
Topic 3: Energy-efficient implementation

of probabilistic circuits

ELEC-L352002 - Postgraduate Course in Electronic Circuit Design II V D

Jelin Leslin (jelin.leslin@aalto.fi)

17/05/2023

Motivation: efficient edge AI?

Hardware “accelerators” [1]

GPUs
ASICs

Efficiency
x100

Top 1 accuracy on ImageNet [2]

resNet18=0.010
GFLOPs

coatNet=1000
GFLOPs

Computations
x105

Although we develop more efficient accelerators, the size of NN models
explode ➔ We need to explore alternatives

[1] https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator

[2] https://paperswithcode.com/sota/image-classification-on-imagenet

We need models that are generative (use them for various applications),
and more compact (to be embedded online)

We look at probabilistic models and probabilistic circuits (PCs)

Probabilistic circuits: training

Training involves both structure and parameter learning [3]

Structure learning:

• Active research topic

• Example with LearnSPN

• Iterative clustering (+) and
independence tests (x)

Parameter learning:

• Main algorithm is expectation-maximization [4]

• Idea: Find the best likelihood under missing data

Variables

In
s
ta

n
c
e

s

V1 V2 V3 V4

+

Clustering

X Indepen-

dence

test

[3] Y. Choi, A. Vergari, and G. Van den Broeck, “Probabilistic circuits: A unifying

framework for tractable probabilistic models,” oct 2020.

A variety of PC implementations
Vectorized PCs

+++

++

+++ +++

Sum and products

concatenated as

vectors

Hyperparameters

control the structure

(vector size, depth..)

RAT-SPNs [9], Einets [10]

Arithmetic Circuits

(ACs)

Compiled from

Bayesian networks

ACE [5]

The compilation

gives a fixed

structure

S T

V

Sum-Product

Networks (SPNs)

Learned from data

Example: recursive

learning through

independence tests

and clustering

LearnSPN [6], LibSPN [7]

Structure

Decomposable PCs

Impose extra

structural constraints

for more tractability

SDPCs [8]

The extra constraint

can modify the

structure

The PC is

normalized to a

vtree (binary tree)

[5] UCLA ACE compiler [6] Poon & Domingos, 2011 [7] Pronobis et al., 2007

[8] Dang et al., 2020 [9] Peharz et al., 2019 [10] Peharz et al., 2020

Basic structure of a PC

We can compute queries as Most

Probable Explanation (MPE)

• (+) replaced by (max)

• Result in one pass

X

XX

X X X X

X X XX X X X X

M

MM

M M M M

ϴV1

ϴT

ϴV2

ϴP2|V1,T2 ϴP2|V1,T1
ϴP1|V2,T2ϴP1|V2,T1ϴP1|V1,T1ϴP2|V2,T2ϴP2|V2,T1

λV1 λV2

λT1 λT2

λP2
λP1ϴP2|V2,T2

X

XX

X X X X

X X XX X X X X

+

++

+ + + +

ϴV1

ϴT

ϴV2

ϴP2|V1,T2 ϴP2|V1,T1
ϴP1|V2,T2ϴP1|V2,T1ϴP1|V1,T1ϴP2|V2,T2ϴP2|V2,T1

λV1 λV2

λT1 λT2

λP2
λP1ϴP2|V2,T2

Composed (at least) of three types of nodes:

• Sums represents mixture distributions

• Products represent factorizations over variables

• Leaf nodes that can be:
• Univariate probability distributions

• Binary indicators saying if a variable is observed or not (λ)

Parameters (ϴ) are probabilities

P(V,P,T)

ProbLP [11]

Main Idea: A holistic framework to automate the design of low-precision custom hardware for

ACs.

• Get a model , evaluate error bounds and determine optimal

representations for a given requirements set.

• Increments the number of fraction bits for fixed-point representation

until the error requirement is met.

• Increments the number of float bits for mantissa in floating-point

representation until the error requirement is met.

• Estimates the minimum number of integer and exponent bits using

min and max analysis.

• The analysis involves considering the extreme values and

boundaries of the range, taking into account both the precision

requirements and the constraints of the system or problem at hand.

• Selects between fixed-point and floating-point representations

based on energy consumption, estimated using operator-level

energy models in TSMC 65nm technology.

[11] shah et al., 2019

ProbLP

Hardware generation after deciding a selected representation for the given model.

• The hardware generation process consists of two main stages:

operator decomposition and pipeline register insertion.

• In the first stage, AC operators with more than two inputs are

decomposed into a tree structure of 2-input operators. This

decomposition helps in optimizing the hardware implementation.

• In the second stage, the generator inserts pipeline registers after

every operator. This step ensures proper timing and can involve

inserting multiple registers when there is a timing mismatch in a

specific path.

• The analytically simulated results are verified with the generated

RTL using modelsim.

• The default error tolerance is set at 0.01, and increasing energy

efficiency can be accomplished by allowing for more relaxed error

tolerances.

