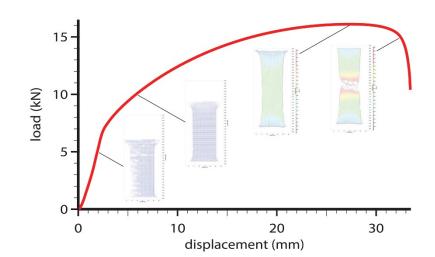


MEC-E6007 Mechanical Testing of Materials

Sven Bossuyt March, 2023

Course Content: learning from breaking things

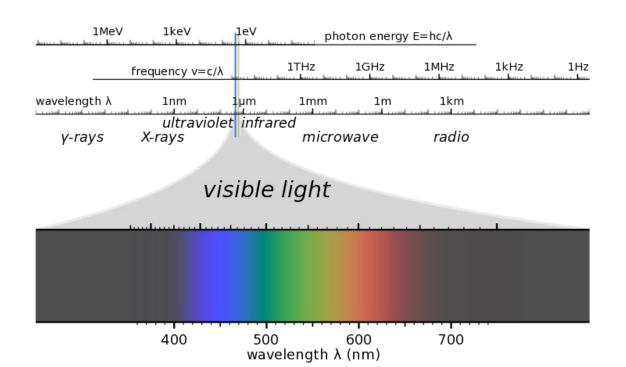
- Load
 - loadframes, actuators, and grips
 - quasi-static, dynamic, and cyclic loading
- Measure
 - measurement of force, displacement, and strain
 - *digital image correlation* and other full-field measurement techniques
- Analyse
 - selected special challenges in mechanical testing (ask for yours!)
 - introduction to inverse problem methodologies in experimental mechanics



Optical Imaging

Nature of light

electromagnetic radiation in the (limited) frequency band that the human eye is sensitive to



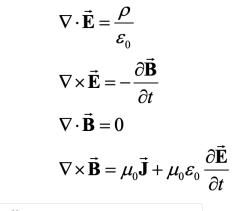
Maxwell's laws

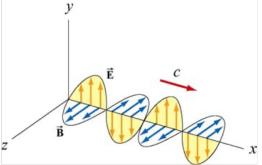
Coupled evolution of **E** and **B** in time and space

Reduces to a wave equation

- in vacuum or in homogeneous linear materials

evolution of electromagnetic fields is equivalent to superposition of electromagnetic waves \rightarrow "radiation"





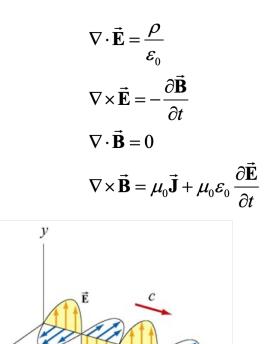
Polarization

Electromagnetism only allows transverse waves

- two independent directions of electric and magnetic fields E and B with same propagation direction
- can be expressed in different vector basis, e.g. circular polariztion

Affects interaction with birefringent materials and at oblique interfaces

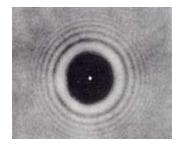
 various operating principles for polarization filters

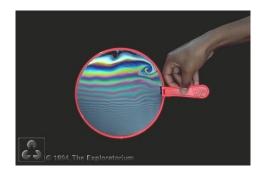


coherent light

Wave nature of light manifests itself through phenomena like interference and diffraction

Field strength is vector-additive





incoherent light

= superposition of a large number of electromagnetic waves with stochastically independent phase

- \rightarrow classical geometric optics:
- Beams or rays are the fundamental carrier of light.
- Light intensity (RMS field strength) is additive.

The light field or plenoptic function fully determines the state of incoherent light. It gives light intensity as a function of:

- Location
- Direction
- Wavelength
- Time

History of the light field concept

- 1846: Michael Faraday was the first to propose that light should be interpreted as a field, much like the magnetic fields on which he had been working for several years.
- 1874: James Clerk Maxwell provided formalisation of this concept.
- 1936: The phrase light field was coined by Arun Gershun in a classic paper on the radiometric properties of light in three-dimensional space
 - the amount of light arriving at points in space varies smoothly from place to place (except at well-defined boundaries like surfaces or shadows) and could therefore be characterized using calculus and analytic geometry
- The phrase has been redefined by researchers in computer graphics to mean something slightly different.

