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2nd part: molecular modelling

Book Chapters 8.1-8.13

Monte Carlo simulations



From potential energy surface 
to molecular modelling and simulations

• Global minimum energy configuration

• T>0 also higher internal energies

• Ergodic sampling of the potential                         
energy landscape

• Typical methodology:
– Minimum energy configuration determination (no 

dynamics, just potential energy surface)

– Molecular dynamics (deterministic dynamic sampling of 
the potential energy surface)

– Monte Carlo (stochastic sampling of the potential energy 
surface)



Monte Carlo basics

• Potential energy functional E (function of nuclei 
positions) -> probability of configuration 

• Configurations sampled with some ”random” 
algorithm (typically random number generator 
based trial moves) and new configuration 
accepted based on its energy (Metropolis Monte 
Carlo)

– high energy configurations accepted with low 
probability, low energy configurations with high

– Boltzmann distribution

– Average over a large set provides physically 
measurable property

– No deterministic dynamics
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Monte Carlo basics

• Potential energy functional E (function of nuclei 
positions) -> probability of configuration 

• Configurations sampled with some ”random” 
algorithm (typically random number generator 
based trial moves) and new configuration 
accepted based on its energy (Metropolis Monte 
Carlo)

– high energy configurations accepted with low 
probability, low energy configurations with high

– Boltzmann distribution
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Energy E1

Energy E2Let’s take a step back to more general 
“Monte Carlo” and “Monte Carlo simulations”



Monte Carlo



Monte Carlo (in science)

▪ Wide sense: A simulation which uses random 
numbers 

▪ Named after: Monte Carlo Casino (randomness 
in games) 

▪ Name dates to ~1940s
▪ Pioneers: John von Neumann, Stanislaw Ulam

and Nicholas Metropolis working on Manhattan 
Project (nuclear weapon projects) in the Los 
Alamos National Laboratory.

▪ Also called: stochastic simulations



Monte Carlo simulations

• Basic approach (general)

1. Define what the inputs can be (range of inputs)

2. Generate inputs in a random way from the range 
of possible inputs (stochastic choice of input)

3. Perform a computation (deterministically) based 
on the input

4. Collect the results and aggregate them



History: Buffons needle(Georges-Louis Leclerc, 
Comte de Buffon:1707 - 1788) 

• Suppose we have a floor made of parallel 
strips of wood, each the same width d, and we 
drop a needle onto the floor. What is the 
probability that the needle will lie across a line 
between two strips?

d

http://en.wikipedia.org/wiki/Buffon%27s_needle
https://mste.illinois.edu/activity/buffon/
http://www.youtube.com/watch?v=kazgQXaeOHk (see comments!)

https://mste.illinois.edu/activity/buffon/
http://www.youtube.com/watch?v=kazgQXaeOHk


Example: Pitfall of stochastic 
simulations 1

http://en.wikipedia.org/wiki/Buffon%27s_needle



Example: Pitfall of stochastic 
simulations 2

http://en.wikipedia.org/wiki/Buffon%27s_needle



Example: Pitfall of stochastic 
simulations 3

http://en.wikipedia.org/wiki/Buffon%27s_needle



Example: Pitfall of stochastic 
simulations: Summary

• This illustrates a potential pitfall in Monte Carlo simulations

• More simply: If the answer you want to get is known, and then 
do Monte Carlo simulation and look at the intermediate 
answer after every step, your result will behave something like 
the picture below

• If you plan the simulation or stop it when you happen to cross 
the ’right answer’ line, you will get the right answer! But doing 
this is of course utterly wrong.

Issue with aiming for an 
answer in stochastic 
simulations!



Pitfalls of stochastic simulations

• In practice, the answer is seldom known in 
advance (why would one simulate if one 
knows the answer). But a 

• More dangerous (and common) pitfall is that 
one wishes for a low, or high, value or a value 
matching with experiments or other data, and 
stops the simulation at a value.

• Always decide in advance how many Monte 
Carlo steps to do!



From Buffon’s needle to random 
numbers and Monte Carlo simulations
• After Buffon’s needle, random numbers have been 

used in statistics
– Wide use began in 1940’s

• Origins of Monte Carlo simulations obscured because 
part of Manhattan project

• Two early publications
– Note on census-taking in Monte Carlo calculations E. Fermi 

and R.D. Richtmyer 1948. A declassified report by Enrico 
Fermi. From the Los Alamos Archive.

