CHEM-E4155
Computational Chemistry | (50p)
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Monte Carlo simulations



From potential energy surface
to molecular modelling and simulations

Global minimum energy configuration
T>0 also higher internal energies

Ergodic sampling of the potential
energy landscape

Typical methodology: ,

— Minimum energy configuration determination (no
dynamics, just potential energy surface)

— Molecular dynamics (deterministic dynamic sampling of
the potential energy surface)

— Monte Carlo (stochastic sampling of the potential energy
surface)




Monte Carlo basics

* Potential energy functional E (function of nuclei
positions) -> probability of configuration

* Configurations sampled with some “random”
algorithm (typically random number generator
based trial moves) and new configuration
accepted based on its energy (Metropolis Monte
Carlo)

— high energy configurations accepted with low
probability, low energy configurations with high

— Boltzmann distribution

— Average over a large set provides physically
measurable property

— No deterministic dynamics

Energy E2
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Monte Carlo

Monte Carlo (disambiguation)

From Wikipedia, the free encyclopedia

Monte Carlo is an administrative area of Monaco.

Monte Carlo or Montecarlo may also refer to:
Geography

+ Montecarlo, Tuscany, a town in ltaly

* Montecarlo (Misiones), a town in Argentina

+ Mante Carlo (Macau), a football club in Macau

¢ Monte Carlo Resort and Casino, a luxury hotel on the Las Vegas Stri
¢ Monte Carlo (San Marino), a mountain in San Marino

Special events

¢ Monte Carlo Rally, a rallying event organized by the Aufomobile Club
o Monte-Carlo Masters, a tennis tournament
s Circuit de Monaco, a street circuit laid out on the city streets of Mant

Transportation

¢ Chevrolet Monte Carlo, an American automobile built by Chevrolet
+ Lancia Mantecarlo, an Italian automaobile

+ Monte Carlo (racing car), an open-wheel racing car

¢ Monte Carlo (yacht), a motor yacht

s Monte Carlo stock, a style of rifle buttstock
Media

e \Monte Carlo (musical), an 1696 West End musical by Howard Talbot
s \Monte Carlo (1926 film)

s Monte Carlo (1930 film), a 1930 American film

s The Monte Carlo Story, a 1957 American film

o \Monte Carlo (2011 film), distributed by 20th Century Fox

¢ \Monte Carlo (song), a 2004 song by The Verve

s Maonte Carlo (solitaire), a solitaire card game

s \Monte Carlo (video game), a 1987 computer game

Science

s NMonte Carlo method, a class of computational algorithms

+ Monte Carlo integration, a method of numerical integration
¢ Monte Carlo option model, an option valuation model using Monte Carlo m
+ Maonte Carlo algorithm, a randomized algorithm

People

s Sophia Montecarlo (born 1986), former contestant on the reality show Bor
+ Maonte Carlo (composer) (born 1883), Danish-born Broadway composer an

See Also

« Monte Cristo (sandwich)



Monte Carlo (in science)

Wide sense: A simulation which uses random
numbers

Named after: Monte Carlo Casino (randomness
in games)

Name dates to ~1940s

Pioneers: John von Neumann, Stanislaw Ulam
and Nicholas Metropolis working on Manhattan
Project (nuclear weapon projects) in the Los
Alamos National Laboratory.

Also called: stochastic simulations



Monte Carlo simulations

e Basic approach (general)

1.
2.

Define what the inputs can be (range of inputs)

Generate inputs in a random way from the range
of possible inputs (stochastic choice of input)

Perform a computation (deterministically) based
on the input

Collect the results and aggregate them



History: Buffons needle(Georges-Louis Leclerc,
Comte de Buffon:1707 - 1788)

e Suppose we have a floor made of parallel
strips of wood, each the same width d, and we
drop a needle onto the floor. What is the

probability that the needle will lie across a line
between two strips?

21

d
Prir = — y/; \b

http://en.wikipedia.org/wiki/Buffon%27s_needle
https://mste.illinois.edu/activity/buffon/

http://www.youtube.com/watch?v=kazgQXaeOHk (see comments!)

