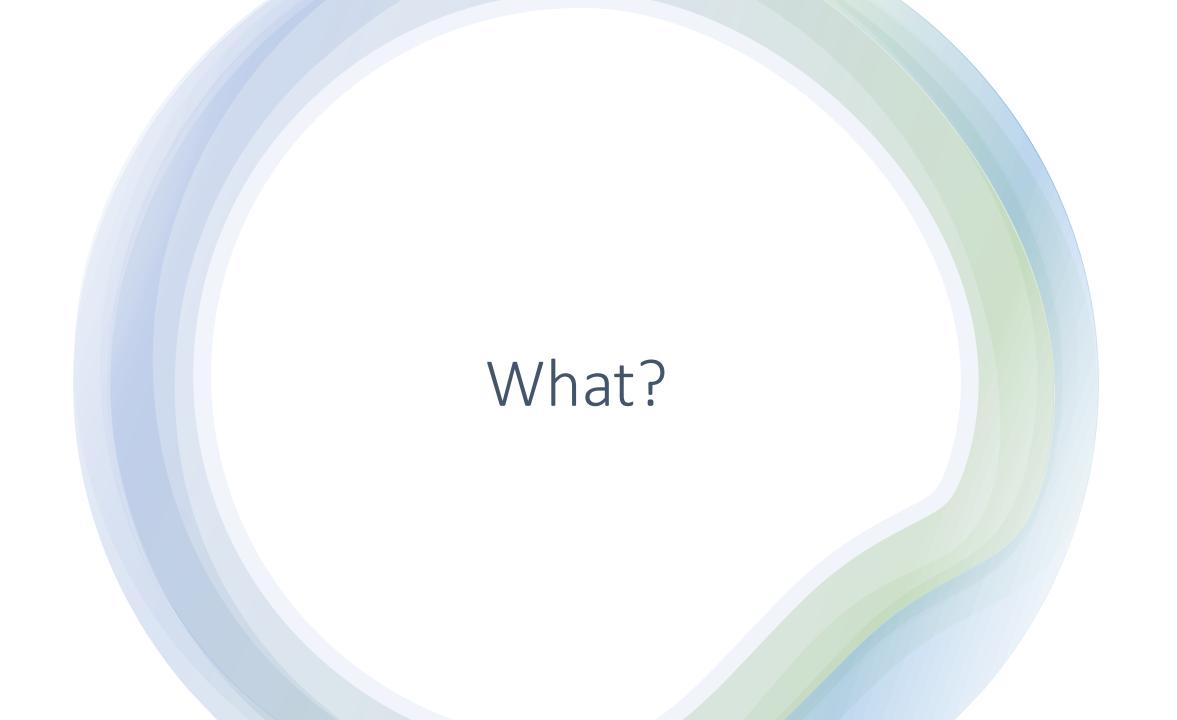
Photoreceptors in synthetic biology

Klara Hamit Juulia Mikkola

Joel Rouste

Contents

What?


• Light regulated system

How?

