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Outline

• (Why) do we need fusion?

• Energy market penetration – lesson from other 

technologies

• Limitations of deployment

2
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Mankind energy usage
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World’s population is projected to increase to 11 

billion by 2100, predominately in Asia and Africa

4

Moore et al., 2019
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Energy (electricity) consumption increases with 

human development

5

Dale et al., Royal Chemical 

Society of Chemistry 2013
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World energy consumption has been and is 

continuously increasing

6

https://yearbook.enerdata.net
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Consumed energy primarily from fossil fuels: oil, gas 

and coal

7

https://yearbook.enerdata.net
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Total primary energy supply for EU member states: 

Finland’s consumption still dominated by fossil fuels 

8

Total primary energy supply for EU member states: 

Finland’s consumption still dominated by fossil fuels 

https://ec.europa.eu/eurostat/
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How/can we meet the Paris and Glasgow pledges to 

reduce the CO2 emission globally?

9

IEA – World Energy Outlook 2021 

https://www.iea.org/reports/world-

energy-outlook-2021/executive-

summary

Global CO2 emissions (GtCO2-eq) by 

scenario, 2000-2050
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Present primary energy sources and their drawbacks

10

• Fossil fuels (coal, natural gas, petroleum): depleting

resources (≈ 200, 60, 40 years) ⇒ CO2 pollution, global

warming

- Oil and gas are local sources ⇒ political and military conflicts

• Fission: public acceptance, proliferation, waste,

Chernobyl/Fukushima-type accidents

• Solar and wind: low energy density (to power large industrial 

installations and cities), storage, distribution and availability

⇒ Development of any new energy sources at industrial level 

has a lead time of at least one decade
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Benefits of fusion

11

• Fusion fuels are abundantly available

• Efficient energy source: only small amounts (grams) of 

hydrogen isotopes necessary ⇒ 250 kg of fuel per year (c.f., coal

plant 2.7 million tons)

• Energy output at GW level

• Process is inherently safe: no run-away process (plasma will

quench)

• No pollution or greenhouse gas production, no immediate

radioactive waste: reaction product (helium) is an inert, non-

toxic gas

• No proliferation, low activation of materials
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The growth model of new energy 

sources
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Energy systems typically has long lifetimes ~30 

years with expected doubling time ~ 3-4 years

13

Lopes Cardozo, N. J., A. G. G. Lange, and G. J. Kramer. “Fusion: Expensive and Taking Forever?” Journal of Fusion Energy

35, no. 1 (February 2016): 94–101. https://doi.org/10.1007/s10894-015-0012-7.

• Development starts 

exponentially until 

transition to linear 

growth 

(demand=production 

capacity)

• Saturation at 

significant fraction of 

energy production 

(10%) ~ 3 TW

https://doi.org/10.1007/s10894-015-0012-7
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Most installed capacity realized at the end of the exp.

Phase → production of several years

14

Lopes Cardozo, N. J., A. G. G. Lange, and G. J. Kramer. “Fusion: Expensive and Taking Forever?” Journal of Fusion Energy

35, no. 1 (February 2016): 94–101. https://doi.org/10.1007/s10894-015-0012-7.

In the exponential phase, 

there is no net energy 

production!

https://doi.org/10.1007/s10894-015-0012-7
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Historical data shows generality across different 

technologies

15

Lopes Cardozo, N. J., A. G. G. Lange, and G. J. Kramer. “Fusion: Expensive and Taking Forever?” Journal of Fusion Energy

35, no. 1 (February 2016): 94–101. https://doi.org/10.1007/s10894-015-0012-7.

Fusion is late for net-zero scenario, may exist post-transition 

• Transition phase 

(materiality) at 1% 

global capacity ~ 

0.3 TW ~ 2 T$

• 5 B$ in private

funding, ~50B $

ITER

https://doi.org/10.1007/s10894-015-0012-7
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Limitations of deployment
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The share of fusion in the future energy mix depends 

on several factors

17

• Chosen carbon mitigation 

target

• Availability of competing 

carbon-neutral options for 

baseload electrical power

- Carbon capture and storage

- Renewables combined with 

energy storage

- Nuclear fission

• Assumed costs of fusion 

electricity

Turnbull, Energy

Economics, 2015
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Nicolas (2021): intermittent renewables are an 

