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ABSTRACT: Polymer materials are multiscale systems by definition. Already the
description of a single macromolecule involves a multitude of scales, and
cooperative processes in polymer assemblies are governed by their interplay.
Polymers have been among the first materials for which systematic multiscale
techniques were developed, yet they continue to present extraordinary challenges
for modellers. In this Perspective, we review popular models that are used to
describe polymers on different scales and discuss scale-bridging strategies such as
static and dynamic coarse-graining methods and multiresolution approaches. We
close with a list of hard problems which still need to be solved in order to gain a
comprehensive quantitative understanding of polymer systems.
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Particle-continuum gap, Multiresolution

I. INTRODUCTION
Multiscale problems are omnipresent in materials science. The
properties of most materials result from a combination of many
processes on vastly different length and time scales, ranging from
electronic excitations and atomic or molecular vibrations on the
Angstrom and femtosecond scale to material fatigue on time
scales over several years. In polymeric systems, disentangling the
different characteristic scales that determine their behavior is
particularly difficult. This is because the relevant molecular
length scales�which range from the scale of the local chemical
monomer structure to the scale of chain conformations�
strongly overlap with the relevant length scales of the next level
of intermolecular and possibly supra-molecular organization,
and these in turn overlap with the length scales of continuum
mechanics on which materials are described in terms of
elastohydrodynamic equations. Therefore, the all-inclusive,
comprehensive modeling of a polymeric system1 remains a
formidable challenge despite decades of theoretical efforts.2−17

In the present Perspective, we discuss some selected
approaches to this problem, focusing on recent developments.
Before doing so, we will quote a few examples of scale-bridging
phenomena in polymers that inherently require multiscale
descriptions.
The first and most basic example is the emerging

viscoelasticity and viscoplasticity in polymer rheology, a field
where the multiscale character of polymer-based systems is
immediately apparent.18 Polymeric materials respond to applied
stress with some time delay (memory), a clear signature of an

incomplete separation of time scales. This is because the time
scales of intramolecular (internal chain) relaxation cannot be
separated from the time scales of diffusion and intermolecular
reorganization, in particular in the presence of entanglements.6

Another prominent classical multiscale phenomenon in
polymer science is polymer crystallization,19 which involves
local crystallization on the monomer scale, the formation of
crystalline lamellae on the mesoscale, and the macroscale
organization of lamellae, often into spherulites.20 Already the
local structure is not necessarily unique,21 but may result from a
competition of several polymorphs depending on the process-
ing.22 Predicting such polymorphs requires accurate theoretical
descriptions at the electronic structure level20 as well as
multiscale modeling approaches to enable studying the kinetics
of self-assembly.23,24 On the mesoscale, the mechanisms that
determine and eventually constrain the growth of crystalline
lamellae are still under debate.25 One particular intriguing
phenomenon is the ”melt memory” effect:26,27 Even after
melting a polymer crystal, the melt retains some knowledge
about the previous structure and tends to recrystallize at
previously crystalline positions after cooling. Recent systematic
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simulation studies by Luo, Sommer, and others have suggested
that the thickness of crystalline lamellae is determined by the
entanglement length in the melt prior to crystallization,28−33

consistent with the experimental observation that the time scale
on which the melt memory survives roughly matches the time
scale of re-entanglement kinetics.34 Such findings illustrate how
mesoscale structure (entanglements) can have a profound effect
on local structure (local packing), and vice versa, in polymers.
The associated time scales can be very large, which offers
unusually versatile opportunities to control local structure by
processing35 (for example, in flow-induced crystallization36−40)
or by tiny chemical modifications.41,42 On the other hand, the
mesoscale structure and dynamics determines the elastic and
plastic response of the materials to deformations43,44 and the
inhomogeneous stress fields in the materials, which in turn drive
the large-scale structure formation and spherulite growth.45

The interplay of multiple scales also determines the structural
and dynamic properties of other multiphase polymer materials46

that are highly heterogeneous and filled by internal interfaces,
such as polymer blends,47,48 block copolymer melts and
solutions,49−52 or foams.53 It is particularly prominent in
polymer nanocomposites,54−58 where fillers are introduced, e.g.,
to improve the mechanical properties of a polymeric matrix. The
molecular origins of the resulting mechanical reinforcement are
diverse, they include a redistribution of strain in the polymer
matrix59 as well as stretching of chains at the interfaces.60 A
detailed knowledge of the structure of the material on both local
and mesoscopic scales is thus necessary to understand the
macroscopic viscoelastic properties of the materials. Likewise,
transport properties such as the thermal conductivity61 depend
on the microscopic structure in the bulk matrix as well as at
interfaces, i.e., the Kapitza resistance,62−64 and on the mesoscale
shape and spatial distribution of the fillers.
Finally, biomaterials provide some of the most sophisticated

polymer-based multiscale materials, due to their characteristic
hierarchical structure. A prominent example is spider silk,65,66

which also showcases how the properties of such materials may
crucially depend on the way how they has been processed (in
this case spun).67 Other examples are fibers made of collagen,
which are abundant in mammals.68−71 Collagen is found in the
extracellular matrix of tissues as different as skin, fascia, cartilage
and bones, and is to a great extent responsible for their superior
material properties. Twenty-nine types of collagen have been
reported in the literature,68 with the most frequent being
collagen I, which is present in, e.g., dermis, tendon, and bone.
The primary structure of collagen peptides is characterized by
repeats of three residues Gly-X-Y, e.g., Gly-Pro-Hyp. The
quaternary structure is a triple helix, where three polypeptide
strands wrap around each other to form a helix of length ∼300
nm, the tropocollagen. Staggered arrays of tropocollagen self-
assemble (spontaneously72) to fibrils, the building blocks of
fibers (with size roughly 10 μm), which then aggregate to even
larger structures.73 Remarkably, the collagen triple helix seems
to be only marginally stable; it melts at temperatures just slightly
above, or even below the body temperature.74 This suggests, on
the one hand, that the triple helix is stabilized by the fibrillar/
microfibrillar suprastructure,72 but also, on the other hand, that
collagen frequently unfolds and refolds on a local scale. The
combination of strength and softness would then contribute to
the unique material properties of collagen tissues, to their
elasticity, and to their capacity to dissipate sudden energy bursts.
In the context of living tissues, protein fibers are only one

building block in the even more complex multiscale structures

of, e.g., bones75,76 or skin.77 One important aspect of living
materials is their dissipative character: They are kept alive by
constant energy consumption and thus never reach thermal
equilibrium, nor a thermally metastable state, but continuously
produce entropy. Prominent representatives of such inherently
nonequilibrium materials are protein filament structures which
form the cytoskeleton of cells and are responsible for their
mechanical elasticity as well as their motion and/or contrac-
tion.78,79 Another example is the recently discovered phenom-
enon of liquid−liquid phase separation (LLPS) in cells:80−87
Certain proteins mediate the formation of nanosized con-
densates in cells�so-called membraneless organelles�which
helps to organize cellular content and possibly contributes to
gene regulation. Whereas the phase separation itself is driven by
thermodynamic interactions, the size and location of the
droplets is most likely controlled by nonequilibrium, energy-
consuming processes.
These selected examples illustrate the omnipresence of

multiscale phenomena in polymeric systems, in seemingly
simple ones such as one-component polymer melts as well as in
complex ones such as functional polymers in a nonequilibrium
living matter context. The multiscale character of polymers
presents an outstanding challenge for modellers.
Synthetic polymer systems have been among the first

materials for which systematic multiscale modeling methods
have been developed, which related particle-based coarse-
grained models to real polymers such as polyethylene,88−93

polycarbonates,94−98 and others.99,100 These early studies
already addressed key challenges that are still subject of active
research today: (i) The coarse-graining procedure, i.e.
constructing coarse-grained models using input from quantum
chemical calculations and/or atomistic models;88−91,94−96,99,100

(ii) reverse backmapping, i.e., the reconstruction of an atomistic
configuration from a coarse-grained configuration;92,97,98 (iii)
dynamic mapping,93,97 i.e., the question how to extract
dynamical information from the coarse-grained simulations.
Since then, much progress has been made in the field of

multiscale modeling of polymers and of soft matter systems in
general, and several excellent reviews have highlighted different
aspects of the problem, see, e.g., refs 4−8, 10, 12, 14−16, 101,
and 102. Nevertheless, central challenges still persist. In the
present Perspective, we discuss the current situation in the light
of the state of the art and recent progress. We begin with a rough
outline of models that are used to describe polymeric systems on
different scales. Then we discuss a number of scale-bridging
strategies that have been developed in the past and used for
polymeric systems or might be applicable for them. We close
with a brief outlook on open problems for the future.

II. SCALES IN POLYMERS
To set the stage, we begin with discussing the different scales
that are involved in our multiscale picture of polymers and
introduce classes of polymer models that are used to study
polymer materials at these different levels.
II.A. Monomer/Oligomer Scale: The Scales of Chemical
Specificity

The basic building blocks are the monomers. They can have a
simple chemical structure, as in the case of many commodity
polymers such as polystyrene, or a rather complicated structure,
as in the case of biopolymers such as RNA, DNA, or proteins.
The structure of the monomers on the monomer scale
determines local properties such as the charges and the
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polarization, the solubility in a solvent,103 the existence and
structure of a hydration shell,104 the local affinity to surfaces,105

or, in studies of polymer reactions, the monomer reactivity.106 In
general, these properties are also influenced by the larger-scale
structure of polymer systems. For example, the effective
monomer reactivity depends on the accessibility of the reactive
sites, which is determined not only by the local electronic and
steric monomer structure but also by the polymer conforma-
tion.106,107 Likewise, the effective charges and/or polarization of
monomers depend on the local environment.108,109 In most
cases, however, the corrections due to the larger-scale
environment are small compared to the intrinsic value imposed
by the monomer structure. To study polymers on the monomer
scale, atomistic models are used, and in some cases quantum
mechanical modeling is necessary.110,111

The next level of organization is the oligomer scale, i.e., the
scale of short polymer sections and monomer−monomer
interactions. On that scale, cooperativity effects due to
nonbonded or bonded interactions between monomers start
to become prominent and even dominate. Here and in the
following, the term ”nonbonded” refers to general interactions
between monomers of given types, no matter whether or not
they belong to the same molecule (e.g., electrostatic interactions
or van der Waals interactions), and the ”bonded” interactions
subsume the additional interactions between monomers that are
close neighbors in the molecule (e.g., chemical bonds, bending
or torsional potentials). Emerging properties of interest in the
oligomer scale are, e.g., the effective monomer−monomer
incompatibility,112 ion-specific effects,113,114 the propensity to
crystallize,19 or solvency/cosolvency and cononsolvency
effects.114−120 Again, these properties also depend on the higher
order organization, e.g., as has been discussed in the
introduction for the case of crystallization. The modeling at
this level is still often based on atomistic force fields, but
chemically specific coarse-grained force fields such as the
celebrated MARTINI model121 are starting to become useful;
see also the recent review by Dhamankar and Webb.15 In such
coarse-grained models, several atoms are lumped into one
effective particle, and the (bonded and nonbonded) interactions
between particles are determined either in a bottom-up fashion
from atomistic simulations, in a top-down fashion from
experimentally accessible data, or by a combination of the
two. For an overview over coarse-graining approaches, we refer
to the excellent review of Noid5 (see also below, section III.A.1).
II.B. Polymer Scale: The Scale of Conformations

