

Circular construction

Katarzyna Jagodzińska

27/04/2023

List of contents

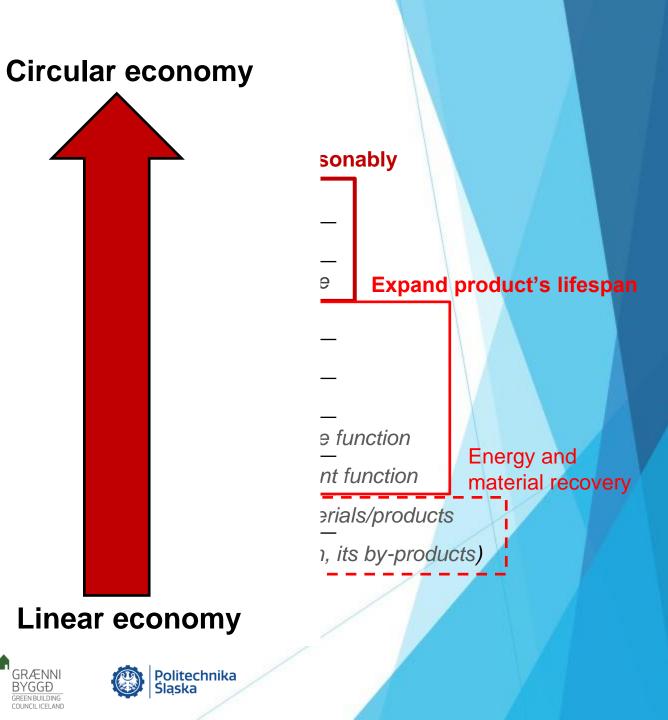
- Circular economy, circular building;
- Design-for-adaptability, design-for-disassembly;
- Circular economy vs carbon footprint;
- Mesuring circularity;
- Chosen legal regulations;
- Case studies;
- New roles and responsibilities in circular construction.

Politechnika

Ślaska

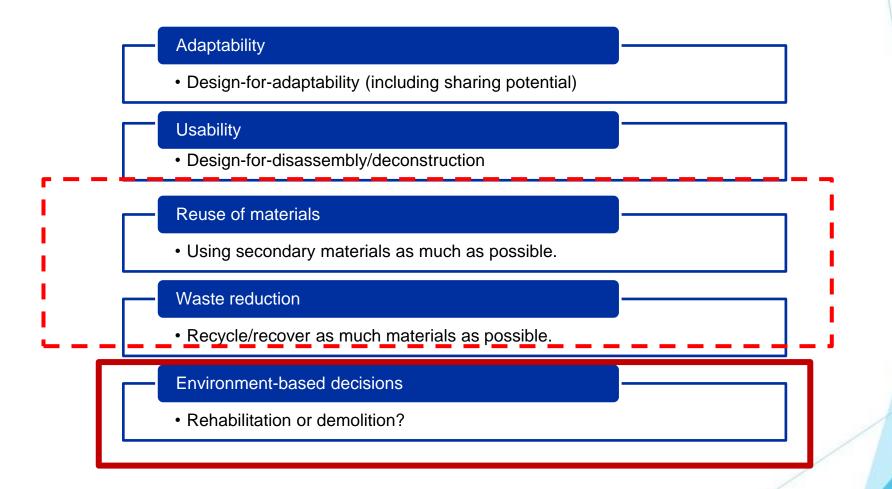
Circular economy

Circular construction



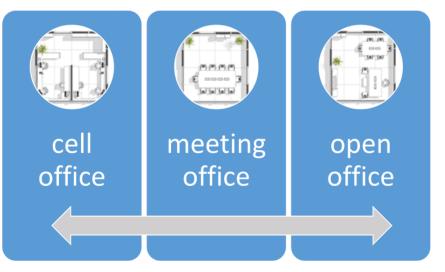
The 10 R's framework

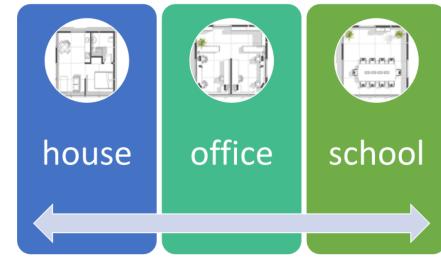
R0	Refuse	Make a product u
R1	Rethink	Increase the inter
R2	Reduce	Increase the effic
R3	Reuse	Reuse keeping th
R4	Repair	Repair to restore
R5	Refurbish	Restore an older
R6	Remanufacture	Use parts of a dis
R7	Repurpose	Use parts of a dis
R8	Recycle	Process materials
R9	Recover	Energy recovery a


PLGBC

olskie Stowarzyszenie udownictwa Ekologiczneg

Circular building





Design-for-adaptability

Monofunctional transformation*

Transfunctional transformation*

The Elephant, Netherlands

* Elma Durmisevic, Reversible Building design guidelines – WP3 Reversible Building Design (Report WP3I10IUT from the BAMB project)

Design-for-adaptability cont.

