR2(1+V)IOg R]=0,
w(R) =a+(b+c)R? +(d —cR?)logR =0

IS substituted in the generic solution to the transverse displacement w(g), solution to the

original problem is obtained as the limit

1 PRZ3+v
167 D 1+v

w(0) = lim__,ow(e) =—
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4.5 VIRTUAL WORK DENSITIES

Virtual work expressions contain generalized forces (force and moment) corresponding to

the chosen kinematic quantities: = -
q cdA B
5Wext _ 5UO
2 5(()0

(Lo oftfon £ 1 f2fon ()= of2)onoms =i,



Straight line segments perpendicular to the mid/reference-plane remain straight in

deformation. In vector notation
U =Uy+6yxNE, =ly + Ny Where @y =0yx&, =
_ . 0. L L.
VU = (VO + € a—)u = VOUO +ehmg + nVOa)O =&+ NK
n
where the strain measures of plate € =Vl +€,ap and x =Vyay.

Assuming symmetry of stress 5\/\&','”t =—0 :(Vou),. Virtual work density of the plate model

IS obtained by integrating the virtual work density over the small dimension (dV = dndA)

g ] efoom, (] (o
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T (= -
: O 1

switt =1L "L ana 1 F =j& dn. €
k). (M M n

Virtual work expression of external forces takes into account volume forces and surface
forces acting on the body (dV =dndA and dA = dnds).
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T (= -
ou 11
5w§§={5~0} {5} where {I\Eﬁ}zj t{n}dn. €«
20 \1 Vi

In the derivation, surface forces acting on the top and bottom surfaces of the plate have been

omitted for simplicity (they may contribute to b and C).
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RESULTANT DEFINITIONS

Stress and external force resultants are integrals over the thickness (&, = 6, x &, ). Stress

resultant definition gives the constitutive equations:

= 1 1 n |z c K C: c
E:jo“- d”:_[ Edn: " b= " C00
M n n n2 K C B

b -1
{ }zj f { }dn, external force and moment per unit area

At

{ E } :j f{l}dn. external force and moment per unit length
M n

Elasticity dyad E is assumed to satisfy the minor and major symmetries and condition

6.8, : E =0, which implies that the kinetic assumption o, =0 is satisfied ‘a priori’.
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4.6 KIRCHHOFF PLATE EQUATIONS

Kirchhoff plate model equilibrium and constitutive equations can be deduced from the
Reissner-Mindlin ones. However, the somewhat tricky boundary conditions require a more

careful consideration starting from the virtual work expression:

V()‘VO‘M +bn =0 in Q

My —M,=0 or Z—W+QS=O on oQ
n
0
Qn—9+g(Mns—Ms):O or w—w=0 on 0Q.

In the model, shear stress resultant is a constraint force to be solved from the moment

«>

equilibrium equation Q= V- M and constitutive equation for the moment resultant.
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In the Kirchhoff model, straight line segments normal to the mid/reference-plane remain

line segments and perpendicular to the mid-plane so that Vow+ap =0 (Kirchhoff

constraint). After elimination of the rotation components and second integration by parts,

the Reissner-Mindlin virtual work expression takes the form
OW = 'Q [(Vo-F+Db)-80—(Vy-M—&,-F)-Voow]dA+

[(-A-F+E)-60—(-A-M+M)-Voow)ds <

.aQ

OW = 'Q [(Vo-F+Db)-SU+Vy-(Vo-M -6, -F)ow]dA+

)-Voow—ii-(Vg-M —&, - F)ow]ds.

1<

| S [(-n-F+E)-oUu—-(-n-M +

The thin-slab and bending modes can be separated by writing oly = oV + OWE,,. Omitting

the thin slab mode (Q =V -M)
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oW ZIQ (V()VOM +bn)5WdA+

[o, (1-Q+Q)éwds— [ (-fi-M +M)-(Vosw)ds.

