SCHEDULE

	Date		Торіс				
1.	Wed	01.03.	Lec-1: Introduction				
2.	Mon	06.03.	Lec-2: Crystal Chemistry & Tolerance parameter				
3.	Mon	06.03.	EXERCISE 1				
4.	Wed	08.03.	Lec-3: Crystal Chemistry & BVS				
5.	Fri	10.03.	Lec-4: Symmetry & Point Groups				
6.	Mon	13.03.	EXERCISE 2				
7.	Wed	15.03.	Lec-5: Crystallography & Space Groups (Linda)				
8.	Fri	17.03.	Lec-6: XRD & Reciprocal lattice (Linda)				
9.	Mon	20.03.	EXERCISE 3 (Linda)				
10.	Fri	31.03.	Lec-7: Rietveld (Linda)				
11.	Mon	03.04	EXERCISE 4: Rietveld (Linda)				
12.	Wed	12.04.	Lec-8: ND & GI-XRD				
13.	Fri	14.04.	Lec-9: XRR (Topias)				
14.	Mon	17.04.	EXERCISE 5: XRR (Topias)				
15.	Wed	19.04.	Lec-10: Synchrotron radiation & XAS & EXAFS				
16.	Fri	21.04.	Lec-11: Mössbauer				
17.	Fri	21.04.	EXERCISE 6				
18.	Fri	28.04.	Seminars: EELS, XPS, FTIR, Raman				
19.	Wed	03.05.	Seminars: ED, HRTEM, SEM, AFM				
20.	Wed	10.05.	ADDITIONAL DISCUSSION/QUESTION POSSIBILITY				
EXAM: Wednesday, May 17th							

SEMINARS

- EELS Aleksi Rantanen & Jasmin Sonphasit
- XPS Umaid Lone
- IR Fasiha Israr & Lisa Riedlsperger
- Raman Zonghang Song & Xueran Tao
- SEM Trang Pham & Erkka Koskenniemi
- AFM Joakim Kattelus & Matilda Antila
- HRTEM Luiza Souza & Henrik Stenbrink
- ED Christer Söderholm & Shadab Ishtiaq

INSTRUCTIONS for SEMINAR PRESENTATIONS

- Topics: EELS, IR, Raman, XPS, SEM, AFM, HRTEM, ED
- Seminar presentation is mandatory
- Presentation slides will be put up in MyCourses afterwards
- Seminars are part of the course content and it is likely that there will be questions in the exam related to these seminars
- Given in a group of two students
- Evaluated in the scale: 10 ~ 20 points
- Presentation: 25+5 minutes
- Rough content of the presentation:
 - principle of the technique(s)
 - type of information gained
 - interpretation of the measured data
 - pros & cons

- two to four research examples

(you will be given some relevant research papers for an example)

LECTURE 10: X-RAY ABSORPTION SPECTROSCOPY (XAS)

- Synchrotron radiation
- **REMEMBER:** Local structure & Valence are very much related
- EXAFS (Extended X-ray Absorption Fine-Structure)
 - \rightarrow Local structure (= number & distance of neighbouring atoms)
- XANES (X-ray Absorption Near-Edge Structure)
 → Valence (= oxidation state)

Crystal structure and redox states (= valences) are highly related, recall e.g. the empirical BVS approach to address the correlation !!!

Bond-Valence-Sum (BVS) for Inorganics

- Quantitative relation between the bond valence and the bond length
- Bond valence can be fractional & Neighbours may be unequivalent
- The shorter the bond, the stronger it is, and the larger the s_{ij} is
- Empirical equation:
 - $s_{ij} = \exp[(R^0_{ij} d_{ij})/0.37]$ $V_i = \pm \sum s_{ii}$
- R⁰_{ij} values tabulated (for various i-j combinations)

X-RAYS & MATERIAL

- Diffraction of x-rays from regular atom planes \rightarrow XRD
- Fluorescense radiation created by x-rays \rightarrow XRF
- Photoelectrons created by x-rays \rightarrow XPS (ESCA)
- Absorption of x-rays → XANES & EXAFS

