Wastewater treatment process modelling The 5 steps of a modelling project

Sylvie Gillot May 3, 2023

Modelling and Control of Water and wastewater treatment processes

WAT - E2130

- Introduction Good Modelling Practice (GMP)
- The GMP unified protocol
- Walk through the 5 steps of the unified protocol

• Introduction – Good Modelling Practice (GMP)

- The GMP unified protocol
- Walk through the 5 steps of the unified protocol

> Why a unified protocol?

Wastewater treatment modelling is not trivial!

- Process engineers/technicians
- Different process units compose a WWTP
- Treatment principles: bio-physico-chemical processes take place

They represent only partially the reality

Simplifications, assumptions need to be understood to interpret simulation results

They required specialised knowledge

They evolve (new variables, new processes...)

conciliatio

Ĩ

ata

- Data quality directly affects model quality
- « Garbage in garbage out »
- Data are always associated with uncertainties

understanding Process

> Why a unified protocol?

Wastewater treatment modelling is not trivial!

IWA Task Group - Good Modelling Practice

- Formed in 2005
- Elaboration of Guidelines for Using Activated sludge Models (2012)

> Elaboration of a protocol in 5 steps

Synthesis of existing procedures

Key steps from protocols related to other domains (hydrology)

14 examples that illustrate the required effort (Application matrix)

IWA Scientific and Technical Report (STR)

Rieger, L., Gillot, S., Langergraber, G., Ohtsuki, T., Shaw, A., Takacs, I., Winkler, S. (2012). Guidelines for Using Activated Sludge Models, IWA Publishing, ISBN: 9781843391746, London, UK, 312 p.

Scientific and Technical Report No. 21

Guidelines for Using Activated Sludge Models

EWA Task Group on Good Modelling Practice - Leiv Rieger, Sylvie Gillot, Guenter Langergraber, Takayuki Ohtsuki, Andy Shaw, Imre Takacs, Stefan Winkler

IWA.

- Introduction Good Modelling Practice (GMP)
- The GMP unified protocol
- Walk through the 5 steps of the unified protocol

5 main steps

GMP Unified Protocol 03/05/2023 - Sylvie Gillot

p. 10

- Introduction Good Modelling Practice (GMP)
- The GMP unified protocol
- Walk through the 5 steps of the unified protocol

5 main steps

Explicit definition of the objectives of the project and of the role of each stakeholder during the project progress

Development of a 'living' document to follow the project: the project definition document

Definition of the Objectives

Boundaries of the model Level of complexity (steady state vs dynamic) Focus variables (calibration, validation) et required accuracy Identification of the project stakeholders and their responsibilities Constraints (budget, time...)

Requirements

Personnel (level, experience ...) Data (quantity, quality) Schedule Deliverables (reports, models, presentations...) Budget

Deliverable

Project definition document : "dynamic" document that can be altered during the course of the project if agreed by the project stakeholders

Examples

Problem statement = Clear and explicit

Aeration system design

≠

Define the peak, average and minimum airflows required for the treatment system under the given design loading conditions

Examples

Problem statement

Use the model to assess the plant capacity to treat nitrogen loads

7

Determine the maximum flow that can be treated under design load conditions to meet required nitrogen removal and effluent limits

5 main steps

More that 1/3 of the required effort in a modelling project

Understanding the plant

- Visit the plant
- Update the flow diagram
- Locate sampling points and probes (on line measurements)

Location of flow meters,

Data collection

Input, output, physical (volumes...), operational (setting points...) data, others Historical data: monitoring, operation New data: COD fractionation, sampling time, energy...

Data analysis and reconciliation

Error detection: visualisation, data grouping, comparison with usual data, mass balances

Reconciliation whenever required

Planning of additional measuring campaign(s)

Data validation, model calibration and validation (COD fractionation) ... Stakeholder agreement

Carrying out additional measuring campaign(s)