As only w and its normal derivative ow/on can be varied independently on 6Q, some

additional manipulations are needed before application of the fundamental lemma of

variation calculus. Using division

_OW _OW
Vow =N +S .
on 0S

where ii and S =€, xN are the unit outward normal and tangential vectors to the boundary,

integration by parts in the boundary term containing ow/ os with respect to s gives

SW :jQ (Vo VoM +by)owdA-3"  [-Mps+ M Jsw+
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0 ow
Jopy [Qn+Q+ == (~Mps + Mo)lowds = | (-Mpy +M )5 =205,

Integration by parts is over a closed one-dimensional domain starting and ending at the same
point having opposite unit outward normal (£1). In the expression, [ ] denotes jump and I1
IS the set of points where the jump takes place (the usual integration by parts assumes
continuity. A more generic form for piecewise continuity contains jump terms). The last
term vanishes if the quantity inside the jump brackets is continuous or ow=0 on €. In
what follows we assume so to avoid further discussions about conditions at corners etc.

when deflection w is not specified. Arranging the terms gives

oW =[_ (Vo-Vo-M +by)owdQ+

0 ow
Jooy [Qn+Q+ == (~Mps + Mo)lowds = [ | (-Mpy +M )52 ds.
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Principle of virtual work and the fundamental lemma of variation calculus give

V()‘VO‘M +bn =0 In Q,

oW

My —M, =0 or a_+QS:0 on oQ,
n
0
Qn_Q+a_(|\/|nS_|\_/|S):o or w—w=0 on 0Q.
= 0S
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5.7 APPROXIMATE SOLUTIONS

Principle of virtual work can be used to find approximate series solutions to plate equations.
An approximation satisfying the essential boundary conditions “a priori’ is just substituted

Into the virtual work expression by considering the coefficient of the terms of the series as

the unknowns. For the plate model

_, ~ - T < = _ o
é\/\/int _ _J-Q 5{V0UVO +_>ena)0} : é\ C :{V()UO +en0)0}dA’
0% ¢ |C

_NT (- N
ou ou F
éWethj oL b dA + 0L =g,
Q oay) |C A |oap) (M
Various series solution in literature and the finite element method are just particular cases

of this theme.
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Assuming that é =0, the thin slab and bending modes of the plate model disconnect and

one may often consider the modes separately. Virtual work expression for the bending
mode (Kirchhoff plate model) simplifies to

-
>

oW :—_[Q VoVoWw: B:VOVOWdAJr_[Q owbdA.

When written in the Cartesian (X, y,n) coordinate system

T .

(o%5w Pw

OX° ] 1] ox?
1 0
2 2
W= - g ‘SZW . Dlv 1 0 [ a_\;v dA+ [ SwibydA.

a;/ 0 0 2(1-v) 6y2
0 OW - . 0°W
OXOY | | Oxoy
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EXAMPLE 5.6 Consider pure bending of a rectangle Kirchhoff plate 2 =(0,L)x(0,H).
] . . . o0 o0 i l ., l . .
Derive the series solution w(x,y) =" ijl w;j sin(iz I_)sm(yz ¥ ) by considering
the coefficients w;j as the unknowns of the virtual work expression. Thickness t, Young’s

modulus E, and Poisson’s ratio v, and distributed load b in direction of z —axis are

constants.

Answer w;; _16%3/[(—) ( ) ] I, je{1,3,5,...}, w;j =0 otherwise.
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When the series approximation is substituted there, the virtual work expression becomes a
variational expression for the unknown coefficients. Using then orthogonality of the sines
and cosines on Q=(0,L)x(0,H), virtual work expressions of the internal and external

forces boil down to
ow'™ :_Zizl ijl 5WijDT[(T) +(F) 1" wij,
W =3 3 swyty, where by = [~ [ b(x,y)sin(izr~)sin(jz2-)dxd
T Lz £aj= O i~ o Jo Y [ )sintz - )axdy.
The fundamental lemma of variation calculus implies that (here b(X, y) =b = pgt)

ijr?

LH _ i j LH . .
Wij = b /[DT[(%)ZJF(JH_;Z)Z]Z}’ where by = 4b— 1, | e{l3,5,..}. €
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