PRODUCTION OF X-RAYS

- Wavelength of X-rays: 0.01 Å ~ 100 Å
- Conventional X-ray tube
 - heated W wire as an electron source
 - acceleration of electrons with external voltage
 - bombarding of the electrons to metal anode (Cu, Mo, etc.)
 - characteristic line spectrum
- Synchrotron
 - charged particles (e.g. electrons) are accelerated to move with a speed close to the speed of light
 - kinetic energy of the particles is changed with magnets
 - very intense continuous spectrum

SYNCHROTRON RADIATION

- Continuous band of electromagnetic spectrum including infrared, visible light, ultraviolet and x-rays
- Accidentally discovered in an electron synchrotron of the General Electric Company, USA, in 1947

http://www.nsrrc.gov.tw

How is synchrotron radiation produced?

Whenever electrons moving close to the speed of light are deflected by a magnetic field, they radiate a thin beam of radiation tangentially from their path. This beam is called "synchrotron radiation".

Example: NSRRC, Taiwan National Synchrotron Radiation Research Center

- Relatively small synchrotron
- Particularly suitable for light elements,
 e.g. oxygen → We are frequent users
- Creation of ACCELERATED ELECTRONS
 - electrons are injected from an Electron Gun
 - pre-accelerated to 50 MeV in a linear LINAC
 - accelerated to 1.5 GeV in a Booster Ring

Booster Ring (72 m in circumference):

LINAC

Electron Gun

Accelerated electrons are sent through a 70-meter long Transport Line into a hexagonal, 120-meter Storage Ring, where they circulate with an energy of 1.5 GeV in ultra-high-vacuum pipes for several hours, emitting synchrotron radiation.

Transport Line

Transport Line

There are different types of magnets attached to the storage ring to generate X-ray light with different characteristics for different types of experiments

FOCUSING

STORAGE RING

BENDING

MAGNET

UNDULATOR

The emitted light is channeled through **Beamlines** to the **Experimental Stations**, where experiments are conducted.

HFM: Horizontal Focussing Mirror VFM: Vertical Focussing Mirror RFM: Refocussing Mirror

http://www.nsrrc.gov.tw

*ESRF = European Synchrotron Radiation Facility; ILL = Institut Laue-Langevin

X-RAY ABSORPTION

- Wavelength/energy of x-rays corresponds to energies required to remove electrons from inner shells
- Absorption decreases with increasing energy, until at a certain energy it increases abruptly → ABSORPTION EDGE
- Absorption edge corresponds to the bonding energy of inner shell electron

 \rightarrow K-edge, L-edge ...

Absorption-edge energy depends on the atomic number (~Z²)

To investigate X-ray absorption, we may measure X-ray intensity of transmitted radiation or fluorescence radiation (both depend on the magnitude of absorption)

 $K_{\alpha}: L \to K, \qquad K_{\beta}: M \to K.$

XAS: X-ray Absorption Spectroscopy

XAFS: X-ray Absorption Fine-Structure

EXAFS: Extended X-ray Absorption Fine-Structure

XANES: X-ray Absorption Near-Edge Structure

μ: absorption coefficient

XANES/EXAFS

- In EXAFS/XANES spectroscopy X-ray absorption is measured in the vicinity of absorption edge
- Synchrotron radiation is needed as a source of intense and continuous X-ray radiation
- Both transmittance and fluorescence measurements may be used
- Absorption edge energy specific to each element

 → EXAFS/XANES spectroscopy is element specific
- Possible for all elements except for the very lightest elements

EXAFS (Extended X-ray Absorption Fine Structure)

- Oscillatios in the high-energy side of the absorption edge
- Oscillation phenomenon was known for a longer time but the explanation was given in the 1970s \rightarrow EXAFS theory
- Simplified explanation: x-ray energy absorbed → photoelectrons removed from inner shell → sphere waves → scatter from the neighbouring atoms
- Due to this backscattering → interference effect → oscillations → EXAFS
- Oscillations depend on the neighbouring atoms (type, number, distance)