—ip—



https://mste.illinois.edu/activity/buffon/
http://www.youtube.com/watch?v=kazgQXaeOHk

Example: Pitfall of stochastic
simulations 1

In 1901, Italian mathematician Mario Lazzarini performed the
Buffon's needle experiment. Tossing a needle 3408 times, he
obtained the well-known estimate 355/113 for 1T, which is a very
accurate value, differing from 1T by no more than 3x10”". This is
an impressive result, but is something of a cheat, as follows.

Lazzarini chose needles whose length was 5/6 of the width of the
strips of wood. In this case, the probability that the needles will
cross the lines is 5/31T. Thus if one were to drop n needles and

get x crossings, one would estimate 1T as

T =3/3 - n/x.
http://en.wikipedia.org/wiki/Buffon%27s_needle



Example: Pitfall of stochastic

simulations 2
T=5/3 - nix.

T Is very nearly 355/113; in fact, there is no better rational
approximation with fewer than 5 digits in the numerator and
denominator. So if one had n and x such that:

355/113 = 3/3 - nix
or equivalently,
x =113n/213

one would derive an unexpectedly accurate approximation to T,
simply because the fraction 355/113 happens to be so close to

the correct value. But this is easily arranged. To do this, one
http://en.wikipedia.org/wiki/Buffon%27s_needle



Example: Pitfall of stochastic
simulations 3

the correct value. But this is easily arranged. To do this, one
should pick n as a multiple of 213, because then 113n/213 is an

Integer; one then drops n needles, and hopes for exactly x =
113n/213 successes.

If one drops 213 needles and happens to get 113 successes, then
one can triumphantly report an estimate of 1T accurate to six
decimal places. If not, one can just do 213 more trials and hope
for a total of 226 successes; if not, just repeat as necessary.
Lazzarini performed 3408 = 213 - 16 trials, making it seem likely

that this is the strategy he used to obtain his "estimate”.
http://en.wikipedia.org/wiki/Buffon%27s_needle



Example: Pitfall of stochastic
simulations: Summary

This illustrates a potential pitfall in Monte Carlo simulations

More simply: If the answer you want to get is known, and then
do Monte Carlo simulation and look at the intermediate
answer after every step, your result will behave something like
the picture below

If you plan the simulation or stop it when you happen to cross
the 'right answer’ line, you will get the right answer! But doing
this is of course utterly wrong.

_Simulated answer

wear

Issue with aiming for an
answer in stochastic
simulations!

------------- e = 3 SN L 20 - Desired answer

Ans

Number of Monte Carlo steps



Pitfalls of stochastic simulations

* |n practice, the answer is seldom known in
advance (why would one simulate if one
knows the answer). But a

 More dangerous (and common) pitfall is that
one wishes for a low, or high, value or a value
matching with experiments or other data, and
stops the simulation at a value.

* Always decide in advance how many Monte
Carlo steps to do!



From Buffon’s needle to random
numbers and Monte Carlo simulations

e After Buffon’s needle, random numbers have been
used in statistics

— Wide use began in 1940’s

* Origins of Monte Carlo simulations obscured because
part of Manhattan project

* Two early publications

— Note on census-taking in Monte Carlo calculations E. Fermi
and R.D. Richtmyer 1948. A declassified report by Enrico
Fermi. From the Los Alamos Archive.

— The Monte Carlo Method N. Metropolis and S. Ulam 1949

Journal of the American Statistical Association, 44, 335
(1949)



Monte Carlo simulations

* Next

— Monte Carlo integration
— Metropolis Monte Carlo

* Molecular simulations algorithm



Monte Carlo Integration

* numerical integration using random numbers

e algorithms for the approximate evaluation of
definite integrals (usually multidimensional

ones)
AY
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integration (here: rectangle rule)



Monte Carlo integration:

 Consider a circle in a unit square. Given that
the circle and the square have a ratio of areas
that is /4, the value of it can be 1
approximated using a Monte Carlo method

— Draw a square on the ground, then inscribe a 05
circle within it

— Uniformly scatter some objects of uniform 0
size (grains of rice or sand) over the square

— Count the number of objects inside the circle 45
and the total number of objects.

— The ratio of the two counts is an estimate of
the ratio of the two areas, which is rt/4.
Multiply the result by 4 to estimate .

