
USP-E0361
Complex Adaptive Systems

Lecture 2
26.4.2023 Anssi Joutsiniemi

GENERALIZED DATA FLOW

PresentingProcessingCollecting

DATA

DATA

DATA

Coding manipulationData feed Representation

Iterative loop in
GAMA

MESSY COMPUTAITION TERMINOLOGY
open vs. propritary

numbers vs. textUnicode vs. ASCII vs. binary

HTML vs. XML vs. JSON code vs. comments

Windows vs. Mac vs. Linux
RGB vs. CMYK

packed vs. unpacked

BASIC TERMS

FILE

=> Data storage (structured information according to specification)

DATA

=> Processed entities (input values, processing variables & attributes, output items)

CODE

=> Set of instructions (using explicit syntax)

RECAP OF PRINCIPLES

CODE ENTITIES
Variables

 <gen.> Able to vary.
 <math.> A symbolic name associated with an entity whose associated value may be changed
 <comp.> A small section of memory in which a program can store intermediate results and from which it can read them.

Code
- A sequence of instructions

Modularity

“Creating reusable and/or hierarchical packages of instructions”

- Function is reusable set of instructions.
doMyThing(attribute)

- Methods are just functions encapsulated within classes

class.doMyThing(attribute)

Attributes (=data)

- Have type and structure

Return values (=data)

- Have type and structure

Comment
-Human-readable instruction
//Species representing the ground agents

STRINGS & VALUES

DATA TYPES

Numbers
 Bit & Nybble 1bit & 4 bits (max. 2 & 16)
 Byte 8-bits (max. 256) Byte
 Word 2 bytes, 16 bits (max. 65 536) Small Integer (signed/unsigned)
 Double word 4 bytes, 32 bits (max. 4 294 967 296) Integer (signed/unsigned)
 Quad word 8 bytes, 64 bits (max.18 446 744 073 709 551 616) Floating point values

Text
 ASCII/ANSI 1 byte (max. 256) Character
 UNICODE 2 bytes (max. 65 536) Unicode character

Date & Time (YYYY-MM-DD hh:mm:ss)
 Small datatime 4 bytes 1900-01-01 through 2079-06-06 1 minute accuracy
 Datetime 8 bytes 1753-01-01 through 9999-12-31 0.00333 second accuracy

DATA SEEN & DATA STORED

FILES & DATA

SAMPLE .tif FILE:

TIFF 6.0 Specification: https://www.itu.int/itudoc/itu-t/com16/tiff-fx/docs/tiff6.pdf

Bytes 0-1:
Byteorder
“II” (or “MM”)

Bytes 2-3:
Tiff ID
“42”

Bytes 4-7:
IFD offset
“8”

Number of
Directory entries:
“25”

TypeCode
3 = SHORT

ImageLength
Tag = 257 (101.H)Image File Header Image File Directory

https://www.itu.int/itudoc/itu-t/com16/tiff-fx/docs/tiff6.pdf

SEQUENTIAL THINKING

PROGRAM FLOW CONTROL

There are ONLY TWO BASIC STRUCTURES in sequential programming:

Branching structures

- IF/ELIF/ELSE (in other languages f.ex. SWITCH-CASE statements etc.)

Looping structures

- FOR and WHILE structures (also range(), enumerate() etc. methods)

for x in lst:
print(x)

https://www.youtube.com/watch?v=_a95RaIZyf0
https://github.com/gama-platform/gama/wiki/BasicProgrammingConceptsInGAML

https://www.youtube.com/watch?v=_a95RaIZyf0
https://github.com/gama-platform/gama/wiki/BasicProgrammingConceptsInGAML

FUNCTIONS & OPERATORS
https://www.pythoncheatsheet.org/
https://cheatography.com/davechild/cheat-sheets/python/

https://www.pythoncheatsheet.org/
https://cheatography.com/davechild/cheat-sheets/python/

