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2nd part: molecular modelling

Chapters 6.5.-6.9



Revision: Potential energy surface

• Defined by force-field for each molecule or 
molecule system

• Each point represents a molecular conformation



From molecular conformations to 
measurable averages

• We have: Potential energy 
surface

• We need: A measurable 
quantity

• Obtaining the measurable
quantity
– Molecular dynamics: 

deterministic sampling

– Monte Carlo: stochastic sampling



• Potential energy functional E (function of 
nuclei positions) -> Force on each nuclei

Revision: 
Basics of molecular dynamics

time

Force for each particle calculated at discrete time intervals
Particle positions updated assuming particle moves with 
this force (acceleration) in the direction of force for 
the entire (short) time interval
New forces calculated with updated positions
loop-as-long-as-wanted (typically as long as possible)
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Molecular dynamics in brief: sequence 
of static images

time

t0 t0+dt  t0+2dt    ...



Molecular dynamics 

• Thermodynamic quantities, conformation 
properties as ensemble average using 
numerical integration

• M number of time steps
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From quantum mechanics to 
molecular mechanics

• Many molecular systems in chemistry unfortunately too large 
to be considered by quantum mechanics

• Force-field methods (molecular mechanics) ignore electronic 
motion and calculate the energy of the system as a function 
of nuclei positions (molecular subunit positions in coarse-
grained force-fields)
– Enables treating large number of atoms (up to ~106-107)

– Looses most electron based characteristics (conductivity, i.e., band-
gaps, most often also reaction kinetics*, all chemical reactions* and 
charge re-distribution*) 

* Typically. That is, some specific force-fields are designed to reproduce also reaction 
barriers and limited reactions (typically bond-order type advanced force fields) and some 
enable charge re-distribution (polarization) to some extent



Brief glimpse on where F comes from: Typical representation of a 
force-field (Potential energy surface)

Dialanine peptide in implicit (continuum) solvent



Next: How to get to the sequence of static
images from a potential energy (force-field)

time

t0 t0+dt  t0+2dt    ...



Molecular dynamics

• Ԧ𝐹 = 𝑚 Ԧ𝑎

•
𝑑2𝑥
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• Discrete potentials, constant force models
– Analytical calculation until next collision, relatively simple

• Identify next collision
• Calculate positions at next collision
• Determine new velocities after collision (conservation of momentum)
• Loop

• Continuous potentials
– Discrete stepwise integration (finite difference)
– Attention here!

time

t0 t0+dt  t0+2dt    ...



Finite difference methods: 
Molecular dynamics of continuous potentials

• Basis of all algorithms: Taylor’s series

𝑟(𝑡 + 𝛿𝑡) = 𝑟(𝑡)+ 𝛿𝑡 v(t)+
1

2
𝛿𝑡2a(t)+

1
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𝛿𝑡3b(t)+

1
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𝛿𝑡4 c(t)+…

𝑣(𝑡 + 𝛿𝑡) = 𝑣(𝑡)+ 𝛿𝑡 a(t)+
1

2
𝛿𝑡2b(t)+

1

6
𝛿𝑡3 c(t)+...

a(𝑡 + 𝛿𝑡) = 𝑎(𝑡)+ 𝛿𝑡 b(t)+
1

2
𝛿𝑡2 c(t)+…

b(𝑡 + 𝛿𝑡) = 𝑏(𝑡)+ 𝛿𝑡 c(t)+…

time

t0 t0+dt  t0+2dt    ...



Molecular dynamics integration 
algorithm should be

• Fast

• Use little memory

• Allow a long time step dt

• Reproduce the correct path (note: never possible)

• Conserve energy (&reversible in time)

• Be easy to implement

• Contain only one force evaluation/time step

time

t0 t0+dt  t0+2dt    ...



Verlet algorithm: Taylor series 
developed at two different times

𝑟 𝑡 + 𝛿𝑡 = 𝑟 𝑡 + 𝛿𝑡 𝑣 𝑡 +
1

2
𝛿𝑡2𝑎 𝑡

𝑟 𝑡 − 𝛿𝑡 = 𝑟 𝑡 − 𝛿𝑡 𝑣 𝑡 +
1

2
𝛿𝑡2𝑎(𝑡)

𝑟 𝑡 + 𝛿𝑡 = 2𝑟 𝑡 − 𝑟 𝑡 − 𝛿𝑡 + 𝛿𝑡2𝑎 𝑡

time

t0 t0+dt  t0+2dt    ...