The third level, the polymer scale, is the realm of classical
polymer physics, where generic statistical mechanics approaches
have celebrated successes.18,122,123 At this level, scaling laws have
scored victories, both regarding static and dynamic properties of
polymeric systems, and simple calculations based on ”scaling
blobs”123,124 can make meaningful predictions. This is because
polymer molecules consisting of many identical monomer units
start to exhibit universal behavior beyond a certain molecular
weight. Therefore, renormalization groups concepts can be
applied, according to which the fractal large-scale structure of
polymer conformations does not depend on details of the local
monomer structure. This results in the paradigm of the
”Gaussian chain model”,18 which describes a polymer molecule
as a randomwalk in space. In the case of complex heteropolymer
molecules such as intrinsically disordered peptides (IDPs),
applying scaling concepts is more challenging, but still at least
partially successful.125−127 Theoretical models at this level are

mostly based on effective phenomenological parameters18 such
as the Kuhn length, the famous Flory−Huggins χ-parameters
characterizing polymer−solvent or monomer−monomer inter-
actions, the monomer mobility, the effective monomer charge,
and possibly the Debye screening length.
A number of generic coarse-grained simulation models have

been proposed already decades ago to study polymer properties
at this level: Lattice models, where polymers are represented by
random self-avoiding walks on a lattice, and off-lattice models,
where polymers are modeled as chains of interacting hard-core
spheres connected by springs. Among the most prominent
models of this type is the bond fluctuation model,128 a lattice
model where monomers occupy cubes on a lattice and can be
connected by a finite set of bonds, and the Kremer−Grest
model,129 an off-latticemodel that represents polymers as strings
of hard-core spheres connected by nonlinear springs. Such
models can be extended in various ways, e.g., to include bending
potentials,130,131 attractive nonbonded interactions,132 or (in
the case of polymer solutions) a hydrodynamic coupling to a
fluid medium.133 They have been used to verify scaling
predictions131,134 and to study generic aspects of single polymer
phase transitions such as chain adsorption or the coil−globule
transition135−137 properties of polymer melts and blends138 and
even dynamical transitions such as the glass transition.139−141

To some extent, they can also be used to make quantitative
predictions for chemically specific polymers. For example,
recent work by Everaers and co-workers142 has shown that, for a
wide range of commodity polymer melts, matching a single local
property in melts of Kremer-Grest chains, the so-called
dimensionless Kuhn number, is sufficient to reproduce the
correct entanglement modulus.142,143 The Kuhn number is
derived from microscopic quantities, i.e., the number of Kuhn
segments in a volume of Kuhn length cube. The entanglement
modulus is roughly proportional to a macroscopic quantity, the
plateau shear modulus. Hence this example shows how
simulations of a properly matched generic polymer model can
be used to predict important characteristics of polymer
materials. Milner has recently proposed a universal scaling
theory of entanglements for melts and solutions of chains with
arbitrary flexibility,144 suggesting that similar approaches might
also be successful for polymer solutions.
II.C. Interacting Polymers: The Blob Scale

The properties of polymer systems containing many polymers are
often determined by conformational restructuring on scales that
are much larger than the monomeric scale. On such scales,
polymers behave in many respect like single soft, inter-
penetrating ”blobs” or chains of such blobs. In polymer physics,
the term blob often refers to a theoretical framework that allows
for simple intuitive derivations of crossover phenomena
between different scaling regimes in polymer solutions.123,124

Here we will use it more generally to describe the soft character
of overlapping polymers.
In large-scale studies of interacting polymers, two novel

classes of simulation models become increasingly popular that
account for this soft character: Ultracoarse-grained particle-
based models with soft potentials and density-based models. In
soft potential models, coarse-grained units are assumed to
represent lumps of a sufficiently large number of microscopic
particles that they can interpenetrate each other. The non-
bonded potentials are still described in terms of pair interactions
between particles with positions ri⃗ and rj⃗
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possibly augmented by higher-order multibody potentials.145

However, the potentials do not diverge at ri⃗ = rj⃗. This is the case,
for instance, for ”dissipative particle dynamics” (DPD)-
models145,146 or blob models.147−154

In contrast, in density-based models,155−164 the nonbonded
potentials are expressed as a functional of local number densities
ρ(r)⃗ = {ρα(r)⃗} of coarse-grainedmonomer or solvent particles of
type α, typically in the form of an integral over a ”free energy
density”

U r f r rd ( , ( ))nb
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where the function f(r,⃗ ρ(r)⃗) depends implicitly on r ⃗ via ρ(r)⃗ and
may have an additional explicit r-⃗dependence (e.g., to account
for external potentials and confinement effects). In the bulk, it is
often taken to have a local quadratic form, defined in terms of
Flory−Huggins-like interaction parameters
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Here κ gives the compressibility of the polymer solution or melt,
and we have assumed for simplicity that the volume fraction per
bead of all entities is the same. We should mention that, in
practical simulations, the value of κ is often reduced quite
substantially compared to the real compressibility of polymers.
This is done to avoid numerical instabilities and enable
simulations with larger time steps.
To complete the definition of a density-based model, one

must also specify how to determine the local densities ρα and
how to formulate the corresponding spatially discretized version
of the equations of motion. Often, the local densities are
evaluated on a grid,155 but other off-lattice variants based on
weighted densities have also been proposed.161,165When using a
grid-based model in dynamical simulations, a second practical
issue is how to determine the resulting forces on monomers�
whether to directly take the derivative of the discretized
Hamiltonian with respect to the monomer positions166,167 or
whether to calculate a discretized force field and interpolate
that.159,164,168 The former strategy guarantees that the
simulation is grounded on a well-defined Hamiltonian, but it
introduces lattice artifacts. The latter strategy gives more
freedom to reduce the lattice artifacts and (approximately)
restore momentum conservation in molecular dynamics
simulations, but it does not guarantee that one samples a
rigorously defined statistical ensemble in the limit of zero time
step. Thus, the former approach is better suited for studying the
statistical mechanics of the system, and the latter for studying
processes where hydrodynamics is important.
Equation 3 defines one of the simplest density-based models,

but numerous extensions are possible to make the model more
flexible. One can add higher order terms,161,162 additional
density fields that characterize, e.g., local orientation,169,170

charges,171,172 and/or nonlocal terms. For example, electrostatic
interactions can be included in eq 2 by including the energy
density of the electrostatic field generated by the charge density
distribution ρ(r′⃗) and the corresponding interaction terms.173
Both soft-potential models and models with density-based

potentials are particle-based and describe the polymers as

connected chains of explicit monomers. They differ from hard-
core models only in the type of nonbonded interactions.
Removing the hard excluded-volume interactions, however, has
a fundamental consequence: It removes topological interactions,
i.e., the chains can now cross each other. This significantly
changes the dynamic properties of the coarse-grained models
and, in some cases, even the static structure.
Most prominently, the conformations of strictly two-dimen-

sional polymers in dense melt are radically different for
overlapping and nonoverlapping polymers.174−179 The config-
urations of overlapping polymers are rather open and the
number of interchain contacts per monomer is roughly constant.
In contrast, nonoverlapping polymers segregate from one
another, and the number of contacts per monomer scales as
N−3/8 with increasing chain lengthN. This is because most open
configurations are forbidden due to excluded-volume inter-
actions. This effect is independent of dynamics and also persists
in Monte Carlo simulations that simply sample the phase space.
In higher dimensions, the fraction of actually forbidden

conformations in phase space is negligible, and the effect of hard
excluded-volume interactions is more subtle. In polymer
networks (gels, elastomers), and in systems of closed (ring)
polymers, topological constraints partition the phase space,
since a large set of energetically allowed conformations cannot
be accessed kinetically from a given start configuration: For
instance, initially concatenated rings cannot be separated and
initially separated rings cannot be concatenated. As a result, ring
polymers in a melt of nonconcatenated polymers are more
compact than linear polymers, and their size (radius of gyration)
scales differently as a function of N.180 Capturing such effects
with soft coarse-grained models is a formidable challenge.
Narros et al.153 have proposed a hierarchical multiblob
approach, where the direct interactions between soft blobs
(coarse-grained monomers) are supplemented by additional
interactions between the centers of mass that account for the
effect of topological interactions in a statistical sense. With this
approach, they could reproduce the shrinking of ring polymers
in melts with the correct exponent. However, other character-
istics of large ring polymers in ring polymer melt, e.g., the
dominance of double-folded conformations with primitive tree
structure (”lattice animals”),181,182 are not captured. Interest-
ingly, a recent comparison of simulation results using Kremer-
Grest ring polymers with density functional calculations (which
ignore topological constraints) has suggested that topological
effects have no effect on the density profiles close to surfaces in
sufficiently dense melts,183 although they do seem to affect the
thickness of depletion regions in semidilute solutions.
In contrast to ring polymer melts, melts of linear polymers are

ergodic in phase space and blob models can mostly account for
their static structure, at least on large scales. On small scales,
there are deviations. For example, models with soft potentials
tend to overestimate the frequency of small knots,184,185 in
particular if the size of the excluded volume of monomers is
comparable to that of the Kuhn segment.184 More importantly,
they fail to reproduce their dynamics at large N which is
characterized by entanglements between polymers as already
discussed earlier:9,18,186 According to the classic reptation
picture, polymers undergo an effective one-dimensional
diffusion in a tube, which is created by their entanglements
with other polymers. Polymers interacting with soft potentials,
however, do not reptate.188 Schieber189 and later Likhtman190

have proposed an ingenious way to restore entanglements at the
level of single-chain dynamics:9,191,192 They proposed to mimic
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the effect of entanglements by virtual ”slip links”, discrete objects
through which the chains must slip. This model has later been
extended to multichain models where the slip links are
fluctuating objects that connect different chains to each
other.193−196 Such slip-link degrees of freedom introduce
effective attractive interactions between polymers. However,
the latter can be calculated analytically and subtracted from the
basic potential function, e.g., eqs 1 or 2, to eliminate their effect
on the static behavior.193,194 Wu et al. and Behbahani et al. have
recently demonstrated the potential of multichain slip-link
approaches in ultracoarse-grained simulations of real commod-
ity polymers such as polyethylene,197 polystyrene,198 and
polybutadiene187 (see Figure 1). Introducing slip links can
also help to restore the correct elastic and rheological properties
in soft-potential based models for elastomers.199

II.D. Mesoscopic Scale: Transition to Field Theories
The next level is the scale ofmesoscale organization, i.e., structure
formation in inhomogeneous polymer systems. Emerging
phenomena at this scale are the nucleation of crystallites in
semicrystalline polymers,19 phase separation and demixing,46

wetting phenomena, or self-assembly.51

Apart from the coarse-grained particle-based polymer models
with hard or soft interactions discussed in sections II.B and II.C,
a new tool for investigating polymer systems on such scales are
f ield-theoretic approaches.201−203 The most common starting

points for the derivation of such approaches are density-based
models such as the one defined by eq 2. By field theoretic
manipulations such as delta functional transformations204−206 or
Hubbard-Stratonovich transformations,201,207,208 one can re-
write the partition function of this system as an integral over
fluctuating real and imaginary fields. For example, the delta
functional transformation of the model (eq 2) yields the
following expression for the partition function:205

W k Texp( / )
i

B (4)

with

W
k T

r f r r k T r

r W r n n

,
d ( , ( ))/ d

( ) ( ) ln( / )
j

j j j

B

3
B

3[ ]
=

(5)