HW Aware PC [12]

Main Idea: To propose a resource-aware cost metric that considers hardware constraints and specifications to determine

efficient deployment of probabilistic models in edge computing and enabling optimal device settings for meeting user

requirements.

• Framework utilizes tractable probabilistic models, which enable efficient inference and possess desirable traits such as robustness to missing data,

joint prediction capabilities, explainability, and minimal data requirements.

• Four key system properties determine the hardware-aware cost versus task performance trade-off in the system: inference model complexity (α), the

type and number of sensors and features (F, S), and the number of bits used for computations (nb).

• The search process occurs in multiple consecutive stages based on the specific task (classification or density estimation), the type of input to the

model learning strategy (data or probabilistic model), and the hardware capabilities (support for low precision arithmetic, for example).

[12] Olascoaga et al., 2020

GPU becomes a bad choice !

A GPU (Graphics Processing Unit) consists of multiple processing units

called threads, which work together in groups called warps. These warps

can access shared memory, a space all threads within a GPU can use.

If multiple threads within a warp want to access the same part of the

shared memory simultaneously, it can create a problem known as a bank

conflict and this slows down the overall performance of the GPU. A

solution is to employ coloring-based bank allocation algorithm.

Use of 256 threads, however, only increases the throughput by a factor

4.1x, a sublinear scaling due to the following reasons:

• Overhead of thread synchronization.

• Secondly, the shared memory in the Jetson TX2 GPU, which has

32 banks distributed among 128 CUDA cores, has limited

bandwidth. Since all the threads need to read from and write to the

shared memory, its bandwidth becomes a bottleneck. This limitation

in bandwidth can restrict the speed at which data can be

transferred, thereby reducing the potential performance gains.

• Thread divergence due to selection between sum and product

operations leads to inactive threads in a warp.

Accelerate PCs?

…

+
PE

PE PE

PE PE PEPE

PE
MEMORY
…

INTERCONNECT

CU1

CU2

CU64

XX

X X X X

X X XX X X X X

+

++

+ + + +

ϴV1 ϴV2

ϴP2|V1,T2 ϴP2|V1,T1
ϴP1|V2,T2ϴP1|V2,T1

ϴP1|V1,T1ϴP2|V2,T2ϴP2|V2,T1

λV1 λV2

λT1 λT2

λP2
λP1ϴP2|V2,T2

CU1

CU3

CU2

x

x x

+

x
ϴV1 ϴV2λV1 λV2IN1 IN2

O1

CU1

Possible accelerator:

• Trees of processing elements (PEs)[13]

• An optimizer decomposes the graph

across computation units (CUs) [14]

x

x x

+

x

CU1

O1

Specificities of PCs

• Irregular graph = less parallelism

• High computation resolution

(20-50 bits in float)= more energy

[13] Shah et al., DATE 2020

[14] Shah et al.,GraphOPT,2021

Probabilistic Inference Unit (PIU) [15]

The PIU solution :

a) Stream-based compute with a co-optimized memory hierarchy:

•It utilizes a stream-based computation approach, where data flows through the processor in a streaming manner, improving efficiency.

•This stream-based approach allows for aggressive data prefetching, reducing the impact of memory latency.

•The PIU's memory hierarchy, including scratchpads and register banks, is co-optimized to store and access data during computations

efficiently/parallely.

•By carefully managing the flow of data through the memory hierarchy, the PIU minimizes stalls and maximizes the utilization of compute resources.

b) Precision-scalable posit arithmetic:

•The PIU employs a posit arithmetic system, specifically the unum III representation, a recently proposed format.

•Posit arithmetic allows for dynamic adjustment of the length of the regime and fraction fields based on the value being encoded.

•This dynamic adjustment enables a trade-off between fraction bits (accuracy) and regime bits (range) during runtime.

•The PIU further customizes the standard posit representation by using more exponent bits, prioritizing increased range over accuracy around the value 1.

•This customization is particularly beneficial for tasks like probabilistic inference, where encountered probabilities can be very small.

•The precision-scalable posit unit in the PIU performs operations in different precisions (e.g., 1×32b, 2×16b, or 4×8b), enabling batch inference for lower

precisions without sacrificing accuracy.

Probabilistic Inference Unit (PIU)

c) Aligned compiler optimizations to accelerate exact inference workloads:

•The PIU incorporates compiler optimizations specifically designed to accelerate exact inference workloads in probabilistic models.

•The compiler analyzes the structure of the Sum-Product Networks (SPNs) and decomposes them into layers of disjoint subgraphs.

•By decomposing the SPNs in this way, the compiler ensures no edges between subgraphs within a layer, allowing for parallel execution on different

compute units (CUs).

•Synchronization points, including special global barrier instructions, are inserted by the compiler to enable data sharing between CUs after each layer of

subgraphs.

•Load-compute and compute-store dependencies are handled using FIFO-based data transfers, while load-after-store dependencies are managed

through compiler-inserted local barrier instructions.