𝑟 𝑡 + 𝛿𝑡 = 2𝑟 𝑡 − 𝑟 𝑡 − 𝛿𝑡 + 𝛿𝑡2𝑎 𝑡

Disadvantages: needs 2 sets of positions (also at 
t=0), acceleration term much smaller than position 
terms (loss of precisision)

Velocities

v(t)= 𝑟 𝑡 + 𝛿𝑡 − 𝑟(𝑡 − 𝛿𝑡) /2𝛿𝑡

v(t+
1

2
𝛿𝑡)= 𝑟 𝑡 + 𝛿𝑡 − 𝑟(𝑡) /𝛿𝑡

disadvantage: velocities ½ step off from positions

Verlet algorithm: Taylor series 
developed at two different times



𝑟 𝑡 + 𝛿𝑡 = 𝑟 𝑡 + 𝛿𝑡 𝑣 𝑡 +
1

2
𝛿𝑡

v(t+
1

2
𝛿𝑡)= v(t−

1

2
𝛿𝑡) +𝛿𝑡𝑎 𝑡

Now, velocities explicitly present but ½ time step off from 
positions! Kinetic energy / temperature off by ½ time step.

No summation of small dt2 terms ☺

Verlet leap-frog algorithm: Positions and 
velocities leap by ½ step over each other

M.P. Allen and D.J. Tildesley, ”Computer simulations of Liquids”, Oxford Science Publications  (1987)



Velocity Verlet: positions, velocities 
and accelerations at the same moment

1

2

M.P. Allen and D.J. Tildesley, ”Computer simulations of Liquids”, Oxford Science Publications  (1987)



M.P. Allen and D.J. Tildesley, ”Computer simulations of Liquids”, 
Oxford Science Publications  (1987)

Comparison of the Verlet algorithms



Revision: Molecular dynamics 
integration algorithm should be

• Fast

• Use little memory

• Allow a long time step dt

• Reproduce the correct path (note: never possible)

• Conserve energy (&reversible in time)

• Be easy to implement

• Contain only one force evaluation/time step

time

t0 t0+dt  t0+2dt    ...



Which integration algorithm is most 
appropriate?

• Computational 
expense versus time 
step length

• Energy conservation: 
What is the drift?

– Short time steps: 
predictor-corrector

– Longer time steps: 
Verlet algorithms

300 Cu atoms at 300K

Figure: http://www.physics.helsinki.fi/courses/s/atomistiset/lecturenotes/lecture04.pdf



Choosing a time step

Too short! Too long!
☺

Typical time steps in atomistic simulations
Atoms 10fs
Rigid molecules 5fs
Flexible molecules 2fs
Flexible molecules, flexible bonds 0.5-1fs



Energy drift: effect of time step length

http://dx.doi.org/10.1590/S0103-97332004000300009



Molecular dynamics in practise

• Next: things to consider



Molecular dynamics in practice: 
Computational efficiency

• System size: How large?

• Simulation box

– Boundary conditions, simulation box shape

• Cut-off schemes

– Do we need to calculate every single particle 
interaction with all the other particles? 

– If not, how to define which?

– Cut-off errors



Computational efficiency: simulation 
box and simulation box size

• Typically: periodic boundary 
conditions

• Small is good for computational 
efficiency

• BUT: Box must large enough 
that the system properties are 
not affected by size
– Finite size effects
– Not always achievable!!!

• Rule of thumb: Molecule cannot 
see its own influence as image 
over periodic boundary



Computational efficiency: simulation 
box size

http://mathworld.wolfram.com/Space-FillingPolyhedron.html

Cube vs.
Rhombic dodecahedron:

Consider a solvation 
simulation of a spherical 
molecule which cannot see 
(effectively) its own image 
through the periodic box 
images: Cube contains 
approx 30% more water then 
rhombic dodecahedron for 
same solute molecule 
minimum image distance!