Applications of light field concept

- with advent of computers, color displays, and digital sensors, we can record, manipulate, and display light fields
- In computer graphics, some selected applications of light fields are:
 - Illumination engineering
 - Light field rendering
 - Multiperspective panoramas
 - Synthetic aperture photography
 - 3D display

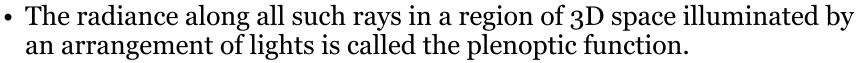
Aalto University

School of Enaineerina

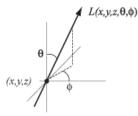
In geometrical optics, rays are the fundamental light carrier.
The amount of light traveling along a ray is radiance

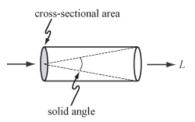
Plenoptic function

- denoted by L
- measured in watts (W) per steradian (sr) per meter squared (m²).



• Since rays in space can be parameterized by coordinates, x, y, and z and angles θ and ϕ , along with wavelength dependence and the time variable it is a 7-dimensional function.





Interaction of light with matter

index of refraction $n = \sqrt{\varepsilon_r \mu_r}$

- Snell's law: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

absorption $\underline{n} = n + i\kappa$

- Beer-Lambert law: $I(x) = I_0 e^{-4\pi \frac{\kappa x}{\lambda}}$

scattering

- from inhomogeneities

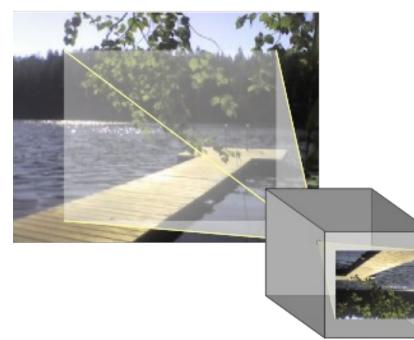
reflection and refraction

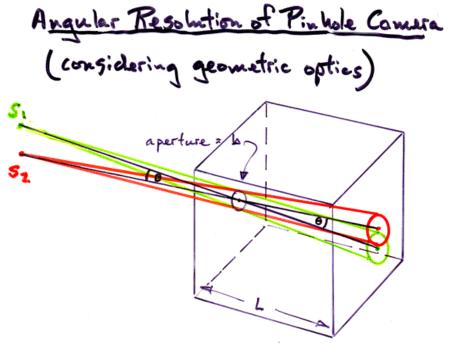
- at interfaces
- specular reflectance and diffuse reflectance at rough interfaces

