Lecture: PHYS-E0525

Microscopy of Nanomaterials

Focused ion beam (FIB) microscopy and applications

Lide Yao lide.yao@aalto.fi

Learning goals

□ What is FIB?

Ion source, ion-solid interaction, basic working principal.....

□ Why use FIB?

Basic functions with a FIB Imaging, milling, deposition and implantation

□ For what by a FIB?

Main applications by a FIB

Patterning/etching, cross-sectional SEM, circuit modification, SEM/TEM sample preparation, EBSD, and 3D slicing/EDX mapping

From electron beam to ion beam

Focused ion beam (FIB)

- Using highly focused ion beams such as Ga⁺ beam to scan and cut a solid material inside a vacuum chamber.
- Imaging and micro/nano fabricating technique.

Nanoscience to nanotechnology

Aalto University School of Science

Development of FIB microscope

 1975: The first gas field ionization sources (GFIS)-FIB systems based on field emission technology were developed [1,2].

Gas ion sources: He, Ne, Ar, N,.....

Helium ion microscope (HIM) on the market since 2007 Plasma (Xe, Ar, O, N) FIB

- 1978: The first FIB based on a liquid metal ion source (LMIS) was built by Seliger et al. [3]
 Metal ion sources: Ga, Alloy
- □ 1988: First dual beam FIB/SEM appears [4]
- In the early 1990s: Dual beam commercial systems were available on the market.

Orloff, J. et.al, J. Vac. Sci. Tech. 12 (6), 1209, (1975).
 Levi-Setti, R. Scanning Electron Microscopy: 125 (1974).
 Seliger, R. et.al, Appl. Phys. Lett. 34, 310 (1979)
 Sudraud P, et.al, J. Vac. Sci. Technol. B6, 234 (1988)

Aalto University School of Science

SEM vs FIB

JSM 7500F SEM

Dual beam system

JIB 4700F FIB-SEM

@ OtaNano-Nanomicrosopcy Center (NMC), Aalto University

Main difference: additional ion beam column

Aalto University School of Science

Dual-beam columns

Ion beam column

57 Aalto University School of Science

Gas field ion source (GFIS)

Ionization potential and polarizability of common gases in GFIS vacuum

Gas	Ionization potential (eV)	Polarizability (10^{-24} cm^3)
He	24.6	0.20
Ne	21.6	0.29
Ar	15.8	1.63
H ₂	15.6	0.80
N ₂	14.5	1.74
СО	14.0	1.97
O ₂	13.6	1.57
H ₂ O	12.6	1.43

For He ion GFIS:

- ✓ Spot size: 0.35 nm for He
- ✓ Brightness: 5.0E9 A/cm²·sr

PHYS-E0525 - Microscopy of Nanomaterials

http://www.orsayphysics.com/what-is-fib

Liquid metal ion system(LMIS)

- By applying an electric potential (such as 30kV) between the needle and a downstream metallic extractor.
 - A structure known as Taylor cone is formed at the tip of needle.
 - Once exceeding a threshold voltage, ion and droplets are extracted from the cone (E> 1 x 10⁸ V/cm)
- The extracted ions pass through the hold of extractor.

With Ga ion LMIS (JIB 4700 @Otanano-NMC):

- Spot size: 3-5 nm (imaging resolution: 5 nm)
- ❑ Brightness: ~3.0×10⁶ A/cm²·sr
- Probe current 1pA-90nA

Other alloy ion sources?

Au-Si, Au-Ge and Au-Si-Ge

Why Ga ion in LMIS?

Low melting point (29.8°C)

Heavy enough for milling the heavier elements

Low volatility at the melting point (a long source life of about 400 mA-hours/mg)

Low vapor pressure

 -allowing Ga to be used in its pure form instead of
 in the form of an alloy source.

Electrostatic lenses in FIB column

Table 1.1 Quantitative comparison of FIB ions and SEM electrons

Particle	FIB	SEM	Ratio
Type Elementery charge	Ga ⁺ ion	Electron	
Particle size	+1 0.2 nm	-1 0.00001 nm	20 000
Mass Velocity at 30 kV	$1.2 \times 10^{-25} \text{ kg}$ 2.8 × 10 ⁵ m/s	$9.1 \times 10^{-31} \text{ kg}$ 1.0 × 10 ⁸ m/s	130 000
Velocity at 2 kV	$7.3 \times 10^4 \mathrm{m/s}$	$2.6 \times 10^7 \text{ m/s}$	0.0028
Velocity at 1 kV	$5.2 \times 10^4 \mathrm{m/s}$	$1.8 \times 10^7 \mathrm{m/s}$	0.0028

Why electrostatic lens?