Revision: Boundary conditions in 
simulations (simulation box size)

http://mathworld.wolfram.com/Space-FillingPolyhedron.html

Commonly used cells:
Cube
Truncated octahedron
Hexagonal prism
Rhombic dodecahedron



Minimum image convention of 
periodic boundary conditions 

• Particle sees at most just 
one image every atom in 
the system (does not see 
itself)

• Energy or force 
calculated to closest 
image

• Typically interaction cut-
off radius involved

Fig: http://www.cs.utah.edu/~pitcher/Team10/userman/



Cut-off schemes in calculating 
interactions

• Truncating the potential and 
neighbor lists
– Bonded interactions have limited 

number of particles involved and 
scale as O(N) (N number of 
particles)

– Non-bonded (in principle) 
interactions involve all 
combinations of N particles in an 
N particle system. Scales as 
O(N2). PROBLEM!



Let’s take a look at Lennard-Jones 
potential: Decays as r-6
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Cut-off schemes in calculating 
interactions

• Minimum image convention: at max 
½ of smallest box side

• Lennard-Jones: 2.5s corresponds to 
1% error

• Coulombic interactions: any kind of 
cut-off has been shown to cause 
artifacts: Long range electrostatics 
such as PME of multipole expansions 
preferred, reaction field type 
methods use ~1nm switch cut-off

• More about long-range electrostatics 
later



Fine-tuning the truncation scheme

• Typically  just cut-off, but 
discontinuity in energy / 
force may be problem

• To remove discontinuity 
energy function may be
– shifted to zero at cut-off 
– switched to zero at cut-off 

(switching function)

• To remove force 
discontinuity, the 
derivative values may be 
modified at cut-off region



Fine-tuning the truncation scheme

• Potential shifted to zero at cut-off 
– v’(r)=v(r)-v(rcut), r<rcut

– v’(r)=0, r>rcut

– Does not affect force 

• Force has discontinuity at cut-off: drop from finite 
value to zero
– Force discontinuity can be avoided by setting derivative 

zero at cut-off

– v’(r)=v(r)-v(rcut)-
𝑑𝑣(𝑟)

𝑑𝑟 r=rcut 𝑟 − 𝑟𝑐𝑢𝑡 , r<rcut

– v’(r)=0, r>rcut

– May be complicated to implement in many body 
potentials



Fine-tuning the truncation scheme
Lennard-Jones as example of shifted potential
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Fine-tuning the truncation scheme

• Potential switched to zero either over r< rcut or  
over a short region before rcut (switching function). 
– Switching function v’(r)=v(r)S(r), r<rcut

– v’(r)=0, r>rcut

– S(r=0)= 1  S(rcut)=0

– Affects force 

• Preferentially 1st and 2nd derivative values at onset 
of switching and at rcut zero!! (No “jumps” in force)

• Correcting for switching function “jumps” critical in 
reactive force-fields



Computational efficiency: How to define which 
particles are interacting if there is a cut-off?

• If we need to calculate distances to all the particles (minimum image 
convention), the computational effort is almost as large as calculating all 
the energies without cut-off

• Most neighbors stay same on consequent steps

• How does one define, which particles are within cut-off distance of each 
particle?

?



Common solution: Verlet neighbor list

• For each particle i, a list of all particles j 
within cut-off distance rcut + neighbor 
list skin thickness distance rm

– The list is updated only every M time 
steps

– M and rm-rcut are chosen such that

• rm-rcut>Mvdt, where v is a typical atom 
velocity and dt the time step

• Update interval M can be 1) constant 
interval (simplest),  2) coupled to 
average v (better) or 3) coupled to 
maximum displacement of particles 
kept track with (best)



• Construction with 1 array

Verlet neighbor list: version 1

4 42 3 63 1 3 4



• Construction with 1 array

Verlet neighbor list: version 1

4 42 3 63 1 3 4

Example: 64 atom system, each atom has 4 neighbors



• Construction with 1 array

• Note: Course book uses 2 
arrays for the same algorithm

Verlet neighbor list: version 1



• Construction with 1 pointer list (head) and 1 
array (list)

Verlet neighbor list: version 2

P( head) L (List)

1 8 0

2 10 0

3 0

4 3

5 0

6 4

7 5

8 7

9 6

10 9

Particle 1 has particles 8, 7, 
and 5 as neighbors.
Which particles are 
neighbors of particle 2?