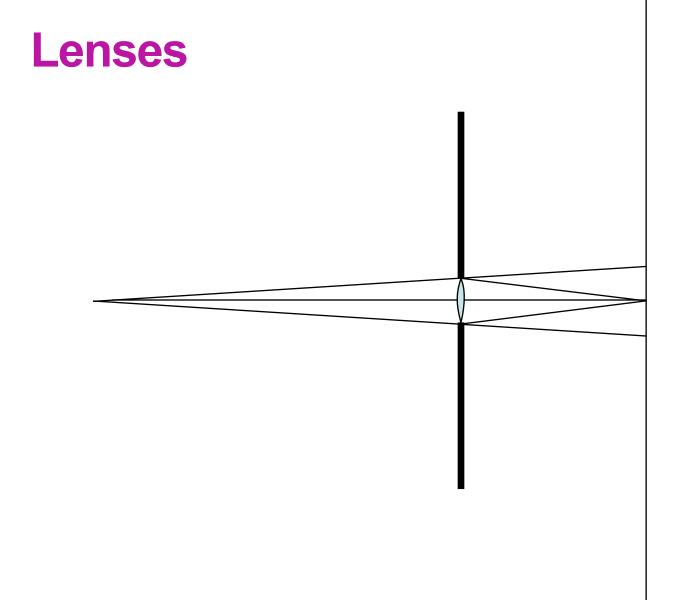
camera's

camera obscura

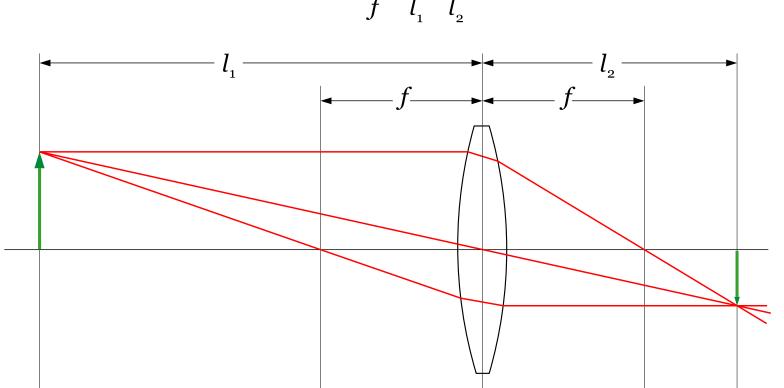
- "pinhole camera"
- relation to lightfield