Example of calculating m: http://en.wikipedia.org/wiki/File:Pi_30K.gif



Monte Carlo integration: When to use

For N dimensional integral mN function evaluations,
where m is number of points needed in each dimension

N i (M) N1 Na Nt
Finite difference methods volume o) _t R SL SR S

]_J.__l. ”J.

(M) N

Compare: Stochastic sampling estimate o+ .} fo‘f

with increasing numbers of dimensions M, doing the M
sums becomes increasingly cumbersome, and eventually
using the Monte Carlo approach with only one sum
needed will be simpler



To illustrate this, | did the following test. | calculated the volume of a sphere in M dimensions with
direct numerical integration (using the midpoint method) and MC integration.

e The number of intervals was 20 in the numerical integration in each dimension, and the
number of attempts in the MC simulation was always 10°.

o This happened to give results of comparable, about ~ 0.5 % accuracy. | timed the result
simply with the Unix time command.

The results are as follows. The first column gives the number of dimensions M, the next two the
numerical execution time, the next two the MC results in the same way, and the last column the
correct answer (known analytically). The times are in seconds.

numerical MC
M time result time result Correct
2 0.00 3.1524 0.01 3.14356 3.1415
3 0.00 4.1737 0.07 4.1896 4.1887
4 0.00 4.9023 0.08 4.9330 4.9348
b 0.02 5.2381 0.10 5.2787 5.2637
6 0.30 5.1451 0.13 5.1748 5.1677
T 5.02 4.6704 0.156 4.7098 4.7247
8 89.9 3.9595 0.17 4.0479 4.0587
9 1320 3.3998 0.20 3.3191 3.2985

So we see that for M < 6 the numerical method is faster, but after that becomes terribly much
slower.

Basics of Monte Carlo simulations, Kai Nordlund 2006 [t] [ [Z] =] D] 12



The results are as follows. The first column gives the number of dimensions M, the next two the
numerical execution time, the next two the MC results in the same way, and the last column the
correct answer (known analytically). The times are in seconds.

numerical MC
M time result time result Correct
2 0.00 3.1524 0.01 3.1435 3.1415
3 0.00 4 1737 0.07 4.1896 4.1887
4 0.00 4.9023 0.08 4.9330 4.9348
5 0.02 5.2381 0.10 5.2787 5.2637
6 0.30 5.1451 0.13 5.1748 5.1677
T 5.02 4.6704 0.15 4.7098 4.7247
8 89.9 3.95956 0.17 4.0479 4 0687
9 1320 3.3998 0.20 3.3191 3.2985

So we see that for M < 6 the numerical method is faster, but after that becomes terribly much
slower.

What is most interesting is that the time required by the MC method is not rising almost
at all, even though the accuracy stays the same. This is what makes it so interesting for
high-dimensional integration!

12

Basics of Monte Carlo simulations, Kai Nordlund 2006



Monte Carlo integration: continuation

* Traditionally evaluation points distributed
uniformly over the integration region

* Importance or weighted sampling p055|ble ->
faster convergence ' _

057
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Statistical thermodynamics basis of
Metropolis Monte Carlo algoritm

» All microstates are equally probable By, (
— Consider: dice Ve -~

* Microstates can correspond to same outcome
(multiplicity of a state )

* Higher multiplicity - > higher probability of
getting that outcome

— Probability of getting an outcome j, p;, depends on

how many different ways that outcome can be
achieved

— Consider: e ) %
e 3 dice and getting 1,1,1 vs 1,3,5



Statistical thermodynamics basis of
Metropolis Monte Carlo algoritm

* Expectation value of a measurable quantity A

(4) = Z pid;

* Probability distribution that maximizes
entropy for molecular conformations (states) i

is the Boltzmann distribution
e (—Ei/kpT)

— Zj o(—Ej/kpT)

Di



Statistical thermodynamics basis of
Metropolis Monte Carlo algoritm
e(_Ei/kBT)

Z] e(_Ej/kBT)

Boltzmann distribution: p;=

E;, E; energies of state i

N; Number of particles in state i
N.

le p; Fraction of particles in state i,

probability of state i



Metropolis Monte Carlo

Computational approach (i.e., algorithm) for generating a
set of N configurations X;, X;, Xy, ... of the system such

that lim = = p; forall X;, X;, Xy, ... where p; follow a

N—ooco N

given probability distribution.
e(_Ei/kBT)

Z] e(_Ej/kBT)

In Boltzmann distribution p; =

N; is the number of particles in state X; (configurations).