OPERATORS

Arithmetic operators

Comparison

Note also: Assignment operators, Boolean operators & Augmented Assignment Operators

+ Addition 2 + 2 = 4
- Subtraction 5 - 2 = 3
* Multiplication 3 * 3 = 9
/ Division 22 / 8 = 2.75
** Exponent 2 ** 3 = 8

% Modulus/Remainder 22 % 8 = 6
// Integer division 22 // 8 = 2

== Equal to

!= Not equal to

< Less than

> Greater Than

<= Less than or Equal to

>= Greater than or Equal to

STRING FUNCTIONS

Variable type conversion

str(), int(), float()

String methods

upper(), lower()

join() and split()

strip(), rstrip(), and lstrip()

format(<var>, <var>)

more... => Regular Expressions

DATA STRUCTURES (COLLECTION OF INDIVIDUAL DATA ITEMS)

Dictionary methods:

.keys()

.values()

.items()

.get(<key>, <default>)

List (i.e. Array):

animal = ['cat', 'bat', 'rat', 'elephant']

animal[1]

(Advanced note: All Strings are lists!)

Dictionaries:
<dictionary> = {<key : <value>, <key : <value> ... }

spam = {'color': ’black', 'age’: 78}

PROGRAMMING STYLES

OBJECT ORIENTED, PROCEDURAL & FUNCTIONAL
Object-Oriented Programming (OOP)

- Program flow is encapsulated within Classes

- Objects are instances of these classes

- Methods are encapsulated functions within classes

Procedural Programming

- Programs are sequences of instructions to be executed.

- Contains sets of instructions called Procedures, analogous to Functions.

Functional Programming

- Function is reusable set of instructions.

- Takes usually one or more input and returns output.

https://scoutapm.com/blog/functional-vs-procedural-vs-oop

In C:
printf("Character is %c \n", ch);

In Python:
print('{} is {} years old'.format(n, a))

Objects in GAMA:
https://www.youtube.com/watch?v=2GrR3VGlJ8g

https://scoutapm.com/blog/functional-vs-procedural-vs-oop
https://www.youtube.com/watch?v=2GrR3VGlJ8g

ART OF DEBUGGING

WHAT IS DEBUGGING
“Debugging occurs as a consequence of successful testing. That is, when a test case uncovers
an error, debugging is the process that results in the removal of the error. Although debugging
can and should be an orderly process, it is still very much an art.”

https://www.1000sourcecodes.com/2012/05/software-engineering-art-of-debugging.html

“Fixing a buggy program is a process of confirming, one by one, that the many things you believe to be true
about the code actually are true. When you find that one of your assumptions is not true, you have found a
clue to the location (if not the exact nature) of a bug.”

1. Start small
2. Use a top-down approach (modularity, hierarchy)
3. Pay attention to variable names and use plenty of comments
4. Spot exceptions arbitrary breaks (ex. Infinite loops)
5. Issue an interrupts to check the data validity

Matloff, Norman & Salzman, Peter Jay (2008). The Art of Debugging. No Starch Press.

https://www.1000sourcecodes.com/2012/05/software-engineering-art-of-debugging.html

ADVANCED TOPICS

DATA BASICS CHEAT SHEET

NUMBER SYSTEMS

Decimal (10-base) [Values: 0,1,2,3,4,5,6,7,8,9]

Binary (2-base) [Values: 0,1]

Octal (8-base) [Values: 0,1,2,3,4,5,6,7]

Hexadecimal (16-base) [Values: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F]

https://www.youtube.com/watch?v=aW3qCcH6Dao

https://www.youtube.com/watch?v=GPnLy6YO-0M

https://www.youtube.com/watch?v=aW3qCcH6Dao
https://www.youtube.com/watch?v=GPnLy6YO-0M

CODING TEXT

ASCII - American Standard Code for Information Interchange 7-bit

ANSI - American National Standards Institute 8-bit

Unicode (see: https://en.wikipedia.org/wiki/List_of_Unicode_characters)

Hex-to-ASCII https://www.rapidtables.com/convert/number/hex-to-ascii.html

ASCII-to-Hex https://www.rapidtables.com/convert/number/ascii-to-hex.html

https://en.wikipedia.org/wiki/List_of_Unicode_characters
https://www.rapidtables.com/convert/number/hex-to-ascii.html
https://www.rapidtables.com/convert/number/ascii-to-hex.html

CODING COLOUR

Color spaces are typically of DWORD length i.e. 4 bytes (32 bits) long.