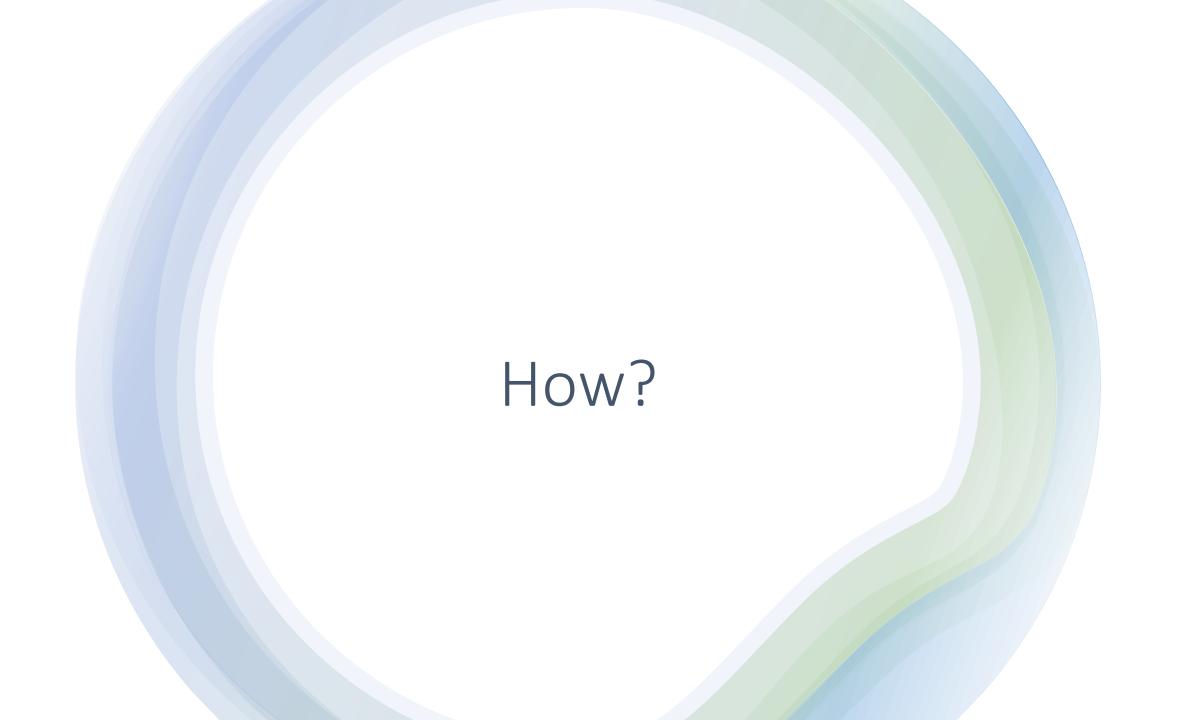
 Combining standard biological parts (BioBricks) from the iGEM parts registry

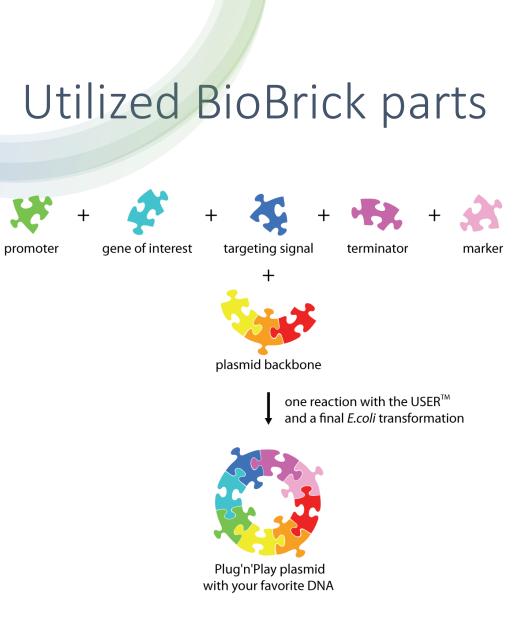
Why?

• Applications

The photoreceptor

Based on combining a cyanobacterial phytochrome Cph1 with well-studied EnvZ-OmpR system.

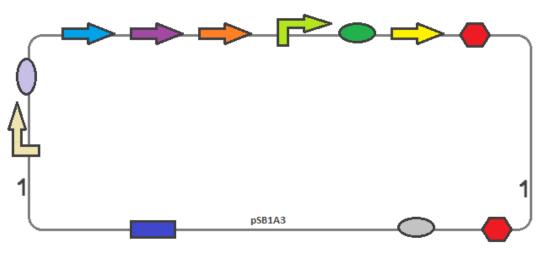

For chromphore formation, heme must be converted into phycocyanobilin (PCB). A heme oxygenase (ho1) and a phycocyanobilin:ferredoxin oxidoreductase (PcyA) genes (BBa_I15008 and BBa_I15009) are introduced into the bacterial genome.


With these parts being present, a chimeric Cph1/EnvZ fusion light receptor (BBa_I15010) can be expressed.