– The Monte Carlo Method N. Metropolis and S. Ulam 1949 
Journal of the American Statistical Association, 44, 335 
(1949)



Monte Carlo simulations

• Next

– Monte Carlo integration

– Metropolis Monte Carlo 

• Molecular simulations algorithm



Monte Carlo Integration

• numerical integration using random numbers

• algorithms for the approximate evaluation of 
definite integrals (usually multidimensional 
ones)

Analytical integration Numerical finite difference 
integration (here: rectangle rule)

Monte Carlo integration



Monte Carlo integration: 

• Consider a circle in a unit square. Given that 
the circle and the square have a ratio of areas 
that is π/4, the value of π can be 
approximated using a Monte Carlo method
– Draw a square on the ground, then inscribe a 

circle within it
– Uniformly scatter some objects of uniform 

size (grains of rice or sand) over the square
– Count the number of objects inside the circle 

and the total number of objects.
– The ratio of the two counts is an estimate of 

the ratio of the two areas, which is π/4. 
Multiply the result by 4 to estimate π.

Example of calculating p: http://en.wikipedia.org/wiki/File:Pi_30K.gif



Monte Carlo integration: When to use

• For N dimensional integral mN function evaluations, 
where m is number of points needed in each dimension

• Finite difference methods volume

• Compare: Stochastic sampling estimate

• with increasing numbers of dimensions M, doing the M 
sums becomes increasingly cumbersome, and eventually 
using the Monte Carlo approach with only one sum 
needed will be simpler





Basics of Monte Carlo simulations, Kai Nordlund 2006



Monte Carlo integration: continuation

• Traditionally evaluation points distributed 
uniformly over the integration region

• Importance or weighted sampling possible -> 
faster convergence



Statistical thermodynamics basis of 
Metropolis Monte Carlo algoritm

• All microstates are equally probable
– Consider: dice

• Microstates can correspond to same outcome 
(multiplicity of a state )

• Higher multiplicity - > higher probability of 
getting that outcome 
– Probability of getting an outcome i, 𝑝𝑖 , depends on 

how many different ways that outcome can be 
achieved

– Consider:
• 3 dice and getting 1,1,1 vs 1,3,5



Statistical thermodynamics basis of 
Metropolis Monte Carlo algoritm

• Expectation value of a measurable quantity A 

𝐴 =෍

𝑖

𝑝𝑖𝐴𝑖

• Probability distribution that maximizes 
entropy for molecular conformations (states) i
is the Boltzmann distribution

𝑝𝑖=
𝑒 −𝐸𝑖/𝑘𝐵𝑇

σ𝑗 𝑒
−𝐸𝑗/𝑘𝐵𝑇



Statistical thermodynamics basis of 
Metropolis Monte Carlo algoritm

• Boltzmann distribution: 𝑝𝑖=
𝑒 −𝐸𝑖/𝑘𝐵𝑇

σ𝑗 𝑒
−𝐸𝑗/𝑘𝐵𝑇

• 𝐸𝑖 , 𝐸𝑗 energies of state i

• 𝑁𝑖 Number of particles in state i

•
𝑁𝑖

𝑁
= 𝑝𝑖 Fraction of particles in state i, 

probability of state i



Metropolis Monte Carlo

Computational approach (i.e., algorithm) for generating a 
set of N configurations 𝑋𝑖, 𝑋𝑗, 𝑋𝑘 , … of the system such 
that lim

𝑁→∞

𝑁𝑖

𝑁
= 𝑝𝑖 for all 𝑋𝑖, 𝑋𝑗, 𝑋𝑘 , … where  𝑝𝑖 follow a 

given probability distribution.

In Boltzmann distribution 𝑝𝑖 =
𝑒 −𝐸𝑖/𝑘𝐵𝑇

σ𝑗 𝑒
−𝐸𝑗/𝑘𝐵𝑇

𝑁𝑖 is the number of particles in state 𝑋𝑖 (configurations).
Outcoming configurations match 𝑝𝑖 in their observation 
frequency



Metropolis Monte Carlo Algorithm

1) Pick any configuration 𝑋𝑛
2) Pick a trial configuration 𝑋𝑡
3) Compute the acceptance ratio based on 
probabilities of the configurations 𝑅 =

𝑝 𝑋𝑡

𝑝 𝑋𝑛
4) Pick a random number u with value between 
0 and 1. Make 𝑋𝑛+1 = 𝑋𝑡 if 𝑢 ≤ 𝑅
and otherwise 𝑋𝑛+1 = 𝑋𝑛
5) Goto 2 replacing 𝑋𝑛by 𝑋𝑛+1
Repeat N times, where N is a sufficiently large 
number 