• Construction with 1 pointer list (head) and 1 
array (list)

Verlet neighbor list: version 2

P( head) L (List)

1 8 0

2 10 0

3 0

4 3

5 0

6 4

7 5

8 7

9 6

10 9



• Construction with 1 pointer list (head) and 1 
array (list)

Verlet neighbor list: version 2

P( head) L (List)

1 8 0

2 10 0

3 0

4 3

5 0

6 4

7 5

8 7

9 6

10 9

Particle 1 has particles 8, 7, 
5, and 1 as neighbors.
Particle 2 has particles 10, 9, 
6, 4, and 3 as neighbors



Computational efficiency: all pairs 
versus neighbor lists

Neighbor listsAll pair method Cell subdivision

Limiting numbers of neighbors can be done either with 
neighbor lists or cell subdivision
Cell subdivision follows similar Verlet construction



Cut-offs

• Same neighbor list commonly used for different 
interactions (van der Waals cut-off, electrostatics real 
space cut-off,…)

• Water dimer



Estimating errors in simulations

• Same set of initial conditions -> same results

• But there is both systematic & statistical error
– Simulation model

– Algorithm

– Time steps, truncation, shifts & algorithm 
modifications

– Rounding error (numerical error)

• Even if all systematic error is eliminated, 
statistical error remains!!!



Estimating errors in simulations

• Standard deviation and method of blocks



Electrostatics

• Computationally, electrostatics poses a major 
challenge 

– long-ranged and decays as 1/r

– In general, we define a long-range interaction as 
one for which V (r) ∼ 1/ra, where a < d, and d is 
the dimension of space

• Cut-off, reaction-field, Ewald-type methods, 
multipole expansions, …



Effect of truncating electrostatic interactions in 
lipid bilayer: radial distribution function

M. Patra et al., Biophys. J., 84:3636-3645, 2003

Bare truncation of Coulomb interactions 
is likely to cause major error 



Reaction field electrostatics

• Explicit electrostatics with r<rcut. 

• For r > rcut the system is treated on a mean-
field level and is thus completely described by 
its dielectric constant e . 



Ewald summation

• Ewald converted 1927 the slowly, 
conditionally convergent sum for the Coulomb 
potential in infinite lattice into two sums that 
converge rapidly and absolutely, one in real 
space another in reciprocal space

1

𝑟
=
𝑓(𝑟)

𝑟
+
1 − 𝑓(𝑟)

𝑟



Ewald sum: periodicity



Ewald sum

• UEwald=Ur+Um+U0

– Ur Real space sum

– Um Reciprocal space sum

– U0 Constant term

A.Y. Toukmaji, J.A. Board Jr./Computer Physics Communications 95 (1996) 73-92



counterion

polyelectrolyte

Ewald summation convergence: Example

Convergence 

Region (plateau)



Electrostatics

• Computationally, electrostatics poses a major 
challenge 

– long-ranged and decays as 1/r

– In general, we define a long-range interaction as 
one for which V (r) ∼ 1/ra, where a < d, and d is 
the dimension of space

• Cut-off, reaction-field, Ewald-type methods, 
multipole expansions, …



Dimensionless units

• Advantages

– numerical values ~1, instead of typically very small 
values associated with atomic scale

– simplification of equations of motion (absorption 
of parameters defining the model into units)

– possibility of scaling results of single simulation for 
a whole class of systems described by same model



Dimensionless units
Example: Lennard-Jones 12-6
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Initial velocities for MD simulations

• Random initial velocities such that total 
momentum vanishes average conforms to 
desired temperature

• Initial distribution of velocity components may 
be

– Uniform between –vmin and +vmax

– Gaussian:



Molecular dynamics in brief: sequence 
of static images



Note: Average may not be 
representative



Example: Sup35 protein configurations 
and periodicity



Movies for visualizing molecular 
modelling

• Materials simulations (metals, surfaces, shear 
flows, liquids, some molecular materials...)

– http://lammps.sandia.gov/movies.html

• Biomolecules

– http://www.ks.uiuc.edu/Gallery/Movies/

http://lammps.sandia.gov/movies.html
http://www.ks.uiuc.edu/Gallery/Movies/


Example: Sodium dodecyl sulfate

A B C