Outcoming configurations match p; in their observation
frequency



Metropolis Monte Carlo Algorithm

1) Pick any configuration X,
2) Pick a trial configuration X;
3) Compute the acceptance ratio based on

probabilities of the configurations R = Z((;)((t))

4) Pick a random number u with value between
O0and 1. Make X,,,1 =X ifu <R

and otherwise X,, ;1 = X,
5) Goto 2 replacing X,,by X, 41

Repeat N times, where N is a sufficiently large
number



Metropolis Monte Carlo Algorithm

1) Pick any configuration X,

2) Pick a trial configuration X; E,<E, E,>E,
3) Compute the acceptance ratio based OI’))( A
probabilities of the configurations R = Z((Tt)) . e(~AE/kpT)

4) Pick a random number u with value between
O0and 1. Make X,,,1 =X ifu <R

and otherwise X,, ;1 = X,
5) Goto 2 replacing X,,by X, 41

Repeat N times, where N is a sufficiently large
number

* Expectation value of a measurable
quantity A

(4) =ZipiAi=ZA%
Because Ay_ follow p; in their frequency,
p; is the probability of state i



Metropolis Monte Carlo compares
energies, no forces calculated

EX(X,) | = —

E"(X,)

p(X¢)
p(Xn)
In Boltzmann distribution

e(_Ei/kBT)
PO =) = 5

Acceptance ratio R =

p(X¢) _ p(EY) — o~ (E'=E")/kpT _ ,—AE/kpT
p(Xn)  p(E)

Probability of accepting state
decreases fast with increasing AE

y = e_AE/kBTsmaller

y = e_AE/kBTlarger

AE



Metropolis Monte Carlo on the
macroion model in exercise

Monte Carlo trial move:

EX(X,) b = —

E"(X,)

n

(X¢)
p(Xn)

In Boltzmann distribution

p(X) =p(E) =

probability R =

e(—Ei/kgT)

Zj e(—Ej/kBT)

p(X:) _ p(EY) _ o—(E'=EM)/kpT _ ,—AE/kgT
p(Xn)  p(E")

An ion moves
in random direction
A distance of L,

EES_

1 q0; /500

dre I I

E HS
on,ion

E HS
p,ion —

i ij

o, I;<d
10, 1, >d

(d+d,)

8
A




Research example: macroions in salt

PNAS November 7, 2017 114 (45) 11838-11843
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In regime |, where the macroions have zero or low charge densities, their interaction is
attractive due to depletion interactions mediated by the clustering of ions. In regime II,
where the charge is sufficiently large, a repulsion that is stronger and longer range than the
double-layer force predicted by the DLVO theory rises. In regime lll, where the macroions
have very high charge densities resulting in strong counterion condensation, a strong short-
range repulsion and a deep long-range attractive well rises. van der Waals interactions
between macroions are not included in the model (purely electrostatics).



Metropolis Monte Carlo Algorithm

If configurations X,, come from Metropolis
algorithm (previous slide)

* Expectation value of a measurable quantity

A
<A> — Zipl’Ai:Z% BeFause.AXn follow
p; in their frequency
N configurations

Key to calculating a physical
guantity from Metropolis
algorithm based simulation



Metropolis Monte Carlo Algorithm

* Note that acceptance ratio (acceptance
probability) of a configuration X; is

_ p(Xt)
Py g, = R =2~ whenp(X,) <p(Xy)

1, otherwise

* Most typical variable measuring the state of the
system (and probability) is energy E in molecular
simulations but this is not necessary



Metropolis Monte Carlo moves

e Consequent states must
be uncorrelated

* Trial move can be
practically anything as
long as it is reversible and
probability of reverse
action is equal

Energy E1

Energy E2



Metropolis Monte Carlo moves

e Common examples

— Pick a random atom, move
a random distance shorter
than L.max in random
direction

— Switch the positions of two
randomly chosen particles

— Rotation of a randomly
chosen molecule or atom
pair (random angle)

Energy E2



Monte Carlo

 Thermodynamic quantities, conformation
properties as ensemble average using numerical
integration, note density can be included by N
(numerical integration over ensemble)