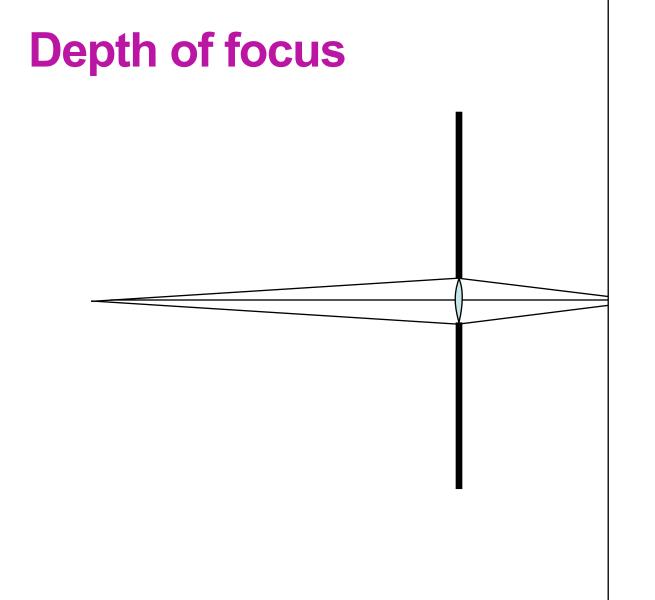


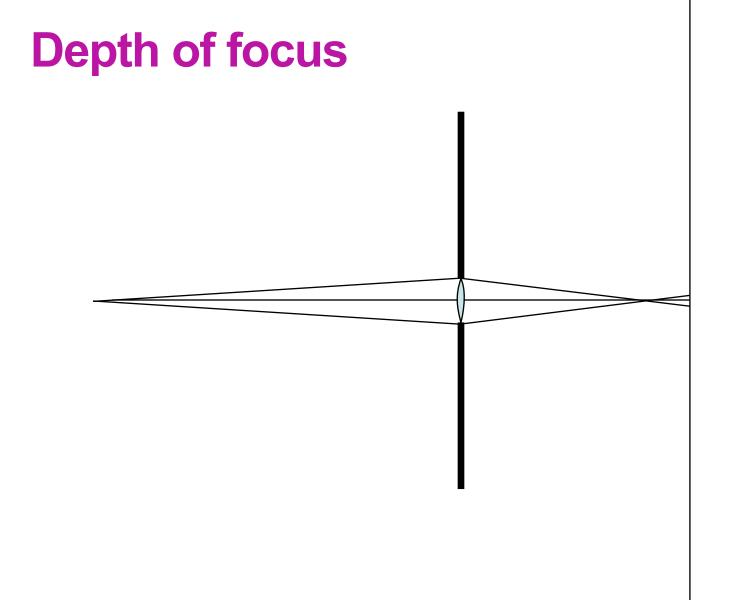


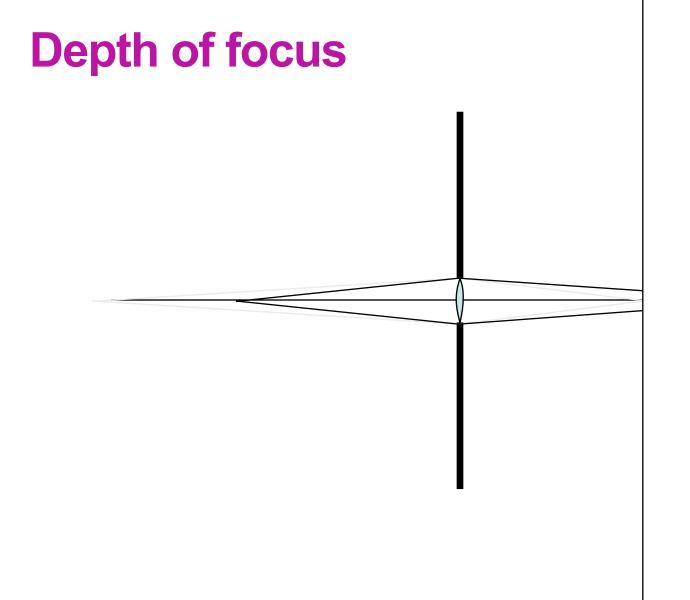
Lens equation



 $\frac{1}{f} = \frac{1}{l_1} + \frac{1}{l_2}$







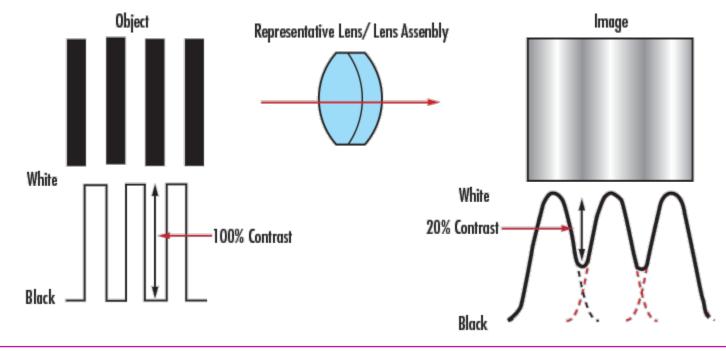
Depth of focus

perfocal distance opposit are using. If you the the depth of field will ce to infinity.⊲ For mera has a hyp

https://commons.wikimedia.org/wiki/File:DOF-ShallowDepthofField.jpg

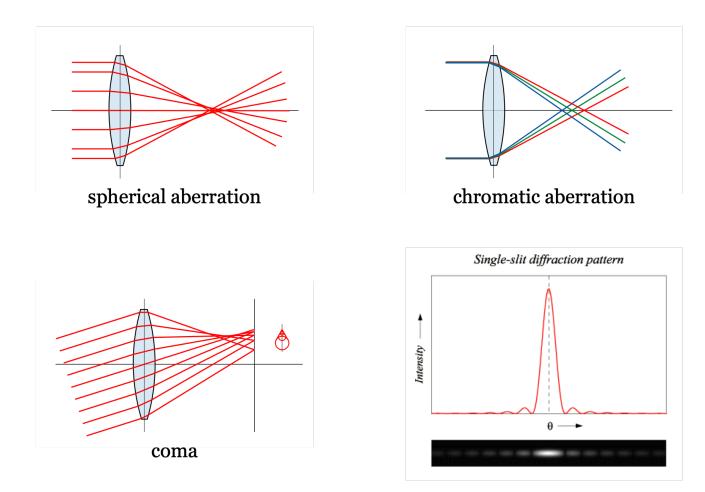
Modulation transfer function

• Attenuation of higher spatial frequencies in the image



https://www.edmundoptics.eu/knowledge-center/application-notes/optics/introduction-to-modulation-transfer-function/

Lens aberrations

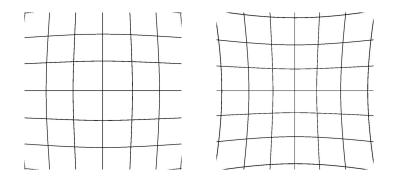


Lens distortions

"barrel" or "pincusion"

- Magnification depends on location in the image
- for axisymmetric setups only the radial distance to the optical axis is distorted

Strain is distorted more than displacement



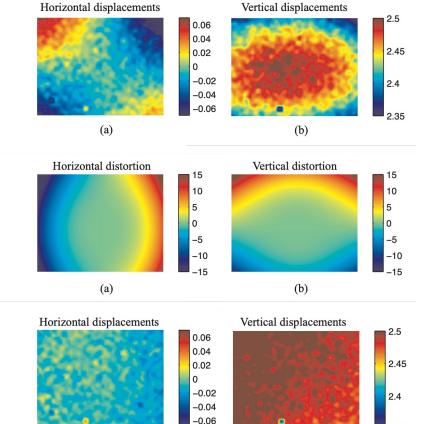
characterizing distortion by inverse methods

adjustable parameters related to setup

- imposed rigid body motion
- pinhole camera model with radial distortion
- camera positions