EXAFS

- element-specific (absorption edge energy is element-spesific)
- most of the elements except the very lightest ones are "seen"
- solid materials (crystalline and amorphous), thin films, catalyst surfaces, liquids, ...
- Iocal structure (neighbouring atoms, coordination number, bond lengths)

STEPS in EXAFS DATA ANALYSIS

- Conversion of measured intensities to µ(E)
- Pre-edge background subtraction (instrumental errors etc)
- •µ(E) normalized to vary from 0 to 1
- Post-edge background removal (smooth curve)
- •Conversion from energy to (photoelectron) wave number: $\mathsf{E} \to \mathsf{k}$
- Weighting k values (to give more impact for higher k values)
- Fourier transform from k to R (= distance) space
- Isolation of appropriate "shells" by Fourier filtering
- •Modelling to EXAFS equation to get: R and N (= coordination number)

 $\mathbf{k}=\sqrt{\frac{2\mathbf{m}(\mathbf{E}-\mathbf{E}_0)}{\hbar^2}}$

Matt Newville Consortium for Advanced Radiation Sources University of Chicago

- Absorption coefficient (μ) versus X-ray energy
- Pre-edge background subtraction
- Normalization

Pre-Edge Subtraction

We subtract away the background that fits the *pre-edge* region. This gets rid of the absorption due to other edges (say, the Fe L_{III} edge).

Normalization

We estimate the edge step, $\Delta \mu_0(E_0)$ by extrapolating a simple fit to the above $\mu(E)$ to the edge. We normalize by this value to get the absorption from 1 x-ray.

Post-edge background subtraction

Post-Edge Background

We don't have a measurement of $\mu_0(E)$ (the absorption coefficient without neighboring atoms).

We approximate $\mu_0(\mathbf{E})$ by an adjustable, smooth function: a *spline*.

This can be somewhat dangerous – a flexible enough spline could match the $\mu(\mathbf{E})$ and remove all the EXAFS!

We want a spline that will match the *low frequency* components of $\mu_0(\mathbf{E})$.

• Conversion from energy to (photoelectron) wave number: $E \rightarrow k$

 $k(Å^{-1})$

Weighting k values (to give more impact for higher k values)

$\chi(\mathbf{k})$

The raw EXAFS $\chi(k)$ usually decays quickly with k, and difficult to assess or interpret by itself.

It is customary to weight the higher-k portion of the spectra by multiplying by k^2 or $k^3.$

${f k}$ -weighted $\chi({f k})$: ${f k}^2\chi({f k})$

 $\chi(k)$ is composed of sine waves, so we'll Fourier Transform from k to $R\-$ space. To avoid "ringing", we'll multiply by a window function.

- Fourier transform from k to R (= distance) space
- Isolation of appropriate "shells" by Fourier filtering

$\chi({ m R})$

The Fourier Transform of $k^2\chi(k)$ has 2 main peaks, for the first 2 coordination shells: Fe-O and Fe-Fe.

The Fe-O distance in FeO is 2.14Å, but the first peak is

at 1.6Å. This shift in the first peak is due to the *phase-shift*, $\delta(\mathbf{k})$: $\sin[2\mathbf{kR} + \delta(\mathbf{k})]$.

A shift of -0.5Å is typical.

$\chi({ m R})$ is complex:

The FT makes $\chi(\mathbf{R})$ complex. Usually only the amplitude is shown, but there are really oscillations in $\chi(\mathbf{R})$.

Both real and imaginary components are used in modeling. Modelling to EXAFS equation to get: R and N (= coordination number)

To model the EXAFS, we use the EXAFS Equation: $\chi(\mathbf{k}) = \sum_{\mathbf{j}} \frac{\mathbf{N_j f_j(\mathbf{k})} e^{-2\mathbf{k}^2 \sigma_j^2}}{\mathbf{kR_j}^2} \sin[2\mathbf{kR_j} + \boldsymbol{\delta_j(\mathbf{k})}]$

where f(k) and $\delta(k)$ are *photo-electron scattering properties* of the neighboring atom. (The sum is over "shells" of similar neighboring atoms).