The Cph1 domain responds maximally to wavelengths around 660nm and when active, inhibits the EnvZ-histidine domain.

In the dark EnvZ domain phosphorylates endogenous OmpR which in turn can either activate or suppress transcription depending on promoter type.

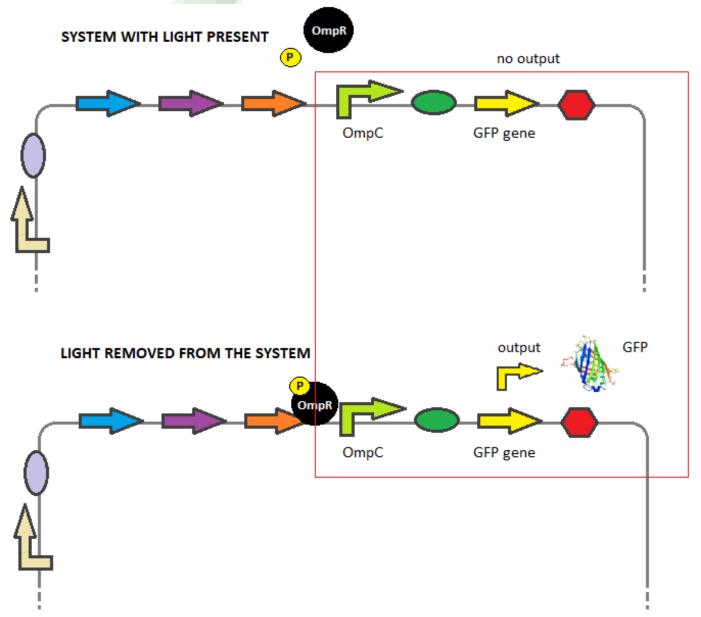
The sensor only works properly in a bacteria deficient of natural EnvZ.



Part number	Description	Notation
BBa_K608003	Plasmid intermediate consisting of a	
(BBa_J23104)	strong promoter and a ribosomal	strong promoter 🎽
(BBa_B0032)	binding site	RBS
BBa_115008	One of two requisite genes required	
	for the biosynthesis of	coding ho1 🖘
	phycocyanobilin from heme	
BBa_115009	One of two requisite genes required	_
	for the biosynthesis of	coding PcyA 🖘
	phycocyanobilin from heme	<u> </u>
BBa_115010	Chimeric Cph1 light receptor/EnvZ	coding Cph1/EnvZ fusion 📹
	protein	coding Cph1/Env2 lusion
BBa_R0082	Positively regulated promoter, OmpR	en en latar a cana de 📻
	controlled	regulatory OmpR 루
BBa_I13504	Screening plasmid intermediate	RBS
(BBa_B0034)	consisting of a ribosomal binding site,	i
(BBa_E0040)	GFP coding gene and a double	coding GFP 🖘
(BBa_B0015)	terminator	terminator 🔫
		pSB1A3
pSB1A3	High copy assembly plasmid with	ampicillin resistance -
() (BBa_150020)	ampicillin resistance, replication origin and terminators bracketing multiple	
		pUC19 replication origin 🖵
(BBa_150020)	cloning site	terminator 🗝
BBa_G00100	Forward verification primer annealing	
	site (VF2)	VF2
BBa_G00101	Reverse verification primer annealing	
	site (VR)	VR 🔽

Utilized BioBrick parts

- *E. coli* used as the host organism (chassis)
- Selected parts have shown to cause no significant burden to *E. coli* cells
 - Little to no impact on growth



Plasmid assembly with the selected BioBricks.