• Expectation value of a measurable 
quantity A 

𝐴 = σ𝑖 𝑝𝑖𝐴𝑖=σ
𝐴𝑋𝑛
𝑁



Metropolis Monte Carlo Algorithm

1) Pick any configuration 𝑋𝑛
2) Pick a trial configuration 𝑋𝑡
3) Compute the acceptance ratio based on 
probabilities of the configurations 𝑅 =

𝑝 𝑋𝑡

𝑝 𝑋𝑛
4) Pick a random number u with value between 
0 and 1. Make 𝑋𝑛+1 = 𝑋𝑡 if 𝑢 ≤ 𝑅
and otherwise 𝑋𝑛+1 = 𝑋𝑛
5) Goto 2 replacing 𝑋𝑛by 𝑋𝑛+1
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number 

• Expectation value of a measurable 
quantity A 

𝐴 = σ𝑖 𝑝𝑖𝐴𝑖=σ
𝐴𝑋𝑛
𝑁

Because 𝐴𝑋𝑛 follow 𝑝𝑖 in their frequency, 

𝑝𝑖 is the probability of state i 

𝑒 −∆𝐸/𝑘𝐵𝑇

𝐸𝑡< 𝐸𝑛 𝐸𝑡> 𝐸𝑛

𝑝1u1

𝑢2

𝑢1



Metropolis Monte Carlo compares 
energies, no forces calculated

Et(Xt)

En(Xn)

Xn Xt

Acceptance ratio 𝑅 =
𝑝 𝑋𝑡

𝑝 𝑋𝑛

In Boltzmann distribution

𝑝 𝑋𝑖 = 𝑝 𝐸𝑖 =
𝑒 −𝐸𝑖/𝑘𝐵𝑇

σ𝑗 𝑒
−𝐸𝑗/𝑘𝐵𝑇

𝑝 𝑋𝑡
𝑝 𝑋𝑛

=
𝑝 Et

𝑝 En
= 𝑒− Et−En /𝑘𝐵𝑇 = 𝑒−∆𝐸/𝑘𝐵𝑇

∆𝐸

𝑦 = 𝑒−∆𝐸/𝑘𝐵𝑇𝑠𝑚𝑎𝑙𝑙𝑒𝑟
𝑦

Probability of accepting state 
decreases fast with increasing ∆𝐸

𝑦 = 𝑒−∆𝐸/𝑘𝐵𝑇𝑙𝑎𝑟𝑔𝑒𝑟



Metropolis Monte Carlo on the 
macroion model in exercise

Et(Xt)

En(Xn)

Xn Xt

probability 𝑅 =
𝑝 𝑋𝑡

𝑝 𝑋𝑛

In Boltzmann distribution

𝑝 𝑋𝑖 = 𝑝 𝐸𝑖 =
𝑒 −𝐸𝑖/𝑘𝐵𝑇

σ𝑗 𝑒
−𝐸𝑗/𝑘𝐵𝑇

𝑝 𝑋𝑡
𝑝 𝑋𝑛

=
𝑝 Et

𝑝 En
= 𝑒− Et−En /𝑘𝐵𝑇 = 𝑒−∆𝐸/𝑘𝐵𝑇
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in random direction
A distance of Lmax



Research example: macroions in salt
PNAS November 7, 2017 114 (45) 11838-11843

In regime I, where the macroions have zero or low charge densities, their interaction is 
attractive due to depletion interactions mediated by the clustering of ions. In regime II, 
where the charge is sufficiently large, a repulsion that is stronger and longer range than the 
double-layer force predicted by the DLVO theory rises. In regime III, where the macroions 
have very high charge densities resulting in strong counterion condensation, a strong short-
range repulsion and a deep long-range attractive well rises. van der Waals interactions 
between macroions are not included in the model (purely electrostatics).