(in the canonical ensemble) where W(r)⃗ = {Wα(r)⃗} denotes a
vector of fluctuating imaginary auxiliary fieldsWα(r)⃗, j sums over
different polymer types, and Wj[ ] is the single-chain partition
functions of polymers of type j without nonbonded interactions
in the fluctuating external field W(r)⃗.
Taking these expressions as a starting point, one can make

several approximations: First, one can replace the integral (eq 4)
by a saddle point approximation, which amounts to approximat-
ing the free energy of the system by the extremum of in eq 5.
Remarkably, the extremum for W is not located on the original
imaginary integration domain, but is purely real. The
approximation results in the so-called self-consistent f ield
(SCF) theory,205,206,209 one of the most powerful mean-field
approximation for inhomogeneous polymer systems, which can
often predict real interfacial structures in polymers at an almost
quantitative level.206 Figuratively speaking, the SCF theory
describes polymer systems as assemblies of independent chains,
each in the ensemble-averaged field of the surrounding chains.
The averaging approximation is good if chains interact with
many other chains, which is true for chains of high molecular
weight since they overlap with each other. In three-dimensional
melts of linear polymers, the degree of interchain interactions
can be characterized by the so-called invariant polymerization
index N̅ = b6ρ02N, where b is the statistical segment length, and
N is the number of segments in a polymer chain. For N̅→ ∞, the
SCF approximation becomes exact. Experimentally relevant
values of N̅ are of order 102−104.
A second approximation to eq 4 consists of applying a partial

saddle point approximation with respect to the auxiliary fields
Wα(r)⃗ only. Thus, the functional W,[ ] is extremized with
respect to W, giving self-consistent equations for W[ρ ], which
have, again, a real solutionW(r)⃗. This procedure turns into a
real-valued density functional [ ]. It serves as starting point for
dynamic mean field theories of polymers which have the
structure of continuum theories but retain some knowledge of
the macromolecular architecture of polymers. The simplest
Ansatz of this kind is the purely diffusive equation of
motion210−221

r t r r r r t( , ) d ( , ) ( , )t r r
3= (6)

with r t r t( , ) / ( , )= . In the context of the Hohen-
berg−Halperin classification222 of dynamic critical phenomena
(see section II.E), eq 6 corresponds to so-called “model B”

Figure 1. Different levels of description of cis-1,4-polybutadiene (cPB)
in ref 187. (a) United atom model. (b) Structurally coarse-grained
model with hard core interactions. (c) Soft potential model with slip-
links. The dynamical single- chain and viscoelastic properties can be
mapped onto each other and are also in good agreement with
experimental data. Reproduced from ref 187. Copyright 2021 American
Chemical Society.
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dynamics. The mobility matrix function Λ(r,⃗r′⃗) = {Λαβ(r,⃗r′⃗)}
describes the motion of monomers at position r ⃗ in response to a
a local thermodynamic force (−∇r′μ(r′⃗,t)) and may be nonlocal
to account for the effect of chain connectivity. Possible
extensions include the coupling to equations of fluid dynamics
in order to account for hydrodynamics,223−226 the inclusion of
additional order parameters to account for local chain
ordering,227 or the introduction of a time-delayed response
functions to account for memory.228,229

Going beyond the mean-field approximation, f ield-theoretic
simulations (FTS), aim at sampling the full partition function (eq
4). The field of FTS is relatively new and, so far, restricted to
static simulations. An important problem that needs to be
overcome is dealing with the imaginary integration domain ofW
in the integral (eq 4). Since theWα(r)⃗ are imaginary, the “action”
in eq 5 is a complex, rapidly oscillating quantity, which leads

to a sign problem. Pioneered by Ganesan and Fredrickson,230

one approach to overcoming this problem is to use the so-called
“Complex Langevin” simulation method, which involves solving
Langevin equations in the entire complex plane, in the case of eq
4 for both the W and ρ degrees of freedom.
If the underlying nonbonded potential functional is a

quadratic functional of the densities ρr)⃗ as, e.g., in eq 5, one
can reduce the number of fluctuating fields by a factor of 2 by
applying a Hubbard−Stratonovich transformation instead of a
delta functional transformation, which significantly reduces the
computational costs. Complex Langevin simulations based on
this approach have been used by Fredrickson and co-workers
and other groups to study, among other, fluctuation effects in
diblock copolymer phase diagrams,202,230 polymer nano-
composites,231 polyelectrolyte complexation,202 and liquid−
liquid phase separation of intrinsically disordered pro-
teins.200,232Figure 2 shows a FTS simulation droplets formed
from tau proteins, strong polyampholytes which undergo
liquid−liquid phase separation due to self-coacervation.
In dense melts of polymers containing only two types of

monomers A and B, a second approach becomes possi-
ble,203,217,218,233−238 which has been applied with considerable
success by Matsen and co-workers to study block copolymer
systems:235 In that case, the Hubbard−Stratonovich trans-
formation results in a functional integral over two fluctuating
fields, an imaginary one which can be associated with density
fluctuations and a real one which describes the composition
fluctuations. In nearly incompressible melts, the density

fluctuations have little influence on the composition fluctuations
that determine the phase behavior. Therefore, one may apply a
partial saddle point approximation regarding the density
fluctuations only, and obtains a purely real fluctuating field
theory, which can be treated, e.g., by standard Monte Carlo
methods. Comparisons with Complex Langevin simula-
tions236,239 have shown that the partial saddle point approx-
imation is indeed accurate in dense melts. The advantage of the
approach is that it allows more easily to access highly
incompressible melts at experimentally relevant polymerization
indices.203

In many cases, fluctuation corrections mainly shift phase
transition temperatures or change the order of a transition from
second order to weakly first order, but there are situations where
they may fundamentally change the properties of a system. One
prominent example is the “microemulsion channel” in balanced
mixtures of A,B homopolymers and A:B diblock copolymers.
Upon increasing χN, SCF calculations predict a demixing
transition at low copolymer content, and an ordering transition
to a periodic lamellar phase at high copolymer content.
According to the SCF theory, both transitions meet at a so-
called “Lifshitz critical point”, where the lamellar thickness of the
periodic phase diverges. In reality, generic theoretical consid-
erations240 suggest that the Lifshitz critical point has a lower
critical dimension of four, meaning that fluctuations will
invariably destroy it in three (or fewer) dimensions. The fate
of the Lifshitz point in lower dimensions has long remained
unclear, but was recently revealed by field-theoretic simulations
of Vorselaers, Spencer, and Matsen:233,234 It splits up into a
critical end point and a tricritical point (see Figure 3). This
example also demonstrates how simulations of polymer systems
can give insights onto fundamental questions in statistical
mechanics.
II.E. Macroscopic Scale: The Engineering Scale

Finally, at the macroscopic level, the focus lies on properties of
polymeric materials that are of direct interest for engineers:
Mechanical stability, microstructure, stress distribution, viscoe-
lasticity, constitutive relations, and aging phenomena. Emerging
phenomena that are studied on such scales are, for instance,
polymeric flow patterns in complex geometries242 but also
inherently inhomogeneous processes such as viscoelastic phase
separation,243 foaming,244,245 or crack formation.246 On macro-
scopic scales, materials are described by a set of characteristic

Figure 2.Coarse-grained simulations of liquid−liquid phase separated droplets of tau proteins.200 (a) Particle-based CGmodel using a Kremer−Grest
type representation of chains. (b) FTS model, studied by Complex Langevin simulations. (c) Phase diagram obtained from FTS simulations as a
function of Bjerrum length lB and tau-density ρ rescaled with the statistical segment length b (blue curve). The red curve shows the corresponding
phase diagram for mixtures of Tau and RNA. Adapted with permission from ref 200. Copyright 2021 John Wiley and Sons.
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continuous fields and corresponding transport equations. They
are typically constructed somewhat heuristically based on
general symmetry considerations and conservation laws,
following the spirit of the famous Hohenberg−Halperin
classification of dynamic critical phenomena.222 For example,
so-called “model A” dynamics is used to describe relaxation
processes where conservation laws are not important, “model B”
dynamics is used to describe diffusive processes where only the
local conservation of one “order parameter” (e.g., the polymer
volume fraction) matters (an example is eq 6), “model C”
dynamics describes processes where other conserved mass
densities also become important, and “model H” additionally
accounts for local momentum conservation and convection in
order to describe stress, flow, and hydrodynamic phenomena.
It should be noted that continuum models are much less

transferable than lower level models. Above the glass transition,
cross-linked polymer networks are best described by elasticity
theories, using displacement fields as primary field variables
(e.g., refs 247, 248), and constitutive equations that establish a
relation between the stress tensor and the strain tensor. In
contrast, fluids of un-cross-linked polymers are described by
hydrodynamic models in terms of flow fields, and constitutive
equations relate the stress tensor with the strain rate tensor.
Below the glass transition, polymer materials behave like solids,
but plastic flow is also possible in response to high stresses. This
can be addressed by distinguishing between reversible elastic
deformations and irreversible plastic deformations.249−252 Even
within the realm of continuummodels, multiscale techniques are
still necessary to bridge between micromechanical models as
discussed here and mechanical models that describe objects
made of polymers on truly macroscopic scales.253,254

In the following, we will focus on models for polymeric fluids.
These often combine a hydrodynamic description with a
simplified microscopic model for viscoelasticity, in order to
account both for flow and internal relaxation processes. An
important tool in the construction of such models is the so-
called convected derivative, a concept originally introduced by
Oldroyd:255 It describes convection with respect to a “material
frame” of comoving material particles and thus in some sense
generalizes the substantial derivatives in fluid dynamics to
tensorial quantities. To explain the convected derivative, we first
recapitulate the idea of the substantial derivative, which is a
standard concept in fluid mechanics: Consider a fluid flow

characterized by a flow field u⃗(r,⃗ t) carrying a scalar fieldΦ(r,⃗ t).
Let Φ(L)(r,⃗ t) be the corresponding scalar field in the comoving
(Lagrangian) frame with Φ(r,⃗0) = Φ(L)(r,⃗0). The substantial
derivative is defined such that it describes the evolution of the
scalar field Φ(r,⃗ t) = Φ(L)(r ⃗ − u⃗t, t) in the comoving frame, i.e.,

t
u

d
d

( )t
L

t
( ) = + ·

(7)

When generalizing this concept to tensorial fields Q(r,⃗ t) (or
Qij(r,⃗ t) in coordinate notation), following Oldroyd, one must
take into account the deformations of the coordinates ofQ in the
comoving frame. They are determined by the deformation rate
fieldG =∇u⃗ (or Gij = ∂jui in coordinate notation). As before, we
choose Q(r,⃗ 0) = Q(L)(r,⃗0) . For contravariant tensors Q, the
relation between Q and Q(L) in the limit t → 0 is then given by
Q(r,⃗ t) = (1 + GT t)Q(L)(r ⃗ − u⃗t, t)(1 + Gt). This motivates the
definition of the upper convected derivative

The corresponding consideration for covariant tensors yields the
lower convected derivative