Data collection

p. 23

> Data collection and reconciliation— Usual Ratios

	Ratio	Unit	n ¹⁾	mean	<i>Std%</i> ²⁾	median	min	max
	N _{tot} /COD _{tot}	g N/g COD	12	0.095	17%	0.091	0.050	0.150
	N-NH₄/TKN	g N/g N	13	0.684	8%	0.670	0.500	0.900
	P _{tot} /COD _{tot}	g P/g COD	12	0.016	22%	0.016	0.007	0.025
ent	P-PO ₄ /P _{tot}	g P/g P	12	0.603	16%	0.600	0.390	0.800
IJu	COD _{tot} /BOD ₅	g COD/g BOD	12	2.060	11%	2.050	1.410	3.000
v in	COD _{fil} /COD _{tot}	g COD/g COD	13	0.343	29%	0.350	0.120	0.750
kaw	TSS/COD _{tot}	g TSS/g COD	12	0.503	18%	0.500	0.350	0.700
H	COD _{part} /VSS	g COD/g VSS	11	1.690	12%	1.600	1.300	3.000
	VSS/TSS	g SS/g SS	12	0.740	20%	0.800	0.300	0.900
	BOD_5/BOD_{∞}	g BOD/g BOD	7	0.655	7%	0.650	0.580	0.740
	Alkalinity	Mol _{ea} /L	11	5.173	35%	5.000	1.500	9.000
nt	N _{tot} /COD _{tot}	g N/g COD	9	0.134	35%	0.120	0.050	0.360
	N-NH ₄ /TKN	g N/g N	11	0.755	4%	0.750	0.430	0.900
	N _{tot} /COD _{tot}	g P/g COD	9	0.023	25%	0.023	0.010	0.060
lue	P-PO ₄ /P _{tot}	g P/g P	10	0.741	12%	0.750	0.500	0.900
eff	COD _{tot} /BOD ₅	g COD/g BOD	9	1.874	31%	1.900	0.500	3.000
ary	COD _{fil} /COD _{tot}	g COD/g COD	10	0.449	31%	0.495	0.150	0.750
im;	TSS/COD _{tot}	g TSS/g COD	9	0.380	21%	0.400	0.180	0.560
Pr	COD _{part} /VSS	g COD/g VSS	9	1.718	14%	1.700	1.400	3.500
	VSS/TSS	g SS/g SS	9	0.794	7%	0.800	0.700	0.909
	BOD_5/BOD_{∞}	g BOD/gBOD	6	0.644	10%	0.656	0.533	0.760
	Alkalinity	Mol _{ea} /L	9	5.711	40%	6.000	1.500	9.000
ute e	COD _{tot} /VSS	g COD/g SS	9	1.434	7%	1.420	1.266	1.600
tiva	N _{tot} /COD _{tot}	g N/g COD	7	0.073	35%	0.060	0.045	0.116
Act	P _{tot} /COD _{tot}	g P/g COD	7	0.020	64%	0.015	0.010	0.044
þ	VSS/TSS	g SS/g SS	10	0.739	8%	0.750	0.650	0.900

Error detection – usual ratios

Tukey whisker box

Data analysis

Mass balances

Flux	1	2	3	4	5	6	7
Description	Raw WW	Settled WW	Primary sludge	Bioreactor output	Recycled sludge	Secondary sludge	Effluent

INRAe

GMP Unified Protocol 03/05/2023 - Sylvie Gillot

Example 1

Example 2

Usual values					
COD/BOD5	NH4-N/TKN	PO4-P/PTOT			
2.4	0.6-0.8	0.6-0.8			

	Flow	Concentrations						
Day	m3/j	COD	BOD5	TSS	TKN	NH4-N	PTOT	PO4-P
1	25321	392	163	209				
2	23439	462	190	236				
3	23744							
4	34192							
5	28547	590	214	233	53	37	5.9	4.7
6	28533	383	236	207				
7	34702	499	185	215	50	34	6.1	5.2
8	47566	385	127	193				
9	34960	309	112	165				
10	31971							
11	31790	509	219	253				
12	40982	312	132	173	40	29	5.0	5.0
13	36572	441	223	201	46	46	5.0	5.3
14	47153							
15	41364							
16	37682	264	115	120				
17	32354	329	153	136				
18	33447	530	242	264	51	35	6.2	5.2
19	32940	446	172	213				
20	32753	579	224		54	37	5.9	4.7
21	32097							
22	31383	474	211	201				
23	29897	488	230	222				
24	29441							
25	29965							
26	30526	505	240	210	52	36	5.3	4.1
27	29538	680	215	327				
28	31153	567	23	274	52	34	5.8	5.6
29	30288							
30	29083	440	216	209				
31	28220	452	224	189				