Threfore there is 1 byte (256 values) per color component.

Additive colors (RGB):

https://www.youtube.com/watch?v=LCs8mK1rzc0

Substractive colors (CMYK):

https://www.youtube.com/watch?v=r8ejTUNwgTo

Colors in WWW: https://en.wikipedia.org/wiki/Web_colors

http://htmlcolorcodes.com/

https://www.youtube.com/watch?v=LCs8mK1rzc0
https://www.youtube.com/watch?v=r8ejTUNwgTo
https://en.wikipedia.org/wiki/Web_colors
http://htmlcolorcodes.com/

DIFFERENCES IN OPERATING SYSTEMS
Coding new line i.e. pressing <ENTER>

Mac OS & Apple II family: 0D (carriage return)

Linux/Unix: 0A (line feed)

Windows: 0D 0A (carriage return + line feed)

Memory storage for data: 90 AB 12 CD

Little Endian (IBM): DWORD: CD 12 AB 90 WORD AB 90 + CD 12

(i.e. least significant byte to the most significant byte)

Big Endian (Sun): DWORD: 90 AB 12 CD WORD 90 AB + 12 CD

(i.e. most significant byte to the least significant byte)

Tutorial: https://www.youtube.com/watch?v=T1C9Kj_78ek

https://www.youtube.com/watch?v=T1C9Kj_78ek

DATA COMPRESSION I.E. PACKING

The process of reducing the size of a data file.

Compression can be either lossy or lossless.

No information is lost in lossless compression. Lossy compression reduces bits by
removing unnecessary or less important information.
 The Lempel–Ziv (LZ) compression methods are among the most popular algorithms for lossless storage.
 DEFLATE is a variation on LZ optimized for decompression speed and compression ratio, but

compression can be slow. DEFLATE is used in PKZIP, Gzip, and PNG.
 LZW (Lempel–Ziv–Welch) is used in GIF images.
 Look for z-ending filenames: .klmz, .svgz etc.

Becoming more and more popular due to openness requirements. (vrt. .doc vs .docx)

MS-format specifications: https://msdn.microsoft.com/en-us/library/office/cc313105(v=office.12).aspx

COMPRESSEDUNPACKED

https://msdn.microsoft.com/en-us/library/office/cc313105(v=office.12).aspx

QUESTIONS ?

Thank you!

	USP-E0361�Complex Adaptive Systems
	GENERALIZED DATA FLOW
	Slide Number 3
	MESSY COMPUTAITION TERMINOLOGY
	BASIC TERMS
	RECAP OF PRINCIPLES
	CODE ENTITIES
	STRINGS & VALUES
	Data TYPES
	DATA SEEN & DATA STORED
	FILES & DATA
	SEQUENTIAL THINKING
	Program flow control
	FUNCTIONS & OPERATORS
	OPERATORS
	STRING FUNCTIONS
	Data structures (COLLECTION of INDIVIDUAL DATA ITEMS)
	PrOGRAMMING STYLES
	OBJECT ORIENTED, PROCEDURAL & FUNCTIONAL
	ART OF DEBUGGING
	WHAT IS DEBUGGING
	ADVANCED TOPICS
	DATA BASICS CHEAT SHEET
	Number systems
	Coding text
	Coding colour
	Differences in operating systems
	DATA COMPRESSIOn I.E. PACKING
	Questions ?