very similar to normal camera calibration

• no real difficulties to invert distortion



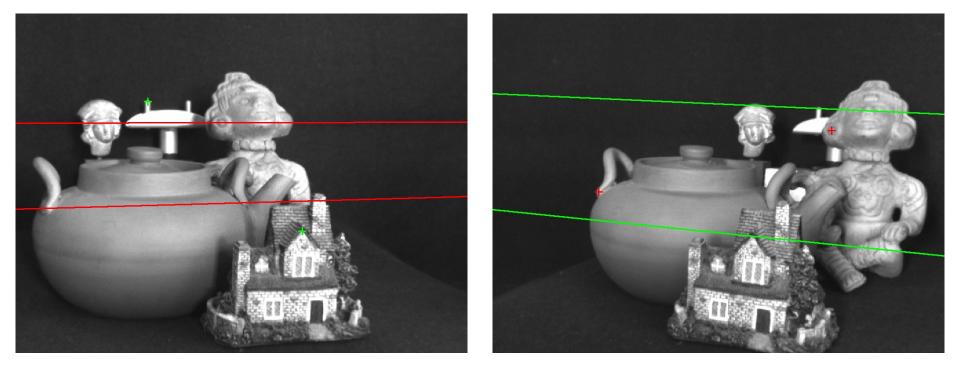
(a)

2.35

(b)

Stereo imaging relation between images from different locations

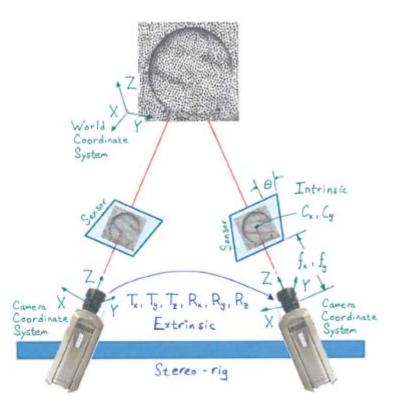
point in one image is view along a line emanating from the camera, called the epipolar line



Stereo calibration

bundle adjustment

- parameter optimisation to minimize projection error between images of calibration object
- intrinsic parameters of each camera
- extrinsic parameters of relative camera positions



Digital Image Correlation

Digital Image Correlation principle

Find displacement fields that map sequence of images of un-deformed material onto observed sequence of images of deformed material

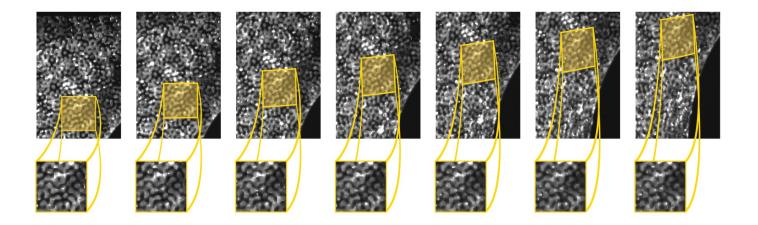


Image Requirements for feasibility of digital image correlation

any image in digital format

- data must be converted to pixel array
- optical, electron, scanning probe, tomography...

predictable image of deformed object

- distinguishable from original
- uniform (or known) imaging geometry and illumination
- no new or missing features

Image Requirements for quality of digital image correlation results

large pixel count, low noise

• maximize potential information content

small feature spacing

• allow small correlation window for best spatial resolution

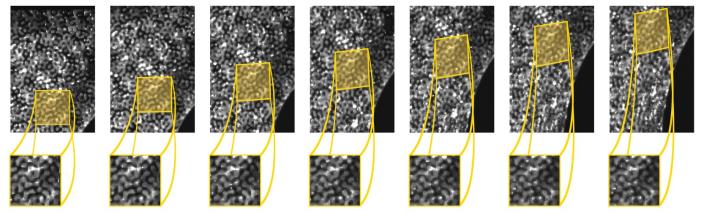
high contrast, irregular, well-resolved features

• give significant changes in correlation for best accuracy and precision

Digital Image Correlation implementation

digitally deform the image of the deformed state to match the image of the undeformed state

numerical optimization of a cost function that quantifies how closely two images match



Cost Functions for quantifying when digital images are equal

scalar number that increases when images are more different

- e.g., sum of squared or absolute differences
- optionally normalize intensity and contrast
- choice is irrelevant when images are nearly the same

sum of squared differences

- convenient for digital images and software implementation
 correlation
- inverse Fourier transform of magnitude squared of Fourier transform
- convenient for theoretical analysis