The concept of convective derivatives provides a framework for
deriving constitutive relations in viscoelastic materials in a
geometrically consistent manner. For example, the so-called
upper convected Maxwell model

with D = (1/2)(G + GT) describes a material with a linear
steady-state stress−strain relation σsteady = 2ηD, where the stress
tensor, σ, relaxes in a simple exponential manner toward its
steady-state value with relaxation time λ.
More sophisticated viscoelastic models are typically based on

one of two approaches:10 Either they use phenomenological
considerations to construct more complicated expressions for
the relaxation of the stress tensor and/or its steady-state value, or
they select a simplified molecular model for the polymers and
use kinetic theory to derive approximate expressions for the
stress tensor. One popular starting point of the second kind is to
consider a Newtonian fluid filled with noninteracting elastic
dumbbells, i.e., two beads connected by “Finitely Extensible
Nonlinear Elastic” (FENE) springs, with a spring constant k(R)
that diverges if the distance R of the beads exceeds a limiting
value. A Fokker−Planck equation for the conformation of the
dumbbells is then coupled to the Navier−Stokes equations via
two convective contributions to the Fokker−Planck equation
(one for the center of mass and one for the relative distance of
beads) and an extra stress term in the Navier−Stokes equations.
Many macroscopic models for polymer fluids can be seen as
approximations to this FENEmodel. Themost prominent one is
the Oldroyd-B model, one of the first models for polymer
fluids,255 which replaces the FENE spring by a regular linear
Hookean spring.256 This simplifies the mathematical analysis,
however, it leads to unphysical singularities under certain flow
conditions where the dumbbells stretch to infinity. Another
approximation is the Peterlin model (FENE-P), where the
nonlinear spring constant k(R) is replaced by an averaged value
k(⟨R⟩).257,258
In order to avoid mistakes when constructing such models,

considerable care has to be taken to ensure that they are
thermodynamically consistent.259,260 Several mathematical

Figure 3. Fluctuation effects on the Lifshitz point in the phase diagram
of ternary A/B/AB homopolymer/diblock melts, as revealed by field-
theoretic simulations in refs 233 and 234. Dashed line showsmean-field
result, symbols connected by solid lines show the simulation results.
Reprinted with permission under a Creative Commons CC BY 4.0
License from ref 235. Copyright 2021, Matsen/Beardsley.
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frameworks have been developed which help to enforce
consistency, the most rigorous being the GENERIC framework
that makes a strict distinction between antisymmetric reversible
and symmetric irreversible (dissipative) contributions to the
dynamical equations.261 It should be noted that not all published
macroscopic models are thermodynamically consistent. Schieb-
er and Cordoba have recently developed a simplified set of
requirements that allows one to perform basic consistency tests
without having to apply the full GENERIC machinery.260

Another, even more difficult, question is to prove that the
models actually have solutions for arbitrary initial conditions.
Global existence results for weak solutions of the Peterlin model
have recently been obtained by Masmoudi256 and, regarding a
class of generalized Peterlin models, by Lukaćôva-́Medvid’ova ́ et
al.262,263

The study of inhomogeneous polymer solutions is particular
challenging due to the vastly different mobilities of polymer and
solvent molecules. Quite generally, large dynamical asymmetries
between components of a demixing system often result in
unconventional network-like pattern formation and novel
dynamic scaling exponents264 compared to standard model B
or model H demixing, because the domains of the slow phase
tend to behave like viscoelastic objects. This phenomenon was
first discovered by Tanaka in 1993265 who termed it “viscoelastic
phase separation”, and it is still a subject of active
research.243,266−271 Theoretical models typically build on the
two-fluid model proposed by Doi and Onuki272 and Milner,273

which include a coupling between elastic stress and concen-
tration. Based on this idea, Zhou et al. proposed a number of

phenomenological models for viscoelastic phase separation,
paying particular attention to thermodynamic consistency.269

Spiller et al.270 have recently taken the kinetic approach and
derived a two-fluid model for solutions of Hookian dumbbells
which is consistent with the GENERIC formalism. Brunk and
co-workers have analyzed a number of models for viscoelastic
phase separation from a mathematical point of view and proved
the existence of weak solutions.241,271,274 An example of a
numerical simulation of one of their models is shown in Figure 4.

III. SCALE-BRIDGING STRATEGIES
In the previous section, we have discussed the hierarchy of
models that have been designed and used to study polymeric
systems on different scales. In many cases, however, using a
single model is not sufficient to fully characterize a material of
interest. Thus, multiscale modeling techniques must be applied,
which combine different scales in one simulation, or at least
establish quantitative connections between different scales. The
key to multiscale modeling is coarse-graining, i.e., the art of
designing high-level models with few degrees of freedom
(”coarse-grained (CG) models”) that capture the essential
features of an underlying ”fine-grained (FG)” system.
Classical coarse-graining strategies traditionally follow one of

two philosophies:5 “Top-down” CG models are designed based
on physical intuition without direct input from FG simulations.
Examples are generic top-down models such as the bond
fluctuation model128 and the Kremer−Grest model129 discussed
in section II.B, which are used to study generic properties of
polymer systems, but also chemically specific top-down models

Figure 4. Spinodal phase separation in a continuous viscoelastic model (similar to Figure 1 in ref 241). The numerical simulation is based on a
Lagrange−Galerkin finite element method. Courtesy of M. Lukaćôva-́Medvid’ova.́
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such as the MARTINI model,121 which use experimental
information such as solubility parameters to match interaction
parameters. In contrast, “bottom-up” CG models are con-
structed from FG simulations in a systematic manner such that
they capture certain structural or thermodynamic properties of
interest. This is strategy is commonly adopted to derive classical
atomistic force fields from electronic structure calculations, and
it is also used to construct higher-level models. In addition to
bottom-up and top-down approaches, hybrid approaches are
becoming increasingly popular that integrate information from
different sources�FG simulations as well as experiments275−278
and data-driven methods that apply machine-learning meth-
ods.15,102,278

Numerous coarse-graining and scale-bridging strategies have
been proposed over the past decades (see refs 4−8, 10, 12, and
14−16 for review articles), and giving a comprehensive overview
is beyond the scope of the present Perspective. Instead we will
give a very personal view on different aspects of the coarse-
graining problem with a focus on bottom-up coarse-graining, on
lessons learned from the past, and challenges for the future.
Formally, defining the coarse-graining task seems quite

obvious: Given a microscopic dynamical system with N degrees
of freedom and corresponding equations of motion, define a
reduced set of n representative collective variables and derive
their dynamical equations from those of the microscopic system.
This idea is old, and projection operator techniques to derive
coarse-grained equations have been proposed already in the
1960s by Zwanzig and Mori.279−281 They were used, among
others, to derive equations of fluctuating hydrodynamics for
simple and complex fluids.282,283 In recent years, the Mori−
Zwanzig formalism has attracted increasing interest in the
coarse-graining community, mostly thanks to the work of
Español and co-workers who promoted it as a practical tool to
construct, e.g., dynamic density functional theories284 or
particle-based DPD models.285 In principle, projection oper-
ators allow one to derive exact dynamical equations for the
chosen coarse-grained variables. However, these are complex
integro-differential equations that cannot be reduced to
practically useful model equations, e.g. stochastic equations,
without substantial further approximations. Even more
seriously, Glatzel and Schilling have recently argued that the
dynamic equations for the coarse-grained variables Ai(t) cannot
necessarily be related to a potential of mean force17,286U[Ai].
Their claim is consistent with a discussion by Zwanzig in ref 287,
who pointed out that the memory kernel in the linear Mori−
Zwanzig equations absorbs some of the nonlinearities of a
nonlinear conservative potential in the FG equations. Unfortu-
nately, this implies that the resulting CGmodels are not
necessarily compatible with the GENERIC framework261 and
its clear distinction between external driving forces, conservative
interactions, and dissipative forces. As discussed earlier, the
GENERIC structure helps to enforce thermodynamic con-
sistency and ensure, by construction, that violations of the
second law of thermodynamics are not possible in a CG model.
Giving up this structure thus represents a serious drawback.
Luckily, recent work by Vroyland and Monmarche ́ suggests a
possible way out of this dilemma. Using the Mori−-Zwanzig
formalism and considering a single CG particle, they showed
that it is possible to derive a GLE that complies with the
GENERIC structure, if one allows for position dependent
memory kernels.288

One may be tempted to set aside these problems and design
CG models that primarily target static equilibrium properties.

One can then use the partition function of the microscopic
system as the starting point and integrate out theNmicroscopic
degrees of freedom while constraining the nCG variables, which
directly gives a “potential of mean force” or “free energy
landscape” U[Ai]. In general, however, simple analytic
expressions for U[Ai] are not available, such that a simulation
of the exact CG model is as expensive, from a computational
point of few, as the simulation of the FG model. Thus, further
approximationsmust again bemade such as, e.g., rewritingU[Ai]
as a sum of effective pair or low order multibody potentials.
Finally, already the identification of meaningful coarse-

grained variables represents a challenge in itself�in particular
if the coarse-grained model is expected to capture several very
different aspects of the underlying FG model. This leads to the
well-known problem of representability: A CG model that
reproduces the structure of the FG model does not necessarily
have the correct thermal properties and vice versa. Moreover, a
CG model that was constructed for one state point (e.g., one
density), not necessarily captures the properties of the FGmodel
at another state point (another density). The latter so-called
transferability issue will obviously cause problems when using
CG models for studying strongly inhomogeneous systems.
In sum, coarse-graining is bound to be a somewhat “dirty”

business. This is a direct consequence of the famous “no free
lunch” theorem”: Unfortunately, it is not possible to simplify a
complex problem just by rewriting it in terms of fewer variables.
Coarse-graining is effectively an optimization problem which
requires many compromises and a high level of physical and
chemical intuition. The coarse-graining philosophy rests on the
assumption that the large-scale structure of materials can be
understood without explicit knowledge of microscopic details.
In the case of polymers, one hopes that this assumption is
justified due to their repetitive molecular structure, the high level
of conformational disorder, and the dominant role of entropy.
We will now discuss selected aspects of coarse-graining in

polymeric systems or, more generally, soft matter systems.
III.A. Static Coarse-Graining

III.A.1. Structure-Based Coarse-Graining. Structure-
based coarse-graining techniques are typically used to design
particle-based CG models with the goal to reproduce structural
properties of the FG system such as spatial correlation functions.
The CG variables are the positions Ri of CG particles, and the
optimization task consists in finding the best approximation for
the free energy landscape U[Ri] or the configuration dependent
force field Fj[Ri] in the phase space of the CG variables.
Regarding equilibrium static coarse-graining, the field is already
quite advanced. The CG bonded interactions can be calculated
in a straightforward manner by sampling, e.g., bond length and
bond angle distributions in small reference simulations. To
determine nonbonded CG interactions, researchers can use the
open-source package VOTCA289 (www.votca.org) and select
between a range of establishedmethods5,7 such as inverseMonte
Carlo (IMC),290 iterative Boltzmann inversion (IBI),291−295

force matching (FM),296−300 or relative entropy (RE)
minimization between the CG and the FG distribution.301

Alternatively, they can employ the framework of the generalized
Yvon−Born−Green (g-YBG),302−304 or use artificial neural
networks.102,305,306 Noid and co-workers have pointed out that
the quality of nonbonded CG force fields can be greatly
improved if one distinguishes between CG monomers that have
different local connectivities within a molecule,307,308 e.g.,
between middle and end segments.
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One paradigmatic problem in structural coarse-graining is to
construct pair potentials from radial distribution functions
(RDFs) of particles as determined, e.g., from FG simulations.
This is known as the inverse Henderson problem. As proved in
1974 by Henderson for finite systems with fixed particle
number310 and very recently by Frommer et al.311,312 for the
thermodynamic limit, the problem has a unique solution for a
rich class of interaction potentials which includes, among other
the so-called Lennard-Jones type potentials.313 Nevertheless, the
problem is ill-posed in the sense that a small noise in the RDF
can lead to large changes in the potentials. In other words, quite
dissimilar potentials can produce almost identical RDFs309,314

(see also Figure 5). This opens possibilities to optimize pair
potentials not only with respect to structural properties, but also
to other properties as well. Building on this idea, Hanke and co-
workers have recently developed novel integral equation-based
methods that allow one to solve the inverse Henderson problem
with additional constraints,315,316 such that the resulting CG
model reproduces both the structural correlations and the

thermodynamic properties of the microscopic system.316 When
applying such methods, one should keep in mind that the RDFs
obtained from FG simulations may suffer from finite-size effects.
Cortes-Huerto and co-workers have recently investigated this in
the context of Kirkwood−Buff integrals317,318 and proposed
expressions for finite-size corrections in liquid solutions.317 In
the presence of elastic interactions, finite size effects persist even
in large systems and extrapolation procedures must be
applied.319,320