Part number	Description	Notation
BBa_K608003 (BBa_J23104) (BBa_B0032)	Plasmid intermediate consisting of a strong promoter and a ribosomal binding site	strong promoter
BBa_115008	One of two requisite genes required for the biosynthesis of phycocyanobilin from heme	coding ho1
BBa_115009	One of two requisite genes required for the biosynthesis of phycocyanobilin from heme	coding PcyA 🖘
BBa_115010	Chimeric Cph1 light receptor/EnvZ protein	coding Cph1/EnvZ fusion 📹
BBa_R0082	Positively regulated promoter, OmpR controlled	regulatory OmpR
BBa_I13504 (BBa_B0034) (BBa_E0040) (BBa_B0015)	Screening plasmid intermediate consisting of a ribosomal binding site, GFP coding gene and a double terminator	RBS
pSB1A3 () (BBa_150020) (BBa_150020)	High copy assembly plasmid with ampicillin resistance, replication origin and terminators bracketing multiple cloning site	pSB1A3 🕹 ampicillin resistance – pUC19 replication origin – terminator –
BBa_G00100	Forward verification primer annealing site (VF2)	VF2
BBa_G00101	Reverse verification primer annealing site (VR)	VR 🔽

Registry of Standard Biological Parts, The iGEM Parts Registry.


Input/output circuit & truth table

- Transcription activator OmpR is phosphorylated in the absence of light and will bind upstream of OmpC promoter
 - Allows transcription to take place resulting in production of the green fluorescent protein (GFP)
- Activation and repression of the whole system is much more complicated, the presented truth table is based on only the genes in the red box

Light	GFP
1	0
0	1

Truth table for a light regulated system.

Applications of optogenetically engineered cells in synthetic biology

Optogenetics

- Utilization of light for transferring information and modulating signals in biological systems
- By controlling protein function in target cells with selectable output yield
- Absorption of photons is coupled to a change in functional output
- → Applications in studying neural computation, gene expression and the effects of epigenetic changes

Building logic gates and complex layered circuits (Liu et al., 2018)

- Light-controlled activation and deactivation of CRISPR
 - Enables light control over genes on the chromosome
 - gRNAs are transcribed in response to light and then combined with dcas9 for redirection of metabolic flux
- Bacterial 3D printer
 - Immobilizing bacteria in gels and using intersection of laser beams to trigger gene expression (Paris-Bettencourt 2017 iGEM team)

Therapeutic applications of light-controlled mammalian cells (Mansouri et al., 2019)

- Blood glucose homeostasis in diabetic mice can be monitored and controlled
 - Light-dependent circuit for insulin secretion in mouse pancreatic β -cells by functionally expressing ChR2 in β -cells
 - Blood glycose levels were successfully reduced via blue light-controlled insulin expression
 - Can be controlled though a Bluetooth-compatible glucometer
- Delivery of optogenetic channels to retinal cells that suffer from retinitis pigmentosa (an inherited retinal degeneration disorder) in order to re-sensitize cells to light
 - A native signaling pathway within retinal cells is activated by the engineered photoreceptor
 - Successfully restores vision in blind mice

References

- Registry of Standard Biological Parts, The iGEM Parts Registry. <u>http://parts.igem.org/</u> [accessed 24/03/2023]
- Yoshida T, Qin L, Egger LA, Inouye M., 2006. Transcription regulation of ompF and ompC by a single transcription factor, OmpR. J Biol Chem, 281(25): 17114-17123. PMID: 16618701. <u>https://doi.org/10.1074/jbc.M602112200</u>
- Mansouri, M., Strittmatter, T., Fussenegger, M., 2019. Light-Controlled Mammalian Cells and Their Therapeutic Applications in Synthetic Biology. Adv. Sci. 6, 1800952. <u>https://doi.org/10.1002/advs.201800952</u>
- Schmidt, D., Cho, Y.K., 2015. Natural photoreceptors and their application to synthetic biology. Trends in Biotechnology 33, 80–91. <u>https://doi.org/10.1016/j.tibtech.2014.10.007</u>
- Liu, Z., Zhang, J., Jin, J., Geng, Z., Qi, Q., Liang, Q., 2018. Programming Bacteria With Light—Sensors and Applications in Synthetic Biology. Front. Microbiol. 9, 2692. <u>https://doi.org/10.3389/fmicb.2018.02692</u>