Metropolis Monte Carlo Algorithm

If configurations 𝑋𝑛 come from Metropolis 
algorithm (previous slide)

• Expectation value of a measurable quantity 

𝐴 = σ𝑖 𝑝𝑖𝐴𝑖=σ
𝐴𝑋𝑛
𝑁

Because 𝐴𝑋𝑛 follow 

𝑝𝑖 in their frequency
N configurations

Key to calculating a physical 
quantity from Metropolis 
algorithm based simulation



Metropolis Monte Carlo Algorithm

• Note that acceptance ratio (acceptance 
probability) of a configuration 𝑋𝑡 is

• 𝑃𝑋𝑛,𝑋𝑡 = ቐ
𝑅 =

𝑝 𝑋𝑡

𝑝 𝑋𝑛
, when 𝑝 𝑋𝑡 < 𝑝 𝑋𝑛

1, otherwise

• Most typical variable measuring the state of the 
system (and probability) is energy E in molecular 
simulations but this is not necessary



Metropolis Monte Carlo moves 

• Consequent states must 
be uncorrelated

• Trial move can be 
practically anything as 
long as it is reversible and 
probability of reverse 
action is equal
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Metropolis Monte Carlo moves 

• Common examples
– Pick a random atom, move 

a random distance shorter 
than Lmax in random 
direction

– Switch the positions of two 
randomly chosen particles

– Rotation of a randomly 
chosen molecule or atom 
pair (random angle)
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Monte Carlo

• Thermodynamic quantities, conformation 
properties as ensemble average using numerical 
integration, note density can be included by N 
(numerical integration over ensemble)

• M number of configurations

< 𝐴 >=
1

𝑀
෍

𝑖=1

𝑀

𝐴 𝒓𝑁

< 𝐴 >= නන𝑑𝒑𝑁𝑑𝒓𝑁𝐴 𝒑𝑁, 𝒓𝑁 𝜌 𝒑𝑁, 𝒓𝑁



Differences between molecular dynamics 
(MD) and Monte Carlo (MC)

• MD provides deterministic time dependence 
information

• MC has no temporal relationship between 
consequent configurations

• With MD possible to predict any future or past 
state knowing current state

• MC next state acceptance depends on only 
one prior state (prior state energy) 
(Metropolis algorithm)



Differences between molecular dynamics 
(MD) and Monte Carlo (MC)

• MD has kinetic energy explicitly present as 
velocities

• MC total energy in the potential energy 
function

• MD inherently in microcanonical (NVE) 
ensemble (without pressure or thermostat 
algorithmic corrections to ensemble)

• MC inherently in canonical (NVT) ensemble





Simulation model
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counterion

polyelectrolyte

Simulation model





R

counterion

polyelectrolyte

d0 polyelectrolyte

diameter

d ion diameter 

t polyelectrolyte charge/length
q ion charge

Simulation model
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Separation in lB

Ions: q = -2e

d = 0.5lb
Polyelectrolyte: t = e/lb

d0 = 0.25lb

➔ Ion coupling G = 3.3
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Like charge attraction:

Correlation among counterions

(Ions locate between polymers!)

Ions: q = -2e

d = 0.5lb
Polyelectrolyte: t = e/lb

d0 = 0.25lb

➔ G = 3.3





Monte Carlo in different ensembles

• Typically Monte Carlo (Metropolis) samples 
from NVT ensemble

• NPT ensemble: simulation box size must 
change

– Combine random displacements of particles with 
random box volume changes

– New volume

– When volume changes, in principle, interaction 
energy must be recalculated for the whole system



Monte Carlo in NPT
Simple potentials trick-of-trade for recalculating the energy 
when volume changes: Scaled coordinates
sij scaled coordinate;  sij = Lold rij Here Lennard-Jones

Change in the energy due to box size change:



Monte Carlo in NPT

• Long-range interactions and their treatment (cut-
offs, …) problematic in NPT

• Simple scaling does not work on molecules / 
interactions more complicated than distance-based

– Total energy must be recalculated with simulation box 
volume change: Computationally expensive

• Criterion for accepting or rejecting a new 
configuration



Grand Canonical Monte Carlo 
Simulations

• Key feature: Number of particles 
may change during simulation

• Three basic moves in Grand 
Canonical Monte Carlo 
simulation
– A particle is created (1)
– A particle is destroyed (2)
– A particle is displaced (regular 

Metropolis move) (3)

• Probability of creating a particle 
should be equal to particle 
being destroyed !