An interesting alternative way of dealing with the represent-
ability problem has been proposed by Lebold and Noid.321,322

Rather than trying to find one CG model that captures both the
energetics and the structure of the FG model, they suggest to
explicitly keep track of energetic and entropic contributions to
the potential of mean force321,322 in the CG simulation. Thus,
the effective potential is split up as

U U TSR R Ri W i W i[ ] = [ ] [ ] (11)

where UW is constructed such that it gives, on average, the
energy of the f ine-grained system with collective variables
constrained to Ri. The potential U is obtained by standard
structural coarse-graining methods, and the potential UW is
determined using a minimization method similar to least-
squares fitting. When analyzing CG simulation trajectories, the
potential UW can then be used to calculate observables that
depend on energy. As a side effect, this approach also allows one
to estimate the expected change in the potential of mean force at
a different temperature with remarkable accuracy.322 Among
others, it could be used to overcome sampling problems in the
microscopic reference system, e.g., close to a glass transition.323

Going beyond pure pair potentials, higher-order multibody
potentials324−328 or density-dependent potentials329−338 offer
additional flexibility which can be exploited to develop CG
models with improved transferability properties.339 In particular,
density-dependent potentials provide a comparatively straight-
forward way of accounting for the local environment of
interacting CG particles that may undergo liquid−vapor phase
separation,340 and they are quite popular in empirical models
with soft potentials such as (many-body) DPD145 or models
with density-based interactions.165 Such empirical soft potential
models are often set up as a sum of two contributions: Local
density-dependent repulsive interactions between particles that
account for the effect of excluded volume interactions, and
density-independent attractive interactions that account for
cohesion. The functional form of the two terms is usually
postulated, but they can also be derived in a bottom-up fashion
from FG simulations, e.g., by a combination of force matching
and relative entropy minimization.336,338 Since one has some
freedom how to distribute the forces between different
contributions, the results are not unique;336 they depend on
the coarse-graining procedure. This gives freedom which can be
exploited to further optimize the potentials with respect to
representability and transferability.
We should note that density-dependent potentials also have

interesting applications beyond liquid−vapor systems, e.g., in
ultracoarse-grained descriptions of compressible fluids or in
coarse-grained descriptions of responsive materials where the
shape of CG particles depends on their local environment.341

In other situations where local orientations of molecules or
monomers are important, it might be desirable to include
multibody potentials342 that also depend on the local
conformation, such as three-body Stillinger−Weber type
potentials that depend on the local angles between the

Figure 5. Uncertainties in the reconstruction of pair potentials from
pair correlation function, see also.309 In this example, the target RDF is
taken from simulations of a binary Lennard−Jones mixture; hence, the
true potential (black solid line) is well-known. Solid lines show
potentials as indicated, and dashed lines with the same color for the
RDFs obtained with the same potential. (a) IBI results after 50 and 300
iterations (green and blue). (b) Final results obtained with an IBI
variant (red) and with IMC (green). The true potential is best
reconstructed with the IMC method. All potentials, however, yield
RDFs that are almost indistinguishable from the target RDF. Data
provided by David Rosenberger.
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interaction sites.324,343,344 Scherer, Andrienko, and co-workers
have developed systematic ways to derive such potential, either
by force matching327 or by using kernel-based machine learning
with covariant meshing in order to account for inherent
symmetries.345 So far, this has only been applied for small
molecules, but it also offers interesting perspectives for
simulations of, e.g., semicrystalline polymers.
An alternative way of parametrizing strongly configuration

dependent effective interaction potentials has recently been
developed by Bereau and Rudzinski.346,347 Their idea is to use
different CG force fields for different regions in (local)
configurational space, and interpolate (“hop”) between them
depending on the current state of the system. This multisurface
concept, borrowed frommodels for electronic transitions, allows
for a much better local optimization of force fields without
having to resort to complicated force field parametrizations. As a
nice side effect, potential barriers can also be represented much
more accurately, which greatly improves the dynamic properties
of the system. A related ”multiconfigurational” concept designed
to capture conformational chain transitions and their effect on
potentials of mean force has been proposed by Sharp et al.348

III.A.2. Thermodynamics-Based Coarse-Graining. The
coarse-graining approaches discussed in the previous section
yield CG models that capture structural properties of the FG
reference system such as pair correlation functions or statistical
averages of mechanical force fields. From a multiscale point of
view, it might often be more interesting to capture
thermodynamic properties such as the equation of state (the
density), the compressibility or more generally, high-wavelength
structure factors, solubility parameters, interfacial tensions and
surface tensions. Thermodynamics-based CG strategies are
popular in top-down coarse-graining, as they use thermody-
namic quantities as input which are more easily accessible in
experiments. Typically, a certain functional form of potentials is
assumed, and the parameters are matched such that the CG
model reproduces the desired thermodynamic properties. For
example, van der Haven et al.349 have recently derived a very
accurate approximate closed-form expression for the coexistence
phase diagrams of binary polymeric mixtures in DPD models
with pair interactions, which allows to directly relate the soft
DPD interaction parameters with experimental data on
demixing phase behavior.
Thermodynamics-based coarse-graining is also the most

natural approach when designing field-based continuummodels
or extremely CG models with soft potentials such as DPD or
density-based potentials. As we have discussed above, density-
based models and field-based continuum models are closely
related to each other. There also exists a direct connection
between DPD and continuum mechanics: For simple fluids,
Español and Revenga have introduced a variant of DPD,350

termed “smoothed dissipative particle dynamics” (sDPD),
which is entirely constructed from thermodynamic properties
and can be seen as a Lagrangian solver for the fluctuating
Navier−Stokes equations.
When constructing ultracoarse-grained models, one must

again distinguish between bonded and nonbonded potentials.
Bonded potentials can be determined in a structure-based
manner as described in section III.A.1. On large scales, when
studying polymers of large molecular weight, it is often sufficient
to use simple chain models such as the discrete or continuous
Gaussian chain model,18 which requires matching only one
parameter (the Kuhn length for given number of Kuhn
segments)351 to the average conformational properties of the

chains in the reference system. Determining nonbonded
interactions is more difficult, as standard density-based
potentials or interaction terms in field-based models (eqs 2
and 5) are typically framed in a thermodynamic language in
terms of compressibilities, Flory−Huggins χ parameters (eq 3)
etc.
Specifically, mapping χ parameters still represents an

outstanding challenge. Field-theoretic models typically assume
that it describes the effective nonbonded interactions between
CG polymer segments and is independent of local composition,
chain length, and chain architecture. This picture is clearly
greatly simplified and it has long been unclear whether the
concept of a purely monomer-based χ parameters is at all
reasonable. Luckily, recent work by Morse, Matsen and co-
workers235,352,353 on diblock copolymer melts suggests that this
is probably the case, at least for dense polymer melts, due to a
universality in the phase behavior of polymers with large
molecular weight. They proposed to determine the χ parameter
in diblock copolymer melts by fitting the collective structure
factor in the disordered state of symmetric diblock copolymer
(BCP) melts to accurate theoretical predictions of a
renormalized theory that accounts for the effect of fluctuations
and finite chain lengths.354 Using this top-down mapping
method, they were able to quantitatively reproduce the location
of the order−disorder transition (ODT) in BCP melts of a
number of particle-based models352,354 and also experimental
systems353 after accounting for the effect of polydispersity.
Building on this insight, Willis et al.355 proposed as alternative
approach to directly use the ODT for mapping χ after correcting
for effects of polydispersity and compositional asymmetry.
Reanalyzing published experimental data, they mapped χ(T)
onto the functional form

T
A
T

B( ) = +
(12)

where A subsumes enthalpic and B entropic contributions to the
effective segment interactions, and extracted values of A and B
for 19 different chemical pairs.
The χ-calibration scheme of Morse and co-workers relies on

the existence of accurate theoretical predictions for the structure
and phase behavior of diblock copolymer melts. When looking
at more complex systems, such predictions are usually not
available, and less accurate mapping procedures must be
adopted. Theories of the χ-parameter have a long history, see,
e.g., refs 356−364 (the list is far from complete). Practical
mapping schemes for determining effective χ-parameters have
been proposed already 30 years ago by Müller and co-
workers365,366 and applied successfully to lattice models for
polymer mixtures. In cases where the factors contributing to the
χ-parameter are mainly enthalpic, Müller and Binder proposed,
as a simple prescription, to determine an “effective coordination
number” from interchain correlation functions,365 which
replaces the coordination number in the original Flory−Huggins
theory.367,368 Müller also devised a scheme to obtain additional
entropic contributions from independent studies of the equation
of state in “athermal” systems, where enthalpic interactions have
been switched off.366 More recently, a number of heuristic
schemes for matching Flory−Huggins type interaction param-
eters have been proposed by De Nicola and co-workers,369,370

that rely on either matching energies with CG off-lattice
models369 or adjusting conformational properties of homopol-
ymers in solution.370 Ledum et al. have developed a machine-
learning protocol for optimizing such parameters with respect to
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arbitrary target quantities, e.g., density profiles.371 Sherck et
al.372 and Weyman et al.373 have recently developed systematic
bottom-up coarse-graining strategies for deriving field-based
models with nonbonded monomer interactions that are not
restricted to the Flory−Huggins form (eq 3). Their idea is to
proceed in two steps. In the first step, a CG particle-based with
soft pair potentials of given functional form is determined from
reference simulations of a microscopic model, e.g., by relative
entropy minimization372 or by matching the RDF. The second
step is a Hubbard−Stratonovich transformation that turns the
particle model into an auxiliary field model, which can then be
studied by field-theoretical simulations. The second step
involves an inversion of the pair potential in Fourier space,
which restricts the class of potentials for which the approach can
be applied.373 In particular, the inversion is not possible for hard
core potentials, therefore the first step is essential and cannot be
omitted. The latter still remains true if one replaces the
Hubbard-Stratonovich transformation by a delta functional
transformation in order to obtain a field theory of the type of eqs
4 and 5. Such an approach would give additional flexibility
because higher order multibody interactions can be in-
cluded.145,161,162 The underlying density-based potential does
not have to be an integral over a local free energy density f(r,⃗ρ), it
could also describe nonlocal interactions as, e.g., in