	Ratios	
COD/BOD5	NH4-N/TKN	PO4-P/PTOT
2.4		
2.4		
2.8	0.70	0.79
1.6		
2.7	0.69	0.85
3.0		
2.8		
2.3		
2.4	0.72	0.80
2.0	1.00	0.84
2.3		
2.2		
2.2	0.67	0.83
2.6		
2.6	0.67	1.01
2.2		
2.1		
2.1	0.69	0.77
3.2		
24.7	0.66	0.96
2.0		
2.0		

Construct the input datasets

A complete vector of input characteristics

- Missing values should be completed
- Erroneous values should be corrected
 - Data analysis tools more and more used

5 main steps

Choice of the (number of) reactors and associated models

Real world (measured)

Mixing behaviour

https://doi.org/10.1016/j.ces.2019.115196

Mixing behaviour

Dispersion is represented by a series of N completely stirred tank reactors (CSTR)

- Are all lines operated similarly?
- Which are the main processes?

Selection of biokinetic models

"keep it as simple as possible to answer the question"

All processes that significantly affect the target variables Experience:

Consulting engineers

Appropriate defaults parameters available

Ease of use

Availability in simulators

Processing time

5 main steps

Objective : assign the values to a number of selected parameters in order to match simulated and observed data

- Define a stop criteria => acceptable error between simulated & observed data for targeted variables
- 2. Select influencing parameters
- 3. Assign parameter values
- 4. Validate the parameter set

> Calibration and validation

> Calibration and validation

Different sub-models required to mimic a plant

Hydrodynamics

Physico-chemical reactions (precipitationdissolution, decantation, filtration,...)

Gas - liquid transfer phenomena (aeration, gas emission,...)

Biological reactions (biological conversion of substrates)

Influent characterisation (Organic matter fractionation)

How to select influencing parameters?

- Experience
- Published results
- Sensitivity analysis

How to assign values?

- Eyeballing
- Manual fine tuning
- High tech statistical methods
 - Monte carlo analysis
 - ..

GMP Unified Protocol 03/05/2023 - Sylvie Gillot

INRA

Hauduc et al., 2015 https://doi.org/10.1016/j.envsoft.2015.02.004

• Keep in mind

- WWT process models have a low identifiability
- Data quantity and quality have a huge impact
- Default parameter sets exist for urban WW, they may be different:
 - for industrial WW
 - for new processes...
- An order to follow:

A subject under debate!

Validation = is the model fitting for the purpose, i.e. able to:

- describe observed behaviour
- support engineering decision

Objective = to define the domain of validity of the model

Engineering experience may be used to check results

Usually, a different dataset is used for calibration and validation: different operating conditions, flows, temperature...

5 main steps

Different scenarios

Definition of the scenarios

Steady state, dynamic

Model

Modifications, input data

Simulation

For the different scenarios, steady state vs dynamics

Presentation et results interpretation

Graphs, tables...

Reports

What if scenarios

- What if the plant experiences a storm flow?
- What if we change the operating schedule for sludge dewatering? What if a tank is taken offline?

What if an industry closes and it no longer discharges to the plant?

WHAT IF ... ??

Sensitivity analysis

What is the impact of the sludge age, the recirculation ratio, DO levels...

Steady state or dynamic simulations?

Steady state	Dynamic
Long-term performance	Short-term performance
Less data intensive	More data
Overall issues	Detailed investigations
Quicker	More time

Hauduc et al., 2019 https://doi.org/10.2166/wst.2018.454

Simple example – Results presentation

Steady State Simulations	Dynamic Simulations
Tables	Graph of time-based outputs
Bar Graphs, Line Graphs and Pie Charts	Animated versions of Bar Graphs, Line Graphs and Pie Charts
Process Flow Diagram	Table of Output Data and Summary Statistics

Data may be wrong too!

Be a process engineer first!

Be aware of the limitations / the domain of validity of your model

> Wastewater treatment process modelling

sylvie.gillot@inrae.fr sylvie.gillot@aalto.fi