* M number of configurations

<A >=ffdedrNA(pN,rN)p(pN,rN)

, M
<A>:—ZA rN
2,4

=



Differences between molecular dynamics
(MD) and Monte Carlo (MC)

MD provides deterministic time dependence
information

MC has no temporal relationship between
consequent configurations

With MD possible to predict any future or past
state knowing current state

MC next state acceptance depends on only
one prior state (prior state energy)
(Metropolis algorithm)



Differences between molecular dynamics
(MD) and Monte Carlo (MC)

MD has kinetic energy explicitly present as
velocities

MC total energy in the potential energy
function

MD inherently in microcanonical (NVE)
ensemble (without pressure or thermostat
algorithmic corrections to ensemble)

MC inherently in canonical (NVT) ensemble






. Sigulation model
counterion
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Ewald summation ( (d +d )
Polyelectrolyte: hard rod, discrete axial charge, d, varies, t s o, I < 5 .
varies Upion =1 (d +d )
lons: hard charged beads, d varies, g varies 0, Fi > 0

Bjerrum length €;=e2/4nekT (=0.71nm at 25°C,water) .



Simulation model




Simulation model
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Simulation model

d ion diameter
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Monte Carlo in different ensembles

* Typically Monte Carlo (Metropolis) samples
from NVT ensemble

e NPT ensemble: simulation box size must
change

— Combine random displacements of particles with
random box volume changes

— New volume Vi = Vo + 6V, (26 — 1]

— When volume changes, in principle, interaction
energy must be recalculated for the whole system



Monte Carlo in NPT

Simple potentials trick-of-trade for recalculating the energy
when volume changes: Scaled coordinates

s;; scaled coordinate; s; -Lo,d ; Here Lennard-Jones

! | 12 N, ) P
Pold(T ) . j.l_.- 5_.. | 1 | J-‘.!- ‘,} |I | . I|

1 § L W PN B EER

/ (r 4 \‘ 1: { , , ) __\_‘ \___ (1
I j=1 ; 1) / ] ] \ e
/.1.‘“'r'°: ¥ oa(12) { l,‘H } | + ¥ o1d\0) { ;l }
Change in the energy due to box size change:
[ Lo ]l" [ 2 b
) B { | A

] . \ i
AY ,_r , ¥ old |l~]‘ | l, [



Monte Carlo in NPT

* Long-range interactions and their treatment (cut-
offs, ...) problematic in NPT

* Simple scaling does not work on molecules /
interactions more complicated than distance-based

— Total energy must be recalculated with simulation box
volume change: Computationally expensive

* Criterion for accepting or rejecting a new
configuration

AH(r") = ¥pewlr ) — ¥oualr )



Grand Canonical Monte Carlo
Simulations

* Key feature: Number of particles
may change during simulation

* Three basic moves in Grand
Canonical Monte Carlo
simulation

— A particle is created (1)

— A particle is destroyed (2)

— A particle is displaced (regular
Metropolis move) (3)

* Probability of creating a particle |
should be equal to particle
being destroyed !




Grand Canonical Monte Carlo
Simulations

To determine whether destruction move is accepted, calculate:

v () — ¥ ()] Rl L Chemical potential U = k,TInA3z

AD = ™ In| — | [ A deBroglie wavelength A = JRZ 2T
e ST | z activity - [2mmbk,

To determine whether creation move is accepted, calculate:

AC = newll )= Foulr )] |: 2 }
\N+1,

l!-1|~|-lr
* |f AD / AC negative, move accepted, otherwise
expl _""LLI-:":I..,JII or expil _ll'l.':_-_..':-.:.:. |

is calculated and compared with a random number
(regular probability of acceptance comparison)



Grand Canonical Monte Carlo
simulations

Creation / destruction steps in dense systems
often fail due to large energy penalty of
adding / removing one particle from the
(dense) system

Step-wise fading in / out of a particle
Configurational bias Monte Carlo

Example:

http://terpconnect.umd.edu/~denesyuk/poly
mer_images.html



Monte Carlo simulations: vocabulary 1

Metropolis Monte Carlo

— A simulation algorithm, central to which is the formula which determines
whether a process should happen or not. Originally used for simulating atom
systems in an NVT thermodynamic ensemble in physical sciences, but
nowadays generalized to many other problems e.g. process design, process
optimization, economics, biology, finance and business

Markov Chain Monte Carlo, MCMC

— A version of Metropolis Monte Carlo in which a sequence of points in some
known distribution is generated.