U r r r r V r r
1
2

d d ( ) ( ) ( )nb
3 3[ ] =

(13)

however, the integral overVαβ(r)⃗ still needs to exist and be finite.
We should note that, strictly speaking, the bottom-up
approaches of Sherck et al. and Weyman et al. use ideas taken
from structural coarse-graining. Nevertheless, the resulting CG
models do not capture local structural properties such as packing
effects, hence they are closer to thermodynamically CG models
than to structurally CG models.
Compared to structural coarse-graining, one disadvantage of

thermodynamics-based coarse-graining is that one loses the
direct connection between mechanical forces in the CG and the
FG system. Since forces drive the dynamics, it becomes more
difficult to restore the correct dynamical properties without
further adjustments. Indeed, recent studies on ionic liquids374

have suggested that structure-based CG models tend to have a
more consistent dynamical behavior than thermodynamically
CG models, e.g., regarding the relative mobility of anions and
cations. We will specifically discuss issues of dynamic coarse-
graining in the next section. Thermodynamics-based coarse-
graining also becomes questionable in systems far from
equilibrium, e.g., in active fluids. One should note, however,
that many structure-based coarse-graining techniques are also
no longer applicable for such systems, as most of them−with the
exception of force matching−assume local thermodynamic
equilibrium: They assume local configurations to be Boltzmann
distributed in subvolumes of size comparable to the correlation
length.
III.B. Dynamic Coarse-Graining
The most common approach to studying dynamical properties
in CG simulations is to use the free energy landscape obtained
from a static equilibrium coarse-graining procedure as an
effective interaction potential in molecular dynamics (MD)
simulations. This approach can be quite successful if one
accounts for a few side effects of structural coarse-graining: First,
as known from the Mori−Zwanzig formalism287 integrating out
degrees of freedom invariably introduces friction terms and

stochastic noise terms in the CG dynamical equations. In a
standard MD simulation, these friction terms are disregarded,
which accelerates the dynamics. Second, CG free energy
landscapes are typically smoother than atomistic ones, which
further reduces the direct friction between CG particles. As a
result, coarse-graining reduces the separation between originally
highly disparate time scales such as, e.g., the inertial and the
diffusive time scales (the telescope effect),375 and accelerates
slower dynamical processes.
From the point of view of time bridging, both the speedup and

the telescoping are beneficial, as they allow one to access later
time scales in CG simulations376 and study processes on
different time scales simultaneously in one simulation. One of
the earliest96 and still widely and successfully used approaches to
dynamic coarse-graining has been to simply take advantage of
this effect, determine the speedup factor of the process of
interest, and use this to map the CG dynamics on real
dynamics,377−382 taking into account that the speedup factor
might be different for different processes and/or compo-
nents.380 However, care must be taken that the speedup does
not change the order of “faster” and “slower” processes and
which might change dynamical pathways, particularly in
dynamically asymmetric systems. This defines the problem of
dynamic consistency.12

As already discussed in the previous section, one key to
reducing the dynamic consistency problem is accurate structural
coarse-graining, as it helps to recover consistent dynamics even
in standard MD simulations, i.e., consistent barrier crossing
dynamics and consistent relative speedup.346,374 In fact, using
kinetic information as additional input for the parametrization of
coarse-grained force fields may improve their quality,383,384

because it gives more weight to transitional conformations,
which are typically not well sampled in standard coarse-graining
approaches. For instance, Xia, Keten and co-workers have
recently proposed an “energy renormalization” method for
adjusting the activation barriers in CG models of polymer
glasses, which allows to recover the dynamical and rheological
properties obtained from all-atom reference simulations over a
wide temperature range.385−387

In addition, one can manually reintroduce terms in the
dynamical equations that mimic the effect of the interactions
between the CG variables and the remaining “irrelevant” degrees
of freedom, i.e., friction and correponding stochastic noise388

and, possibly, memory.
III.B.1. Dynamic Rescaling. Gaining a more quantitative

understanding of the dynamic speedup between FG and CG
models is an interesting problem of statistical mechanics. One
promising approach is excess entropy scaling. The idea goes
back to the “principle of corresponding states” as formulated by
Helfand and Rice in 1960,389 which states that, for fluids of
particles interacting with a potential of the form
V(r) = ϵu*(r/σ), the dynamical and transport properties for
different σ and ϵ can be mapped onto each other. For that
particular choice of potential, the correspondence can be shown
by simple dimensional analysis and seems close to trivial, but it
does establish an interesting correlation between dynamic and
thermodynamic quantities. Building on this and a method to
map simple fluids onto hard sphere fluids,390 Rosenfeld
proposed a heuristic approach to identifying corresponding
states in simple fluids based on their excess entropy,391,392 which
turned out to be remarkably successful in both the dense and
dilute limits. Recently, Rondina et al.393 have shown that excess
entropy scaling can also be applied in dense polymermelts. They
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used a simple bead spring model as a starting point which was
coarse-grained to different degrees and showed that the ratio of
dynamical quantities like the bond relaxation time τ or the
viscosity η in the CG and FG system followed an exponential law

X X A Sexp( )CG FG exc= (14)

in a wide temperature range (with X = τ or η). Here ΔSexc is the
temperature-dependent excess entropy difference between the
CG and the FG system which was determined by thermody-
namic integration. However, the correspondence was found to
be less universal than one might hope, since both α and A
depend on the CG model.
Lyubimov, Guenza, and co-workers394−396 have considered

CG models that map polymer melts onto a fluid of interacting
soft blob, and designed a first-principles approach that allowed
them to estimate the speedup factor with remarkable accuracy.
They assumed that the speedup factor has two contributions:
The first is based on a simple rescaling according to the principle
of corresponding states.389 The second accounts for the different
environments of the interacting units, i.e., the different effective
friction constants of monomers that are part of a tagged chain
and of tagged CG particle in a melt environment. Both are
calculated within mode coupling theory397 and then mapped
onto each other. Using this ansatz, Guenza and Lyubimov were
able to derive analytical expressions for the dynamic speedup
factor of diffusion constants in chemically realistic melts such as
polybutadiene.396 Unfortunately, the calculations require a
rather involved analytic machinery, and extensions to complex
inhomogeneous systems and mixtures are not yet available.
The dynamic rescaling approach can also be applied to

nonequilibrium systems, e.g., sheared polymer fluids or
amorphous polymer materials under extreme stress. Ge and
co-workers have recently studied polystyrene glasses under
shear, uniaxial compressive stress,398 and tensile stress which
was strong enough to induce crazing.399 They compared the
results of CG, united-atom (UA), and all-atom (AA) simulations
using a simple rescaling prescription that targetted the stress
tensor and found that a single rescaling factor was sufficient to
(roughly) collapse the entire stress−strain curves of the different
models. This was even true when looking separately at the
conservative (elastic) and dissipative contributions to the total
stress. In the case of crazing,399 they showed that the craze fibril
structure was similar in the three models, and AA craze
configurations could be reconstructed from CG simulations.
This demonstrates that CG simulations can be used to accelerate
simulations and access later times in simulations of non-
equilibrium processes.
III.B.2. Introducing Friction. In particle-based CG models,

natural frameworks for introducing friction are the Langevin
thermostat, which allows to assign separate friction constants for
every CG particle, or the DPD thermostat, which conserves
momentum and allows to adjust independently the friction
parameters for every pair of interacting CG beads.
A natural generic way to determine CG friction parameters

fromFG simulations is provided by theGreen−Kubo formalism,
which relates the friction force experienced by a particle moving
at fixed velocity to the integral over the time correlation function
of the fluctuating forces acting on the particle (the FACF). In the
language of linear response theory, this expression relates a
steady-state generalized “current” (in this case themean force on
the particle) building up in response to a constant “thermody-
namic force” (in this case the fixed velocity) to the time-
integrated current−current (in this case force−force) correla-

tions. Phrased in this way, one can immediately see why a naiv̈e
application of the approach to FG simulation trajectories is
dangerous: The velocity of the CG particles is not fixed, instead
it fluctuates and averages to zero, and as a result, the integral over
the FACF vanishes as well.388 If the time scales of the dynamics
of CG variables and remaining irrelevant variables are well-
separated, one can overcome this problem by monitoring the
running Green−Kubo integral as a function of an upper time
cutoff. It will then first reach a more or less well-defined plateau
before it starts decaying, and the plateau value can be used to
extract values for the friction parameter.400 However, the choice
of the time cutoff value remains somewhat heuristic.
One way to overcome this so-called “plateau problem” is to

constrain the dynamics of the FG simulations such that the
momentum of the CG particles is kept fixed. A corresponding
bottom-up scheme for determining DPD friction parameters
from FG simulations was first proposed by Akkerman and
Briels388 and later derived more formally by Hijoń et al.285 based
on the Mori−Zwanzig formalism and an additional Markovian
assumption. The idea is to modify the dynamics of the FG
simulations such that the desired collective CG variables are
constrained to fixed values and do not participate in the
dynamics. This effectively decouples the FG dynamics from the
CG dynamics and solves the plateau problem. Hijoń et al.285

demonstrated the power of the approach using the example of
star polymermelts, and several other authors have later applied it
to derive CG DPD models for chemically realistic oligomers or
polymers such as n-alkanes,401 polybutadiene,402 and dimethyl-
propane.403

III.B.3. IntroducingMemory.The strategy of absorbing the
full dynamics of the irrelevant variables in a single set of DPD
friction parameters is justified if the time scales in the CGmodel
are well separated from those processes in the FG system that
have been integrated out.388 However, if the degree of coarse-
graining is comparatively low, or if the CG model does not
capture all slow processes in the FG model, the time scale
separation of characteristic processes at the FG and the CG level
is incomplete. In such cases, the Mori−Zwanzig projection
technique287 yields CG dynamical equations that are non-
Markovian, i.e., includememory terms. Two types of approaches
have been adopted in the past to account for this effect.
The first is to introduce virtual, but physically motivated

variables, which mimic the effect of slow processes that have
been eliminated in the CG model,404,405 while not affecting the
structural and thermodynamic properties of the CG system. One
example is the slip links discussed in section II.C, which are
introduced to restore the effect of entanglements, i.e., the slow
dynamics of topological constraints that are removed in
extremely coarse-grained models. Wu et al. have recently
developed a systematic method to derive slip-link parameters
from experiments or FG simulation data.198 Another example is
the RaPiD model for polymers developed by Briels and co-
workers, which uses the center of mass of molecules as CG
variables, but introduces a set of additional virtual variables that
characterize the conformational state of the molecules.406,407

The second approach is to cast the dynamical equations in the
CG model in the form of generalized Langevin equations
(GLEs), i.e., to explicitly include memory in the CG dynamical
equations.14 Setting up such equations is a highly nontrivial task.
In particle-based CG models, one would ideally like to use a
multidimensional GLE of the type
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whereMi and Vi are the mass and velocity of CG particles, FIC(t)
and ∂Fi(t) the conservative and fluctuating stochastic forces
acting on them, and Kij(t, s) is a multidimensional memory
kernel that depends on the configuration at time t and s, and
which is related to the stochastic force by a fluctuation−
dissipation relation
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Note that we have used a tensor notation here, and the last

equality
equil.= uses the relation s s k T mV V( ) ( ) 1 /j k kjk B= , which

is valid at thermodynamic equilibrium. The form (eq 15) has
been derived by Kinjo and Hyodo408 based on Mori−Zwanzig
projections and additional approximations.17,286 The fluctua-
tion−dissipation relation can also be derived from the Mori−
Zwanzig projection operator formalism, but one can show that it
is a general feature of GLEs which satisfy an orthogonality
condition for the relation between random force and velocity.409

Several methods have been developed and analyzed that allow to
determine memory kernels from FG simulations and thus
construct GLE-based CG models in a bottom-up fash-
ion.14,288,410−424

The main practical problem with the CG equation, eq 15, is
that simulations of such high-dimensional coupled integro-
differential equations are computationally very time-consuming,
mostly due to the high costs associated with generating the
multidimensionally correlated noise that satisfies the fluctua-
tion−dissipation relation. Therefore, simplifications must be
made. The simplest and most efficient one is to ignore all cross-
memory terms and replace Kij(t, s) by a single scalar function,

t s K t sK ( , ) 1 ( )ij ij= . This approach has been used, among
others, by Wang and co-workers420,425 to model polymers in
dilute solution and by Klippenstein and van der Vegt to model
polymer melts.422 In their approach, Klippenstein van der Vegt
explicitly address the issue of multibody correlations and
propose a method to replace them by a single effective self-
memory kernel. To this end, they introduce a new scheme for
consistently including the cross-correlations between the
stochastic forces and the conservative interactions with the

effective medium, which turns out to be quite accurate in their
studies of star polymer melts422 and Asakura−Oosawa fluids.424
Going beyond pure self-memory kernels, Li and co-workers

have suggested an approach, termed “non-Markovian DPD”
(NM-DPD), which decomposes the memory kernel into a sum
of frequency dependent DPD friction functions.426−428 This
relieves the noise generation problem, as the stochastic forces
can then be decomposed in the same pairwise manner.
Unfortunately, the approach puts severe constraints on the
self-memory part of the memory-kernel Kii, since it assumes
Kii = −Σj≠iKij. This can cause problems, e.g., when considering
hydrodynamic interactions between CG particles in implicit
solvent,416 or diffusion of molecules in penetrant networks.403