attractive solution … if they produce sufficient energy

18

LCOE - levelized cost of energy

EROI - energy returned on invested Nicolas et al., Energy Policy 2021
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Nicolas (2021): fusion may only end up significantly 

contributing to post-carbon global energy supply

19

• Renewables and energy storage cannot solve the 

decarbonization problem alone

• Fusion can help mitigate renewables’ intermittency problems, 

find a niche market such as baseload industrial or district 

heating

• Production of nuclear waste which requires deep geologic 

disposal is seen as acceptable,

• The remaining advantages of fusion over fission are enough 

to motivate the development of fusion power plants

⇒ If none of these things happen, fusion may be relegated to 

being a post-CCS or post-Uranium technology, to a much 

smaller market, or simply never become an established 

technology
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Nicolas (2021):  energy policy implications for fusion

20

• By the time the government fusion programs demonstrate 

fusion energy production, the global energy grid will likely 

have changed very significantly.

• A fusion reactor supplying baseload electricity might be 

obsolete by the time a demonstration device is built.

• The fusion community should consider output power 

modulation when defining research goals.

➢ Load-following capabilities

• Fusion research should consider relaxing the low-level waste 

criterion to accept intermediate-level waste.

➢ Treating fusion as fission
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Material shortages: elements in short supply also  

include He, Li, Cu, Cr, Mo, No, Nb, Pb and W

21

• Helium is vital, non-renewable resource

- Superconducting motors, generator, transmission lines,
energy storage systems

⇒ High gain if He was to be recovered from fusion device

• Lithium: competing with other sectors, such as Li car batteries, re-
use 7Li after usage in fusion reactors

• Beryllium: rare material in bertrandite and beryl

- Beryllium in helium-cooled pebble bed DEMO approx. 120 t, 
annual burnup 0.2 t / year ⇒ 100 DEMO-type reactor ≈
12,000 t / year⇔ world production at 220 t/year

• Niobium: used in steel and superconductors, estimated reserves: 

3 Mt
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Material shortages: elements in short supply also  

include He, Li, Cu, Cr, Mo, No, Nb, Pb and W

22

• Lead: DEMO-type reactor approx. 4,000 t, annual burnup 3 t / year,  

estimated reserves: 1.5 Gt

• Tungsten: adequate supplies, estimated reserves 3 Mt
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Summary

23

• Increase in human development goes hand-in-hand with the

increase in energy consumption

⇒ Rapidly developing region, both in population and human 

development, are predicted to consume approx. 5 times more

energy by 2100 compared to today 

• Current (fossil) energy sources could meet energy demands,

but exploitation is predicted to lead to unacceptably high CO2

emission ⇒ global warming and degrading of environment

(e.g., smog, acid rain, reduction in life quality)

• Fusion of hydrogen isotopes can potentially be a major

energy source in the future, offering significant benefits.
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Summary

24

• New energy technologies follows an s-curve, exponential-

linear-saturation growth phase because of long lifetime. No

net energy production at exp. phase.

• Fusion may be relegated to being a post-CCS or post-Uranium 

technology, to a much smaller market, or simply never 

become an established technology, depending on energy

policy, material availability, pricing, etc.
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Backup material

25
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Further, and much more thorough and vetted 

readings

26

• Official government and non-government organizations: 

• IEA: https://iae.org → 

https://iea.blob.core.windows.net/assets/d0031107-401d-

4a2f-a48b-9eed19457335/GlobalEnergyReview2021.pdf

• https://ec.europa.eu/eurostat/

• https://stat.fi

• https://yearbook.enerdata.net

• ourworldindata.org

https://yearbook.enerdata.net/
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Further reading

27

• The US National Academies Sciences, Engineering and 

Medicine 2019: 

https://nap.nationalacademies.org/catalog/25331/final-report-of-the-

committee-on-a-strategic-plan-for-us-burning-plasma-research
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F. Wagner studies on energy mix in Europe (Varenna 

Energy School 2021) 

28
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B. Mumgaard, Commonwealth Fusion Systems: 

commercialization of fusion

29
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Nicolas (2021): the fusion research community 

should also explore several additional questions

30

• What might the full lifecycle Energy Return On Invested be for 

modern designs of commercial fusion power plants?

• Which materials and elements currently being considered in 

fusion prototype designs cannot be scaled to hundreds of 

GW-sized reactors on sustainability or resource availability 

grounds?

• Is the recycling of activated materials from reactor structural 

materials actually plausible or desirable?
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