Simulated annealing

— The Metropolis MC idea generalized to optimization, i.e. finding minima or
maxima in a system.

— Can be used in a very wide range of problems
Thermodynamic Monte Carlo

— Monte Carlo when used to determine thermodynamic properties, usually of
atomic systems

Adapted from: Basics of Monte Carlo simulations, Kai Nordlund 2006



Monte Carlo simulations: vocabulary 2

e Lattice Monte Carlo, LMC

— MC used on a lattice. Used to distinguish MC done on crystal lattices
from those done in a random/amorphous medium

* Kinetic Monte Carlo, KMC

— MC used to simulate activated processes, i.e. processes which occur
with an exponential probability e ¥/KT  for example migration of
defects in a solid. KMC can be done free of lattice (non-directional
system), or on a lattice. In the latter case one could also talk about
lattice kinetic MC.

e Variational MC, VMC & Diffusion MC, DMC

— These terms are nowadays used often to signify a variety of electronic
structure calculations where MC techniques are used to obtain the
ground state electron configuration (the terms are wider in principle).
Sometimes not mentioned that one deals with electronic structure,
which may lead to confusion ( “diffusion MC” obviously could mean
many other things as well.

Adapted from: Basics of Monte Carlo simulations, Kai Nordlund 2006



Monte Carlo simulations: vocabulary 3

e Quantum Monte Carlo, QMC

— Used in many different contexts

— Electronic structure calculation methods VMC and
DMC are often called QMC

— Quantum mechanical simulations of spin systems
(which does not necessarily relate to electronic
structure-determining calculations in any direct way)
are also called QMC...

e Summary: One should define clearly which
Monte Carlo method is used



Monte Carlo simulations

* Next

e Advanced sampling methods
* Weighted importance sampling
e Stratification



Importance sampling

One approach to improving the MC accuracy is
reducing the variance o2 in the data.

o? for any non-constant data distribution goes
towards some finite, non-zero value when N
approaches infinity

error goes to 0 with increasing N.

MC error is proportional to o/sqrt(N) (more on
this later)

— if variance o2 goes down, the error will also go down
for the same N



Importance sampling

| Most contribution to integral
| From peak

| Uniformly randomly
distributed points
betweenaandb

S~ ~ mostly outside the peak

I h

Importance sampling: transform f(x) into another,
flatter function which is then Monte Carlo integrated.
Required: back-transformation to give the original integral



Importance sampling: f(x)/g(x) flatter
function than f(x)

I:ﬁ&f(a:]d;r:/b (), f{T

G‘{-J:}:f g(x)dx

a variable change r = G(x) |
fix)

| f(x)/g(x)

' fairly flat function

Monte Carlo N
- =13 I
Integration N <~ g(G7(ri))

a h



Importance sampling: f(x)/g(x) flatter
function than f(x)

Monte Carlo G (r:))
Integration __Z g{i’_ 1(r,))

* This requires G

e Alternative: generate by
any means random
numbers x.8 distributed i

as g(x): | £(x)/g(x)

N (
J — — ftia{“}] - _ fairly flat function
= — [ .
N i—1 g'-r.:c o ;'

Y| h



Importance sampling

Reduces misses a lot
Decreases variance
-> decreases error for same

f(x)/g(x)
fairly flat function

Practical consequences
— Computationally heavier

— Reduces the number of steps
required to get close to right
answer

e b



Control variates method

 Same idea as with importance
sampling (make the function flatter)
but now with subtraction instead of
division
fix)

] b ]
f:/ — [ (f{mj—g[:t‘]jd:t‘—l—[ g(x)dx

f(x)-g(x)
. fairly flat function

* Advantages to importance sampling
— g(x) can be zero or negative . b

— No need for g(x) distributed random
numbers



Stratification sampling

* Importance sampling and control variates
methods are good ways to improve on MC
integration, but require that the function form
has to be known. However, often it is not

e Sampling of subregions (subpopulations)
separately and independently