To overcome the problem, Jung et al. have developed a more
general scheme for reconstructing and treating pair memory
kernels that decouples self- and pair-friction while still ensuring
linear scaling for short-ranged pair-interactions.416

When comparing the two approaches to account for memory
in CG systems�physically motivated virtual variables and GLE-
based CGmodels�we should note that the practical solution of
GLE equations also often involves the use of auxiliary
variables.14 However, these auxiliary variables are just
introduced as a numerical trick to solve the GLE and have no
physical meaning.280,429−433 The idea is to replace the GLE by a
set of regular Langevin equations in an extended phase space.
This is possible if the memory kernel can be approximated by a
finite sum of possibly complex, but decaying exponentials (a
Prony series).434 Alternatively, the parameters of the Langevin
equations can be determined directly from correlation functions
obtained in FG simulations420,421 in a numerically well-
controlled manner.421

III.B.4. Transition Particle-Continuum. So far, we have
discussed dynamical coarse-graining issues in particle-based
models. Closely related problems arise in dynamical coarse-
graining from particle to continuum equations, when the CG
equations are dynamic equations for continuous fields. If the
fields describe complex fluids, e.g., polymer systems, one again
needs to a account for a multitude of time scales435−438 which
often precludes the use of, e.g., simple Cahn−Hilliard type
equations.439 Wang et al.228 have considered dynamic density
functional (DDFT) equations of the type (eq 6), but with the
mobility function replaced by a time-delayed memory function
Λ(r ⃗ − r′⃗; t − t′), which they calculated analytically in random
phase approximation. They studied the effect of memory on the
ordering/disordering kinetics in homopolymer and block
copolymer melts and found very good agreement between
particle-based simulations and continuum simulations.228 One

Figure 6. (a) Time evolution of order parameter in a diblock copolymer melt after a sudden quench according to different DDFT models (line) and
CG particle-based simulations (symbols). The DDFT functional Λ̂T that has been contructed from the particle model. Adapted from ref 220.
Copyright 2020 American Chemical Society. (b) Snapshots during the ordering of a melt of two-scale multiblock copolymers (A5nBnAnBnAnBn
structure) after a sudden deep (top) and shallow (bottom) quench. Adapted with permission under a Creative commons CC BY 4.0 License from ref
221. Copyright 2020, Schmid/Li.
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key to success in such an approach is to identify the appropriate
CG collective variables (densities). Very recently, Müller
analyzed this problem440 by examining three situations where
seemingly identical initial density perturbations were created in
different ways, first by applying a modulated force on all
segments of a melt, second by applying a force on end segments
only, and third by applying a force on a selected middle segment.
In particle-based simulations, the dynamic response to these
perturbations was found to be very different in the three cases.
This could be reproduced in the continuum simulations if the
densities of segments which had experienced the initial force and
those of passive segments were treated as separate collective
variables.
From the point of view of dynamic coarse-graining, polymers

have the convenient feature that relaxation processes on
different time scales can often roughly be associated with
different length scales. Therefore, Markovian DDFT models
such as eq 6may be able to capture themultiscale dynamics if the
nonlocal mobility matrix function is adjusted properlyΛ(r ⃗ − r′⃗).
Mantha et al.220 developed a bottom-up method to construct
Λ(r ⃗ − r′⃗; t − t′) from reference FG particle simulations and
found that simulations based on the resulting DDFT model are
in very good agreement with corresponding particle-based
simulations (see, e.g., Figure 6). Matching mobility matrices is
also a convenient way to map different CG particle-based
polymer models onto each other.441

One should note, however, that these approaches are
restricted to systems close to equilibrium. Far from equilibrium,
a CG continuum description operating with densities only is
certainly not sufficient and one needs to introduce additional
variables that characterize the chain conformations.442 Fur-
thermore, polymer stretching generates mechanical stresses,
therefore, the use of a purely diffusive dynamical model such as
eq 6 (model B dynamics) is no longer justified. An appropriate
CG model in such cases must also include momentum and
hydrodynamics. As we have discussed in section II.E, viscoelastic
models are quite commonly constructed from molecular
polymer models such as the elastic dumbbell model. Up to
now, this is mostly based on analytical considerations using

substantial mean-field approximations, and to the best of the
author’s knowledge, systematic bottom-up strategies to
construct full viscoelastic models from FG simulations are still
missing. So far, coarse-graining strategies that connect particle
models with continuous viscoelastic models for polymeric fluids
are mostly based on parameter mapping.271 This also holds for
elastoplastic models for polymeric glasses.443

Alternatively, it is sometimes possible to combine multiscale
approaches with theoretical insights, e.g., from the tubemodel of
viscoelasticity, in order to answer specific questions. One
example of such a theoretically informed scale bridging scheme
is the branch-on-branch algorithm by McLeish and co-
workers.444,445 It builds on a theory for the rheology of branched
polymers, the so-called pom-pom model by Bishko et al.,446

which estimates the relaxation modulus of chains for given
polymer architectures, requiring only a few additional input
parameters. The branch-on-branch algorithm establishes a
connection between microscopic simulations of the synthesis
of highly branched polymers and their rheological properties.
The microscopic simulations are used to generate a
representative sample of branched polymers, which are then
fed into the theoretical machinery. The method was applied
successfully by Read et al. commercial Low density polyethylene
(LDPE), and recently by Zentel and co-workers to predict the
rheological properties of LDPE and polybutyl acrylate (PBA)
from the reaction conditions in a miniplant.447−451

III.B.5. Accessing Late Times. So far, we have mainly
discussed strategies to infer correct and consistent dynamical
properties from CG models. However, even though CG
simulations can cover much longer time spans than atomistic
simulations, this is usually not sufficient to access experimentally
relevant time scales of seconds, minutes, minutes, or even
months. In order to do so, one must also coarse-grain in time.
In situations when it is possible to identify single activated

events that slow down the time evolution of a system, one can
resort to rare event sampling techniques. Typical problems that
are considered with such approaches are, e.g., refolding events of
molecules or nucleation processes in materials. A large portfolio
of methods has been proposed to study them,452 such as

Figure 7.Multiscale strategy for predicting charge transport in polymeric semiconductors.478 See text for explanation. Reproduced with permission
from ref 478. Copyright 2015 John Wiley and Sons.
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weighted ensemble techniques,453,454 transition path sam-
pling,455−457 forward flux sampling,458−460 the string meth-
od,461,462 or a combinations thereof.463 Using such methods,
one can extract rate constants that can be fed into a kinetic
model in order to simulate a system on larger time scales.
More generally, one of the most powerful frameworks for

coarse graining in time is Markov state modeling, which has
become very popular in the field of biomolecular simula-
tions.464−467 In Markov state models (MSMs), the configura-
tional space is partitioned into many regions, called macrostates,
and the dynamics is modeled in terms of a master equation by
memory-less transitions between these states. The number of
macrostates is typically chosen quite large, much larger than, e.g.,
the number of known metastable configurations of a system.
Replacing the original molecular dynamics equation by such a
relatively fine-grained Markovian process thus represents a
severe approximation. In reality, the transitions between
macrostates usually have some memory of the past. Never-
theless, it can be shown that for optimized mappings, the long-
term dynamics is still reproduced very accurately by theMSM, as
long as it is governed by a few dominant slow time scales.466

Currently, Markov state modeling is a well-established
technique with solid theoretical foundations.466 Techniques
are available how to optimize the partitioning into macro-
states,468 how to determine transition rates and the associated
uncertainty,469 and even how to use MSMs to connect
theoretical models to experimental trajectory data.470 Recent
machine learning based approaches offer additional oppor-
tunities for further optimization.471,472Many of these techniques
assume equilibrium; i.e., they require transition rates to fulfill
detailed balance. Knoch and Speck have recently considered
nonequilibrium MSMs (NE-MSM)s for driven systems473−476

and shown how to connect MSMs at different CG levels (i.e.,
with different microstate numbers) in a thermodynamically
consistent manner. Knoch et al. also applied the MSM approach
to the nonequilibrium problem of force-driven molecule
unfolding and showed that MSMs can be used to bridge
between loading rates in simulations to experimentally
accessible loading rates.477

III.C. Multiresolution

The ultimate vision of multiscale modeling is to study the
properties of a system simultaneously on different scales. Often,
it is sufficient to establish one-way communication channels
between simulations at different CG level. As an example of such
a scheme, Figure 7 shows a strategy to predict the electronic
transport properties of polymeric organic materials, which has
been developed by Andrienko, Daoulas, and co-work-
ers.170,478,479 It relies on a theoretical framework that relates
the charge transport in organic semiconducting polymers to
their local atomistic conformations,480−483 based on the Marcus
theory of electron transfer rates.484 In the multiscale approach of
Andrienko, Daoulas, and co-workers, coarse-grained and
ultracoarse-grained force fields for conjugated polymers are
constructed from atomistic reference simulations and (regarding
the nonbonded interactions in the ultracoarse grained models)
phenomenological considerations. Ultracoarse-grained simula-
tions using these force-fields are then carried out to sample large
scale morphologies, which serve as starting point for creating
atomistic configurations by a successive backmapping strategy
(see below). From the atomistic structures, a local ionization
energy landscape is constructed, which allows to infer electronic
properties such as the charge mobility.