Grand Canonical Monte Carlo 
Simulations

• If D / C negative, move accepted, otherwise 

is calculated and compared with a random number 
(regular probability of acceptance comparison) 

To determine whether destruction move is accepted, calculate:

To determine whether creation move is accepted, calculate:

𝜇 = 𝑘𝑏𝑇𝑙𝑛Λ
3𝑧

Λ = ℎ2/2𝜋𝑚𝑘𝑏𝑇

 Chemical potential
L de Broglie wavelength
z activity 



Grand Canonical Monte Carlo 
simulations

• Creation / destruction steps in dense systems 
often fail due to large energy penalty of 
adding / removing one particle from the 
(dense) system

• Step-wise fading in / out of a particle

• Configurational bias Monte Carlo

• Example: 
http://terpconnect.umd.edu/~denesyuk/poly
mer_images.html



Monte Carlo simulations: vocabulary 1

• Metropolis Monte Carlo
– A simulation algorithm, central to which is the formula which determines 

whether a process should happen or not. Originally used for simulating atom 
systems in an NVT thermodynamic ensemble in physical sciences, but 
nowadays generalized to many other problems e.g. process design, process 
optimization, economics, biology, finance and business

• Markov Chain Monte Carlo, MCMC 
– A version of Metropolis Monte Carlo in which a sequence of points in some 

known distribution is generated.

• Simulated annealing
– The Metropolis MC idea generalized to optimization, i.e. finding minima or 

maxima in a system.
– Can be used in a very wide range of problems

• Thermodynamic Monte Carlo
– Monte Carlo when used to determine thermodynamic properties, usually of 

atomic systems

Adapted from: Basics of Monte Carlo simulations, Kai Nordlund 2006



Monte Carlo simulations: vocabulary 2

• Lattice Monte Carlo, LMC
– MC used on a lattice. Used to distinguish MC done on crystal lattices 

from those done in a random/amorphous medium

• Kinetic Monte Carlo, KMC
– MC used to simulate activated processes, i.e. processes which occur 

with an exponential probability e−Ea/kT , for example migration of 
defects in a solid. KMC can be done free of lattice (non-directional 
system), or on a lattice. In the latter case one could also talk about 
lattice kinetic MC.

• Variational MC, VMC & Diffusion MC, DMC
– These terms are nowadays used often to signify a variety of electronic 

structure calculations where MC techniques are used to obtain the 
ground state electron configuration (the terms are wider in principle). 
Sometimes not mentioned that one deals with electronic structure, 
which may lead to confusion ( “diffusion MC” obviously could mean 
many other things as well.

Adapted from: Basics of Monte Carlo simulations, Kai Nordlund 2006



Monte Carlo simulations: vocabulary 3

• Quantum Monte Carlo, QMC
– Used in many different contexts
– Electronic structure calculation methods VMC and 

DMC are often called QMC
– Quantum mechanical simulations of spin systems 

(which does not necessarily relate to electronic 
structure-determining calculations in any direct way) 
are also called QMC...

• Summary: One should define clearly which 
Monte Carlo method is used 



Monte Carlo simulations

• Next
• Advanced sampling methods

• Weighted importance sampling

• Stratification



Importance sampling

• One approach to improving the MC accuracy is 
reducing the variance s2 in the data.

• s2 for any non-constant data distribution goes 
towards some finite, non-zero value when N 
approaches infinity

• error goes to 0 with increasing N.

• MC error is proportional to s/sqrt(N) (more on 
this later)
– if variance s2 goes down, the error will also go down 

for the same N



Importance sampling

Most contribution to integral
From peak

Uniformly randomly 
distributed points 
between a and b 
mostly outside the peak

Importance sampling: transform f(x) into another, 
flatter function which is then Monte Carlo integrated. 
Required: back-transformation to give the original integral



Importance sampling: f(x)/g(x) flatter 
function than f(x)

f(x)/g(x) 
fairly flat function

Monte Carlo 
Integration



Importance sampling: f(x)/g(x) flatter 
function than f(x)

• This requires G-1

• Alternative: generate by 
any means random 
numbers xi

(g) distributed 
as g(x): f(x)/g(x) 

fairly flat function

Monte Carlo 
Integration



f(x)/g(x) 
fairly flat function

Importance sampling

• Reduces misses a lot

• Decreases variance

• -> decreases error for same 
N

• Practical consequences
– Computationally heavier

– Reduces the number of steps 
required to get close to right 
answer



f(x)-g(x) 
fairly flat function

Control variates method

• Same idea as with importance 
sampling (make the function flatter) 
but now with subtraction instead of 
division 

• Advantages to importance sampling

– g(x) can be zero or negative

– No need for g(x) distributed random 
numbers



Stratification sampling

• Importance sampling and control variates
methods are good ways to improve on MC 
integration, but require that the function form 
has to be known. However, often it is not

• Sampling of subregions (subpopulations) 
separately and independently