If we know these properties, we can determine:

- R distance to neighboring atom.
- N coordination number of neighboring atom.
- σ^2 mean-square disorder of neighbor distance.

The scattering amplitude f(k) and phase-shift $\delta(k)$ depend on atomic number Z of the scattering atom, so we can also determine the species of the neighboring atom.

REMEMBER: phase-shift of ca. 0.5 Å possible

 $|\chi({f R})|$ data for FeO (blue), and fit of 1st and 2nd shells (red).

The results are fairly consistent with the known values for crystalline FeO:

6 O at 2.13Å, 12 Fe at 3.02Å.

Fit results (uncertainties in parentheses):

Shell	Ν	${f R}$ (Å)	σ^2 (Ų)	ΔE_0 (eV)
Fe-O	6.0(1.0)	2.10(.02)	0.015(.003)	-2.1(0.8)
Fe-Fe	11.7(1.3)	3.05(.02)	0.014(.002)	-2.1(0.8)

XANES (X-ray Absorption Near Edge Structure)

- Inner-shell electrons are excited (not to continuum as in EXAFS but) to the (partially) empty outer orbitals
 - \rightarrow knowledge of the outer orbital energy/electron configuration
 - \rightarrow oxidation state of the absorbing atom
- Excitation of electrons from the inner shells to the outer orbitals requires less energy than removing them totally from the atom
 - \rightarrow absorption peak below the absorption edge \rightarrow XANES spectroscopy

National Synchrotron Radiation Research Center (NSRRC), Hsinchu, TAIWAN

XANES & EXAFS

- Collaboration with Dr. Jin-Ming Chen
 → 38 joint publications since 2001
- Cu-K, Cu-L, Fe-K, Fe-L, Co-L, Ru-L, Nb-L, Ta-L, Mo-L, W-L, Bi-L, Ce-M, Sr-K, Se-K, O-K

High-T_c superconductors

$Bi_{2}Sr_{2}(Y_{1-x}Ca_{x})Cu_{2}O_{8+\delta}$

- Ca^{II}-for-Y^{III} substitution increases the T_c
- oxygen content can be determined by chemical redox titration
- with increasing Ca^{II}-for-Y^{III} substitution level oxygen content gradually decreases
- what happens to the hole-doping level (= valence of copper) ?

M. Karppinen, K. Kotiranta, T. Nakane, S.C. Chang, J.M. Chen, R.S. Liu & H. Yamauchi, *Phys. Rev. B* 67, 134522 (2003).

 $Bi_{2}Sr_{2}(Y_{1-x}Ca_{x})Cu_{2}O_{8+\delta}$

M. Karppinen, K. Kotiranta, T. Nakane, S.C. Chang, J.M. Chen, R.S. Liu & H. Yamauchi, *Phys. Rev. B* 67, 134522 (2003).

- Ferrimagnetic conductor ($T_c = \sim 420$ K): Fe^{III} d^5 (*hs*) & Mo^V d^1
- Halfmetallic: conduction electrons are spin polarized
- Magnetoresistance (MR) effect

K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura and Y. Tokura, Nature 395, 677 (1998).

Mössbauer spectroscopy: Mixed-valent iron: Sr₂Fe^{II/III}Mo^{V/VI}O₆

"Evidence for Valence Fluctuation of Fe in Sr₂FeMoO_{6-w} Double Perovskite", J. Lindén, T. Yamamoto, M. Karppinen, H. Yamauchi and T. Pietari, *Appl. Phys. Lett.* 76, 2925 (2000).

How does XANES show the valence state of Fe? - From the first glance looks similar to Fe₂O₃!

More systematic study shows mixed-valent Fe(II/III)!

M. Karppinen, H. Yamauchi, Y. Yasukawa, J. Lindén, T.S. Chan, R.S. Liu & J.M. Chen, *Chem. Mater.* 15, 4118 (2003).