This work flow demonstrates the power of multiscale
approaches; however, it does not yet allow to account for
possible feedback mechanisms between processes on different
scales. One way to include them is provided by the
“heterogeneous multiscale” (HMM) framework proposed by
E and Engquist in 2003.485 The idea is to couple a macroscopic
continuum simulation�in their case a fluid dynamics
simulations�with microscopic FG simulations, which serve to
estimatemissing data for themacroscale model on the fly.486−489

The approach has recently been applied by Lukać ̂ova-́
Medvid’ova ́ and co-workers to study non-Newtonian flows of
shear-thinning polymers melts in complex geometries.490−492

The HMM idea can also be extended to other types of
continuum models. For example, Honda and Kawakatsu493 and
Müller and Daoulas494 have proposed related mixed-resolution
models that concurrently couple time-dependent Ginzburg
Landau (TGL) models of (co)polymer blends to more detailed
models of the same system: The long-time evolution of the
composition profiles is simulated by TGL simulations, but SCF
calculations493 or particle-based simulations494 are carried out
intermittently, using the current TGL conformation as a basis, to
readjust the parameters of the TGL model.
In some situations, it may be desirable to study large portions

of a system with a coarse-grained model, but be able to zoom
into selected regions in space with higher resolution. This
concept goes back to the famous quantum mechanical/
molecular mechanics (QM/MM) method495 by Warshel and
Levitt, which combines electronic structure calculations in
selected regions of space with classical atomistic molecular
dynamics in the rest of the system, separated by a hybrid
transition region. In a similar spirit, Prapotnik, delle Site, and
Kremer in 2005496 and de Fabritiis, Delgado-Buscalioni, and
Coveney in 2006497 have proposed mixed resolution dynamical
simulation schemes for complex fluids that allow zooming into
selected regions of space and studying them at higher
resolution�the “AdResS” scheme496 and the ”hybrid MD”
scheme.497 Both, however, differ from QM/MM approaches or
related approaches involving a CG outer region498 in one
important aspect: They allow for a particle exchange between
the CG and FG regions. The AdResS scheme496 achieves this by
implementing a gradual switch between FG and CG force-fields
in a transition region−or, in a later “Hamiltonian-AdResS”
variant,499 a switch between interaction potentials. The hybrid-
MD scheme497 couples a particle model to a continuum model
via flux boundary conditions and allows to generate and remove
particles in the transition region. The approaches have
subsequently been refined and extended in various direc-
tions,500−502 combined with each other,503,504 and related
schemes have been proposed. For example, Qi et al. have
developed a scheme that couples field-based and particle-based
polymer models505−507 via a spatially varying semigrandcanon-
ical potential that enforces identity switches.508 As an interesting
new idea for AdResS, Heidari and co-workers509−511 recently
proposed to use an ideal gas as outer medium. While the latter
hardly qualifies as a high-level model of a complex soft material,
the setup allows one to carry out simulations with true open
boundaries, to determine absolute free energies for the coupled
FG system, and to enforce nonequilibrium situations with, e.g.,
steady-state currents.510

A crucial component of many multiresolution schemes is
backmapping: To connect different levels of resolution to each
other, one must not only go up the scales by coarse-graining but
also be able to go down, i.e., generate representative microscopic
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molecular conformations from CG configurations. This is often
done in a two-step procedure: First, some heuristic method is
used to construct a first guess for the positions of the FG
particles, and then, the FG configuration is further optimized by
simulated annealing or another energy minimization meth-
od.97,377,514−516 Liu et al. have proposed an alternative method
based on configurational bias Monte Carlo.517 The back-
mapping problem is particularly challenging in the case of
proteins, due to their complex chemical structure, and a number
of sophisticated methods have been developed for this
community. An overview can be found in ref 518, Table 3.
Currently, machine learning tools borrowed from computer
graphics become increasingly attractive. The reason is that the
backmapping problem has some similarity with typical problems
in computer graphics, such as filling a given rough frame with a
representative set of textures. Stieffenhofer et al.512,513 and Li et
al.519 have recently developed backmapping methods based on
deep generative adversarial networks (GANs), a framework
where two neural networks�a “generator” and a “discrim-
inator”�compete with each other in order to learn the main
statistical properties of a training set in an unsupervised manner.
Stieffenhofer et al. tested their scheme on syndiotactic
polystyrene and showed that it can create good backmaps
already before energy minimization, and that it is transferable: A
GAN trained on melts can be used for backmapping of polymer
crystals and even chemically similar (small) molecules512,513

(see Figure 8).
An interesting application of multiresolution tools is the

generation of equilibrated polymer melt configurations for large
molecular weight�which is still a difficult problem in polymer
simulations.520 In traditional approaches, one first prepares a
reasonably random initial configuration, e.g., by assembling a
number of polymers with typical melt configurations, and then
further relaxes it by implementing unphysical dynamics and/or
Monte Carlo moves that allow chain crossing or even change
chain connectivity.521−528 In multiscale approaches,529−536 one
uses CG simulations to equilibrate the melt and then
reconstructs a FG configuration by increasing the level of
resolution in a stepwise fashion. Tubiana et al. have recently
performed a systematic comparison of a traditional and a

multiscale equilibration scheme, focusing on topological
indicators such as knot distributions,537 and found excellent
agreement.538

III.D. Machine-Learning Based Strategies

Regarding virtually all aspects of scale bridging techniques
discussed above, machine-learning (ML) based methods are
becoming increasingly important.102 Kernel-based techniques
or artificial neural networks (ANNs) are used for identifying
suitable CG variables,472,539 for determining accurate atomistic
potentials that bridge between ab initio calculations and
standard classical force fields278,540 as well as for deriving
improved coarse-grained potentials,15,306,328,339,345,541,542 for
determining memory kernels from FG simulations,420 for
constructing MSMs,471,472 or for backmapping.512,513,519 In
some cases, ANNs can be trained to predict the outcome of CG
simulations, such as, e.g., the conformation of heteropolymers
for a given monomer sequence,543 the equation of state of
homopolymer melts for given pair potential,306 or even complex
quantities such as drug-membrane insertion free energies.544

This opens interesting perspectives for new coarse-graining
strategies or new strategies of materials design.
Traditionally, an important application of ML in polymer

science has been to predict material properties of interest of
polymer based materials or composites, such as, e.g., the
tribological properties, wear resistance, thermal conductiv-
ity,16,545−548 or even self-assembly.549 Specifically, ANNs have
been used for some time to predict the glass transition
temperature Tg, using as input either the chemical structure
only550−553 or additional information from small-scale quantum
mechanical calculations.554,555 Depending on the materials, the
predictive power can be quite high.556−564 Such approaches can
be applied, e.g., for identifying promising candidates for “high
temperature polymers”565 with high Tg. More generally, a
central vision in the emerging field of polymer infor-
matics543,566−569 is to provide ML tools for the discovery of
new interesting polymer materials. Ramprasad and co-workers
have recently launched a polymer informatics platform (www.
polymergenome.org) which offers tools for predicting a variety
of polymer properties that include the density, Tg, the melting

Figure 8. Backmapping strategy for polymer melts based on generative adversarial networks (GANs). (a) Sketch of the approach: A generator network
G sequentially samples atom positions depending on the CG structure and the existing atoms. The discriminator C evaluates true and fake
configurations based on the discrepancy between the positions of reference atoms and generated atoms. The training objective of G is to fool C, and the
training objective of C is not to be fooled. Reprinted with permission under a Creative Commons CC BY 4.0 License from ref 512. Copyright 2020
Stieffenhofer/Wand/Bereau. (b) A GAN trained on cumene and octane can be used for backmapping of syndiotactic polystyrene. Reprinted with
permission under a Creative Commons CC BY 4.0 License from ref 513. Copyright 2021, Stieffenhofer/Bereau/Wand.
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temperature, the dielectric constant, the tensile strength, and
many others.570,571

One should note that, in general, extracting new physical
insights from ML-based scale bridging strategies is not a trivial
task. They can help to unveil hidden structure−property
relations or correlations between different material proper-
ties,558,572 but they do not necessarily explain the underlying
mechanisms. When used for coarse-graining and force field
generation, they can be viewed as being a sophisticated
interpolation scheme between available (training) data, but
they do not necessarily help to understand general principles of
coarse-graining or general features of CG models. On the other
hand, feeding in theoretical knowledge of physical principles
enhances the efficiency ofML-based procedures and reduces the
amount of necessary training data.102 The resulting ML-based
models usually have much higher predictive power than the
original purely knowledge-based models. Hence knowledge-
based andML-based approaches to scale bridging andmultiscale
modeling mutually fertilize each other and should be seen as
complementary.

IV. CHALLENGES FOR THE FUTURE
Comparing the available scale-bridging techniques in the last
section to the examples of scale-bridging phenomena in
polymers in the introduction, it becomes clear that we still
need to go a long way before these two ends meet. Being able to
gain a comprehensive quantitative understanding of real-world
phenomena that includes the interplay of structures processes
on all relevant scales, from the smallest to the largest, remains a
grand challenge of polymer science. Several hard problems still
need to be solved.
Strong Inhomogeneities. Real polymeric materials are usually

multiphase materials, they are filled with internal interfaces, and
their composition varies dramatically in space. Therefore, the
transferability issues that still afflict most CG models represent
serious problems that need to be overcome, e.g., by further
improving coarse-graining strategies or by linking different CG
models to each other in a multiresolution sense.
Defects. Defects are omnipresent in soft materials. They can be

defined as very dilute and strongly localized perturbations that
may come in several flavors:573 As doping defects in the form of
local impurities, as connectivity defects that distort the local
molecule structure, or as topological defects that do not involve
any local chemical modifications, but still locally perturb the
structure in a manner that they cannot be removed without
global rearrangements of the whole system (examples are
dislocations). Because they are highly dilute, they are usually not
present in small scale simulations unless forced to be there;
nevertheless, they tend to have a large and long-range impact on
the material properties. In order to study this, small scale
simulations should thus capture the effect of a defect that they
actually do not contain, and that imparts its presence only, e.g.,
via nonperiodic boundary conditions.
Nonequilibrium and Processing. As discussed above, many

traditional CG concepts are developed for equilibrium systems
or at least build on a local equilibrium assumption. On the other
hand, already the example of viscoelastic phase separation shows
that in polymers, local equilibrium cannot be taken for granted
even in seemingly simple problems such as spinodal phase
separation. Most polymeric materials never reach equilibrium
and their properties crucially depend on the way they have been
created.35 Therefore, quantitative multiscale descriptions must
be able to account for processing pathways. The practical

importance of nonequilibrium processes in polymer systems has
been acknowledged for a long time, and nonequilibrium
phenomena as occur, e.g., in polymer rheology, have been a
research focus since the beginnings of polymer science.
Nevertheless, systematic scale bridging strategies for non-
equilibrium polymers are still in their infancy.
Accessing Late Times. The time bridging strategies discussed in

section III.B.5 have mostly been applied to single molecules or
simple small systems and not to materials. In order to
understand the properties of polymeric materials at late times,
depending on environmental conditions, and to investigate
phenomena such as aging, abrasion andwear, failure, and fatigue,
one must account for all factors listed above (inhomogeneities,
defects, processing history) and study their (co)evolution over a
very long time period. So far, theoretical models574−576 are
mostly based on empirical theories and with little connection to
microscopic simulations.
Multiscale modeling of polymers thus remains a difficult

problem, but it also offers exciting new prospects for the future.
For instance, one fascinating challenge will be to develop
systematic multiscale strategies for truly nonequilibrium living
polymeric systems as are common in biology, which depend on
strongly fluctuating local compositions and are constantly driven
out of equilibrium.
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M. A multi-scale method for complex flows of non-Newtonian fluids.
Math. in Engineering 2022, 4, 1−22.
(493) Honda, T.; Kawakatsu, T. Hybrid Dynamic Density Functional
Theory for PolymerMelts and Blends.Macromolecules 2007, 40, 1227−
1237.
(494) Müller, M.; Daoulas, K. C. Speeding Up Intrinsically Slow
Collective Processes in Particle Simulations by Concurrent Coupling to
a Continuum Description. Phys. Rev. Lett. 2011, 107, 227801.
(495) Warshel, A.; Levitt, M. Theoretical studies of enzymatic
reactions: Dielectric, electrostatic and steric stabilization of the
carbonium ion in the reaction of lysozyme. J. Mol. Biol. 1976, 103,
227−280.
(496) Praprotnik, M.; Delle Site, L.; Kremer, K. Adaptive resolution
molecular-dynamics simulation: Changing the degrees of freedom on
the fly. J. Chem. Phys. 2005, 123, 224106.
(497) de Fabritiis, G.; Delgado-Buscalioni, R.; Coveney, P. V.
Multiscale Modeling of Liquids with Molecular Specificity. Phys. Rev.
Lett. 2006, 97, 134501.
(498) Neri, M.; Anselmi, C.; Cascella, M.; Maritan, A.; Carloni, P.
Coarse-Grained Model of Proteins Incorporating Atomistic Detail of
the Active Site. Phys. Rev. Lett. 2005, 95, 218102.
(499) Potestio, R.; Fritsch, S.; Español, P.; Delgado-Buscalioni, R.;
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