- ✓ The ion (positively charged) is much larger and more massive than the electron. m_l ~10⁵ m_e
- ✓ lons travel more slowly
- ✓ Larger fields to focus and control ions than electrons:

Lorentz force:

$$\vec{F} = q\vec{E} + q\vec{v}x\vec{B}$$

Electrostatic lens

✓ If magnetic lens, Lorenz force is weaker, so a few km coils will be needed.

Aberrations in ion and electron optics depend on the same factors.

Aalto University School of Science

Ion-solid interactions in FIB-SEM

Electron-solid interaction

- ✓ Secondary electrons (SE),
- ✓ Backscattered electrons (BSE)
- ✓ Cathodolumenecence
- ✓ Auger electrons
- ✓ Characteristic x-ray
- Interaction volume: μm

Bernd Schmidt, Klaus Wetzig. Ion Beams in Materials Processing and Analysis. Springer, 2013.

Ion-solid interaction

Nuclear processes

- ✓ Sputtered particles (ions or neutrals)
- Backscattered ions

Electronic processes:

- ✓ Ion induced secondary electron (iSE)
- ✓ X-rays or Auger electrons (low yield)
- Interaction volume: tens of nm

Collision cascade (Ga ions)

Collision cascade model

Aalto University School of Science TRIM or SRIM (transport, or stopping range ions in matter)—Monte Carlo simulation

- ✓ Projected range R_p :10-100 nm
- ✓ Lateral range R_l : 5-50 nm

Basic functions in a FIB

ISE imaging in a FIB-SEM

SE and iSE images from a FIB-cut brass

C.A. Volkert et al., MRS bulletin 32, 389, 2007

Mainly detecting iSEs for imaging in a FIB

A few 1-10 iSEs (10eV) / Ga ion (5-30kV)

Contrast mechanism of iSE imaging

- ✓ Ion "channels" parallel to crystal planes, fewer electrons are emitted.
- ✓ Heavier samples typically result in more ISEs (and SEs).
- ✓ Surface topography can lead to increases in the number of ISEs (and SEs).
- ✓ Offering complementary information about a sample surface.

Drawbacks by iSE imaging

Surface damage and ion implantation

- Channeling effect in iSE imaging is obvious!
- ✤ Imaging resolution: ~5 nm

FIB-SEM(Dual-FIB)

Ion Milling ⇒ Observation by SEM image

To optimize the following parameters for efficient milling:

(1) Ion beam parameters (ion energy, probe current, and beam diameter),

(2) Processing parameters (dwell time, beam overlap, ion dose, scanning mode)

(3) Target materials (mass, density, and crystallographic orientation)

FIB milling Energy dependence of sputtering yield

Energy dependence of sputtering yield of Au and Si target substrates by three types of ions at normal incidence.

- ✓ Sputtering yield "saturates" at ~100keV.
- ✓ Higher energy leads to significant implantation

Probe current, beam diameter and milling time

 At higher probe current (i.e. larger spot size), higher sputtering yield but lower resolution, vice versa.

Focus and astigmatism

Much necessary with good focus and low astigmatism before milling!

Shape of the beam spot with and without distortion

 With astigmatism and out-of-focus ion beam, each spot may become elliptical and elongated. Thus, the distorted beam finally causes the unwanted milling.

Incident angle

Effect of incidence angle:

- ✓ Maximum sputtering yields (Sputtered atoms per incoming ion)at angles in the range of 75° to 80°.
- ✓ FIB milling is usually done at normal incidence for vertical trench profile.
- ✓ No longer 'normal' once the milling starts-inclined incidence on tampered sidewall.

Channeling effect

Ion channeling effects:

- ✓ Reducing sputtering yield,
- ✓ Low processing efficiency,
- ✓ groove-like morphology of the surface
- ✓ High surface roughness,

Relevant factors:

- ✓ Angle of incidence of the ion beam
- \checkmark characteristics of the ion
- \checkmark Orientation of the target.

Effects of channeling on the FIB milling of a Cu 10° /100 twist bicrystal at (a) 0° tilt and (b) 10° tilt.