Mathematical formulation DIC as inverse problem

optical flow constraint

• image intensity "moves with object"

Lucas-Kanade

- approximate flow in a neighborhood of each point of interest
- "subset-based"

$$\begin{bmatrix} \Delta_x \\ \Delta_y \end{bmatrix} = \begin{bmatrix} \sum (\partial_x I_0)^2 & \sum \partial_x I_0 \partial_y I_0 \\ \sum \partial_x I_0 \partial_y I_0 & \sum (\partial_y I_0)^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum \partial_x I_0 (I - I_0) \\ \sum \partial_y I_0 (I - I_0) \end{bmatrix}$$

Horn & Schunck

• global minimization

$$rgmin_{ec{u}(ec{x})} \iint_{ec{x}} \left(\left. I
ight|_{ec{x}} - \left. I_0
ight|_{ec{x} - ec{u}}
ight)^2 + lpha^2 \left\|
abla^2 ec{u}
ight\|^2$$

$$ec{
abla}I\cdot rac{\mathrm{d}ec{x}}{\mathrm{d}t}+rac{\partial I}{\partial t}=0$$

Mathematical formulation DIC as inverse problem

Local DIC

- solve optimisation separately at each location (subset)
- many small optimization problems

Global DIC

- parametrize entire displacement field
 - e.g. using finite element shape functions
- much larger optimization problem

Integrated DIC

- calculate displacement field from a physics-based model
- optimize model parameters so its predictions agree with images

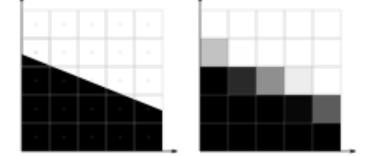
interpolation in DIC

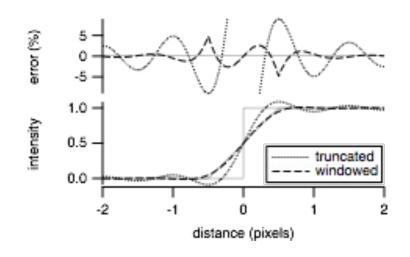
grayscale imaging is source of subpixel resolution in DIC

interpolation needed to apply subpixel displacements

error analysis typically assumes band-limited continuous-tone images

- interpolation error calculated from frequency response
- noise bias towards points with smaller RMS interpolation coefficient
- predicts that best patterns have high contrast, thus not band-limited





DIC error analysis

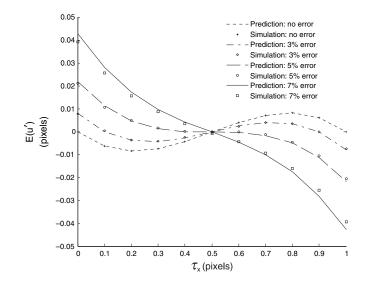
interpolation error

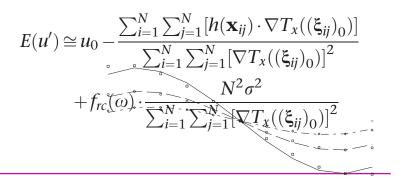
• relative to "sinc" interpolation which is exact for band-limited signals

noise-induced bias

good patterns have high contrast

- better contrast reduces both variance and systematic errors
- highest-contrast images are not band-limited!





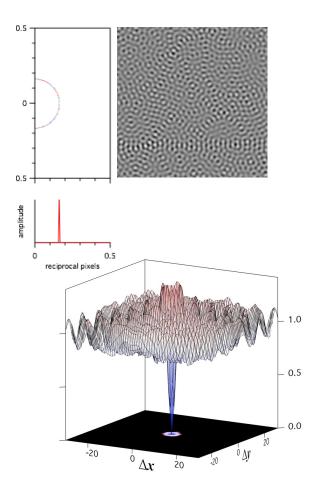
Optimally sharp band-limited pattern

autocorrelation is inverse Fourier transform of magnitude squared of Fourier transform

- maximum at zero displacement equals sum of squares of Fourier coefficients
- phase identically zero
- normalized peak can only be blunted by low-frequency content

maximum sharpness when only highest resolvable frequency content contributes

- low information content
- Hankel transform of delta function is Bessel function



Experimental results