•The compiler optimizations enable efficient data flow, minimize dependencies, and exploit the parallelism of the SPN structure, resulting in accelerated

exact inference workloads.

Peak energy-efficiency: The PIU demonstrates a peak energy-efficiency of 248GOPS/W (Giga Operations Per Second per Watt) at a voltage of

0.6V, frequency of 113MHz, and precision of 8b. This showcases the energy-efficient nature of the PIU, allowing for efficient execution of probabilistic

computations while minimizing power consumption.

Outperforms simulated ASIC, FPGA, desktop and embedded GPUs, and CPUs in all familiar PC benchmarks.

Probabilistic Inference Unit (PIU)

Assignment questions

1. Briefly explain how an arithmetic circuit/ Probabilistic circuit is converted to a pipelined hardware circuit – (ref : section 3.4

in Problp [11]).

2. What are the three solutions/ideas discussed in the Probabilistic Inference Unit (PIU).

References

1. https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator.

2. https://paperswithcode.com/sota/image-classification-on-imagenet.

3. Y. Choi, A. Vergari, and G. Van den Broeck, “Probabilistic circuits: A unifying framework for tractable probabilistic models,” oct 2020.

4. Moon, Todd K. "The expectation-maximization algorithm." IEEE Signal processing magazine 13.6 (1996): 47-60.

5. UCLA –ACE compiler : http://reasoning.cs.ucla.edu/ace/

6. Poon, Hoifung, and Pedro Domingos. "Sum-product networks: A new deep architecture." 2011 IEEE International Conference on Computer Vision Workshops (ICCV

Workshops). IEEE, 2011.

7. Libspn framework : https://www.libspn.org/

8. Dang, Meihua, Antonio Vergari, and Guy Broeck. "Strudel: Learning structured-decomposable probabilistic circuits." International Conference on Probabilistic Graphical Models.

PMLR, 2020.

9. Peharz, Robert, et al. "Random sum-product networks: A simple and effective approach to probabilistic deep learning." Uncertainty in Artificial Intelligence. PMLR, 2020.

10. Peharz, Robert, et al. "Einsum networks: Fast and scalable learning of tractable probabilistic circuits." International Conference on Machine Learning. PMLR, 2020.

11. Shah, Nimish, et al. "Problp: A framework for low-precision probabilistic inference." Proceedings of the 56th Annual Design Automation Conference 2019. 2019.

12. Galindez Olascoaga, Laura Isabel, Wannes Meert, and Marian Verhelst. "Hardware-Aware Probabilistic Circuits." Hardware-Aware Probabilistic Machine Learning Models:

Learning, Inference and Use Cases. Cham: Springer International Publishing, 2021. 81-110.

13. Shah, Nimish, et al. "Acceleration of probabilistic reasoning through custom processor architecture." 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE).

IEEE, 2020.

14. Shah, Nimish, Wannes Meert, and Marian Verhelst. "GRAPHOPT: constrained-optimization-based parallelization of irregular graphs." IEEE Transactions on Parallel and

Distributed Systems 33.12 (2022): 3321-3332.

15. Shah, Nimish, et al. "9.4 piu: A 248gops/w stream-based processor for irregular probabilistic inference networks using precision-scalable posit arithmetic in 28nm." 2021 IEEE

International Solid-State Circuits Conference (ISSCC). Vol. 64. IEEE, 2021.

https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator
https://paperswithcode.com/sota/image-classification-on-imagenet
http://reasoning.cs.ucla.edu/ace/
https://www.libspn.org/

Thank you for your attention.

Custom PEs

& memory

PC accelerators – Benchmarks

Power (W)

10.1 10 100

S
p

e
e
d

 (
G

O
P

S
)

1

10

100

10 GOPS/W

100 GOPS/W

1 GOPS/W

1k

FPGA
ASIC DIGITAL

Custom Application-Specific Integrated Circuit
• DPU [18]: tree-shaped PEs, custom memory and

scheduler ➔ 10x Eff. compared to best FPGA

• DPUv2 [19]: Advanced scheduler for processing

FPGA
• Sommer ICCD [14]: automatic HW generation

with pipeline float operators (double)

• Sommer FCCM [15]: Adding customized

arithmetic formats (Float, Posit, Log) ➔ 10x Eff.

• Kruppe [16]: Adding more advanced

scheduling for processing the PC

• Choi [17]: processor architecture with PEs to

handle larger PCs (1-3 GOPS/query with HLS)

CPU,GPU
• SPNC [13]: customized compilation flow

based on MLIR (CPU and GPU) ➔ up to 800x

acceleration compared to regular CPU

FCCM

(aver.)

ICCD

(aver.)DPU v2

(aver.)

DPU v1

(aver.)

DPU v1

(Peak, 32b

0.9V)

Custom

format

	Slide 1: Topic 3: Energy-efficient implementation of probabilistic circuits
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