C. A. Volkert et al., MRS bulletin 32, 389, 2007

Pixel size vs. beam size

=3.0 (top), 1.5 (bottom), d_f $=2.35\sigma$.

should be less than 0.638

"Recent developments in micromilling using focused ion beam technology", Tseng, 2004

Scan orientation

Merits with spiral scan:

- ✓ The unwanted beam exposure or etching are much smaller in the case of the spiral scan.
- ✓ Shape produced by the spiral scan is much more symmetric.
- Redeposited material can be better removed from the sidewalls as the beam progresses from the center of a hole outward,

Serpentine

Spiral scan -- for milling holes or complexly patterning!

Serpentine scan-- for milling a feature with sharp angles (like square pattern).

Sputtering yield of different materials

Materia	al	Sputterrate
		[µm³/nC]
Si		0.27
Therma	al Oxide	0.24
TEOS		0.24
AI		0.3
AI2O3		0.08
GaAs		0.61
InP		1.2
Au		1.5
TiN		0.15
Si3N4		0.2
С		0.18
Ti		0.37
Cr		0.1
Fe		0.29
Ni		0.14
Cu		0.25
Мо		0.12
Та		0.32
W		0.12
MgO		0.15
TiO		0.15
Fe2O3		0.25
Pt		0.23
PMMA		0.4

Sputtering yield varies with material, orders of magnitude difference across periodic table.
 Actual rate much lower due to re-deposition of sputtered material.

✓ Actual rate much lower due to re-deposition of sputtered material.

Ion beam artifacts (Re-deposition)

Re-deposition:

During ion milling, a portion of the ejected atoms bump back into the already sputtered surface and redeposit onto it.

Re-deposition depends on:

- Kinetic energy of atoms leaving surface
- Sticking coefficient of target
- Sputtering yield of target
- Geometry of feature being milled

Factors that increase sputtering rate tend to increase re-deposition:

i) FIB milling is performed in a confined trench.

ii) FIB milling is performed in a highaspect-ratio trench.

iii) Higher ion beam currents are used.

Re-deposition can be greatly reduced by broadening trench width, decreasing probe current and multiple passes scanning!

Aalto University School of Science

Ion Beam artifacts-curtaining effect

Curtaining effect (by non-planar milling of the surface)

Due to competition between smoothing by surface diffusion or viscous flow and roughening because of surface curvature-dependent sputter yields.

i) Rough surface

ii) A surface with uneven chemical composition.

iii) Composites of hard and soft materials.

iv) Height steps (e.g. patterned structures in semiconductors)

v) A porous structure.

vi) Curtaining effect increases with lower acceleration voltages which is used for high quality samples.

Ion Beam artifacts-curtaining effect

- To eliminate the curtaining artifacts:
- 1) Ion milling direction coming from a homogeneous material.
- 2) Use thick, uniform and dense protection cap.
- 3) Rocking the sample during FIB milling process.
- 4) Infiltrate the samples, which have porous structures, with low viscosity resin.

by Oxford Instruments NanoAnalysis

FIB-Deposition

- ✓ Stream of a gaseous organometallic platinum or polymeric carbon compound
- ✓ Ga⁺ beam (mild current avoiding a high rate of sputtering) causes the cleavage of the platinum or carbon from the volatile components of the precursor compounds.

FIB-Deposition

FIB deposition compared to CVD and PVD

- ✓ Locally
- ✓ Site specially
- ✓ No purity (organic residues)
- ✓ Just a few precursor gases are available for the deposition of Pt, W, SiO2, and C.

Circuit modification

Welding for lift-out process

FIB/SEM–Deposition

FIB-implantation

Gallium implantation

Aalto University School of Science

- Alternation of the specimen's local composition within the interaction volume.
- Leading to structural changes, as well as alteration in, e.g., thermal, electrical, optical, and mechanical properties.

Annealing effect of Ga-implanted ZnO₂ nanorods

L. Yao et al., J. App. Phys, 103521 (2009),

Nanotechnology, 22(39) 395601 (2011).

Characterization of polycrystalline micrsoctructure

Any other way to determine crystallographic information of microstructure such as crystal orientation, grain boundaries, local crystal perfection.....? **Electron backscatter diffraction (EBSD) pattern analysis**

Formation of EBSD pattern

- Elastically or inelastically scattered electrons over a large angular range by sample
- The electrons satisfying the Bragg condition $(2d \cdot sin\theta = n \cdot \lambda)$ are diffracted and produce diffraction spots on the screen.
- The electrons travelling in different azimuthal direction produce successive diffracted spots to finally form a diffraction line.
- Many diffraction lines generated from the lattice planes in different orientations are superposed and thus form an EBSD pattern (well known as Kikuchi pattern).
- For acquiring high intensity of EBSD, specimen tilt angle is about 70°

https://www.jeol.co.jp

- If electron probe scans an arbitrary area of the specimen, the crystal orientations of each point of the area are recognized by comparing measured and calculated EBSD patterns.
 - Crystal orientation map can be obtained automatically and rapidly.
 - 10-20 nm resultion in Schottkyemission electron gun SEM Depth: 30-50nm

