# Artificial Yeast Sc2.0

Group 12: Carl-Alfons Antson, Cecilia Maijala, Elizaveta Sidorova, Nea Möttönen

#### Yeast 2.0

Yeast 2.0 represents a major step forward in the understanding of genetics and the potential applications of synthetic biology.

•Better understanding of genetics and genes interactions

•New applications: it's possible to engineer yeast to perform even more complex tasks.

•Improved biosecurity: better tools for detecting and preventing the spread of harmful pathogens.

•Ethical considerations: a significant milestone in ethical considerations around the creation of new forms of life.





# SCRaMbLE

Synthetic Chromosome Rearrangement and Modification by loxP-mediated Evolution (SCRaMbLE) - a recently developed system for diversifying gene expression through genome shuffling.

Site-specific recombinases are a family of DNA modifying enzymes that can recognize and drive recombination between two specific DNA sites to generate deletion, inversion, or integration of DNA fragments between the target sites:

- loxP sites targets;
- Cre recombinase.

# Original megachunk of our choice in chrXV



~ 136 kb – 161 kb NR58 COQ3 FFC4 TRM10 SPO21 HAL9 DUF1 MHF1 YOL097W-A YPQ1 MSH2 MPD2 ADH1

**Gene of interest**: *MSH2* 

Essential genes: WRS1, HMI1, RFC4, TRM10, YPQ1, SPO21, HAL9, MPD2, MHF1 Non-essential genes: COQ3, DUF1, ADH1

## Essential genes in the megachunk

| Essential Gene | Description                                                    |
|----------------|----------------------------------------------------------------|
| WRS1           | Cytoplasmic tryptophanyl-tRNA synthetase                       |
| HMI1           | Mitochondrial ATP-dependent DNA helicase                       |
| RFC4           | Subunit of replication factor C complex                        |
| TRM10          | tRNA methyltransferase                                         |
| YPQ1           | Vacuolar membrane transporter for cationic amino acids         |
| SPO21          | Component of the meiotic outer plaque of the spindle pole body |
| HAL9           | Transcription factor containing a zinc finger                  |
| MPD2           | Member of protein disulfide isomerase family                   |
| MHF1           | Component of the heterotetrameric MHF histone-fold complex     |

# Why MSH2?

- Homologous and highly similar to the human *MSH2*
- Codes for DNA mismatch repair protein
- Null mutant –> defects in DNA repair
- Mutations in the human *MSH2* linked to Lynch syndrome, breast cancer, and ovarian cancer



#### Illustration of the Megachunk design



TAG -> TAA
★ LoxPsym site
ORF Essential ORF
ORF Non- Essential ORF
MSH2 Gene of interest

What was done?

- Non-essential genes were deleted
- TAG-stop codons were changed to TAA
- LoxP sites
  - Deletions with LoxP, sites remain after deletion
  - Added around the gene of interest
  - Added around the megachunk

# Computer programs

The *Saccharomyces* Genome Database (SGD)

 Biological information and search and analysis tools to explore it Benchling

 Planning, analysis and construction of plasmids, genes and DNA Sequence Polishing Library

• Optimization of codons

## Wet lab construction method

- Short sequences of DNA are synthesized
- DNA sequences are combined into ~750bp building blocks using PCR
- With ligation and restriction enzymes, building blocks are first assembled into ~3kb minichunks, subsequently into ~10kb chunks and finally into 30-50kb megachunks
- Integration of the megachunk into yeast genome occurs through homologous recombination
- Megachunks are added by alternating auxotrophic genetic markers e.g., URA3 and LEU2 to ensure the integration
- Synthetic sequences are recombined into the genome until the chromosome is completely synthesized



Callaway, E. 2014. First synthetic yeast chromosome revealed. Nature.

# What would you use the yeast for or develop further? How?

Yeast 3.0 :

- Relocation of repetitive genes in 2.0 had only minuscule effect on cell growth → bigger changes might be viable
- Shortening the genome
- Relocation of essential genes to a centromeric plasmid (eArray)
- More insight into how much of the yeast genome is still redundant, and in general what is the
- minimal genome to still yield viable cells in specific circumstances

new opportunities for expanding the use of yeast and improving its performance in these industries

# References

- 1. Callaway, E. 2014. First synthetic yeast chromosome revealed. *Nature*.
- 2. Dymond, J. S., et al. "Synthetic chromosome arms function in yeast and generate phenotypic diversity by design." Nature, vol. 477, no. 7365, 2011, pp. 471-476.
- 3. Richardson, S. M., et al. "Design of a synthetic yeast genome." Science, vol. 355, no. 6329, 2017, pp. 1040-1044.
- 4. Boeke, J. D., et al. "Saccharomyces cerevisiae YJM789: a reference strain for genomic studies." Yeast, vol. 33, no. 8, 2016, pp. 421-437.
- 5. Annaluru, N., et al. "Total synthesis of a functional designer eukaryotic chromosome." Science, vol. 344, no. 6179, 2014, pp. 55-58.
- 6. Doudna, J. A., and Charpentier, E. "The new frontier of genome engineering with CRISPR-Cas9." Science, vol. 346, no. 6213, 2014, pp. 1258096.
- 7. <u>https://syntheticyeast.github.io/sc2-0/goals/</u>
- Swidah R, Auxillos J, Liu W, Jones S, Chan TF, Dai J, Cai Y. SCRaMbLE-in: A Fast and Efficient Method to Diversify and Improve the Yields of Heterologous Pathways in Synthetic Yeast. Methods Mol Biol. 2020;2205:305-327. doi: 10.1007/978-1-0716-0908-8\_17.
- 9. Liu, W., Luo, Z., Wang, Y. et al. Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods. Nat Commun 9, 1936 (2018). https://doi.org/10.1038/s41467-018-04254-0
- 10. Shen, Y. et al. SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes. Genome Res. 26, 36–49 (2016).
- 11. <u>https://www.yeastgenome.org/locus/S000005450</u>
- 12. <u>https://www.yourgenome.org/facts/why-use-yeast-in-research/</u>