If EBSD+FIB

- ✓ Microstructure orientation analysis
- ✓ No necessary with mechanical polishing
- ✓ To reveal grain orientation inside bulk by 3D EBSD

https://www.jeol.co.jp

FIB patterning vs EBL patterning

- ✓ FIB Milling allows for creating cross sections or developing structures with desired geometries to control not only the lateral position but also local depth.
- $\checkmark\,$ It does not require the use of masks.

Aalto University

School of Science

Etching and patterning @OtaNano-NMC

Maskless lithography and nanostructuring

Cross Sectional SEM sample

Cross Sectional SEM imaging/EDX mapping

FIB-cut cross sectional SEM imaging and EDX mapping

Cross Sectional SEM imaging with Cryo-stage

- Cryo-SEM/FIB offers new opportunities to study soft materials, and frozen, hydrated samples from the field of life science.
- FIB-milling enables imaging additional planes by sitespecific X-sectioning perpendicular to the cryo-fracture surface, thus adding a third imaging dimension to the cryo-SEM.

How to prepare a successful TEM lamella?

Challenging work!

FIB-cut TEM lamella (in-situ lift-out technique)

By FIB polishing

- TEM lamella can be prepared sitespecifically with a spatial accuracy as fine as 30 nm.
- Compared to other techniques (microtomy, low-energy ion milling, dimpling, etc.), it costs a short time (a few hours).
- Applicable for broad material systems including hard, soft, life materials with cryostage.

TEM specimen preparation (overview)

Aalto University School of Science

FIB-cut Steps

Prior to FIB, a ~30 nm Pt layer was pre-deposited on the top by sputtering machine

Pattern size: 10 µm L x 2 µm H,

Depo (Pt): Beam 10 (30pA) 1 µm thick

Grooving: Beam 4 (10 nA) Depth 6 µm

Side cutting Pre-thinning Under cutting

Beam 5 (3 nA) Depth 6 µm

FIB-cut Steps

SEM

For welding: Carbon deposition, Beam 10 (30 pA), 2-3 minuntes

T: 0°

T: 0°

T: 0°

FIB-cut Steps

Fine milling

STEM imaging after cleaning

FIB-cut TEM lamellas for various materials

3D observation and analysis –FIB tomography

Two modes \checkmark

Aalto University

School of Science

i) Dynamic mode: SEM imaging in real time during milling process.

ii) Static mode: SEM imaging, EDX mapping/FIB imaging after each milling. High resolution imaging.

- Resolution: lateral ~1nm, z- resolution 10-100nm
- FIB tomography fills in the gap between TEM \checkmark tomography and X-ray tomography.

FIB

Serial

100 µm 1 mm

Materialstoday, 10, 20, 2007

Procedure of FIB-Tomography (video)

Narayan, K., Subramaniam, S. Focused ion beams in biology. *Nat Methods* **12**, 1021–1031 (2015)

FIB tomography

Advantage:

- Compared to serial TEM or serial tomography, the main advantage is the size of the volume that can be acquired
- With a close to one thousandfold increase in favor to the FIB-SEM.

It is applicable at NMC with a Cryo-stage!

Automated 3DEM. Scale bars: 10µm. (From Karreman et al. Journal of Cell Science 2016)

Key points to remember with FIB

- Micro/nano manufacturing technique with unique advantages of high fabrication resolution, high flexibility, maskless processing, and rapid prototyping.
- ✓ Wide applications in various areas, such as semiconductor industry, micro-/nano-optics, surface engineering, biotechnology, and nanotechnology.

Key references

- Focused ion beam systems-basics and applications, edited by Nan Yao, Cambridge University, New Jersey, <u>online 2010</u>.
- R.J. Young, M.V. Moore, Dual-Beam (FIB-SEM) Systems. In: Giannuzzi L.A., Stevie F.A. (eds) *Introduction to Focused Ion Beams* (2005), Springer
- Introduction to Focused Ion Beam Nanometrology, Edited by David C. Cox, Morgan & Claypool Publishers, 2015. (available in Aalto library)