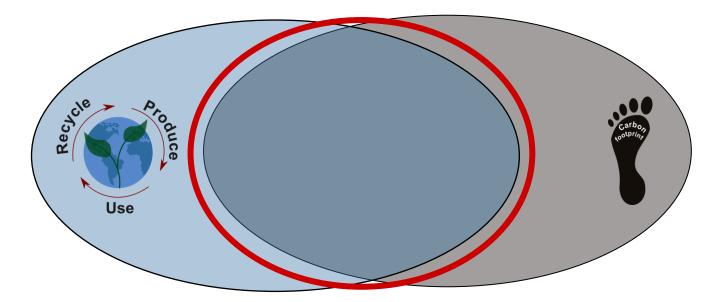
Multidimensional transformation^{*}

* Elma Durmisevic, Reversible Building design guidelines – WP3 Reversible Building Design (Report WP3I10IUT from the BAMB project)

Design-for-disassembly

Petite Maison, Luxembourg

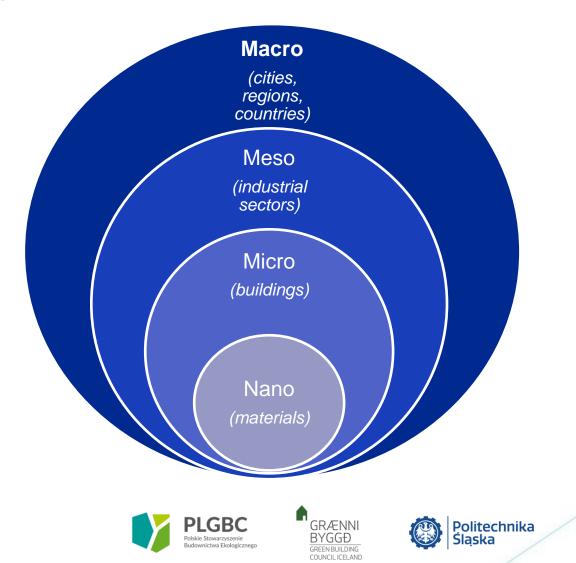
Triodos Bank office, Netherlands



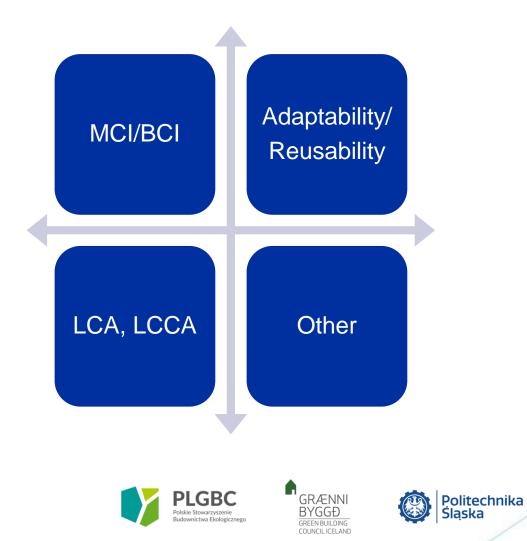
Politechnika Śląska

Does CE always minimise C emissions?

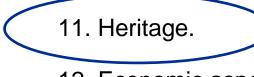
low carbon circular economy



Politechnika Sląska


Measuring circularity - Scale

Measuring circularity – Base framework



Measuring circularity – Aspects covered

1. Technical cycle.

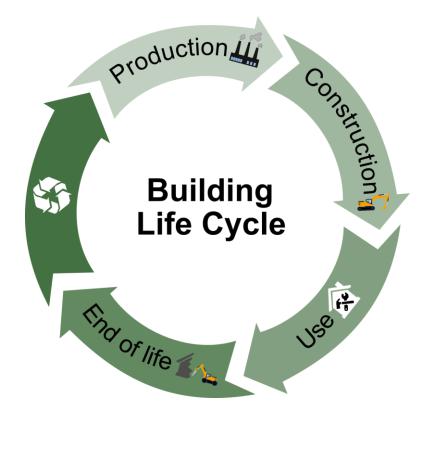
- 2. Biological/renewable cycle.
- 3. Recycling efficiency.
- 4. Functional lifetime.
- 5. Disassembly.
- 6. Reusability index.

- 7. Adaptability.
- 8. Energy use.
- 9. Emissions.
- 10. Water use.

12. Economic aspects.

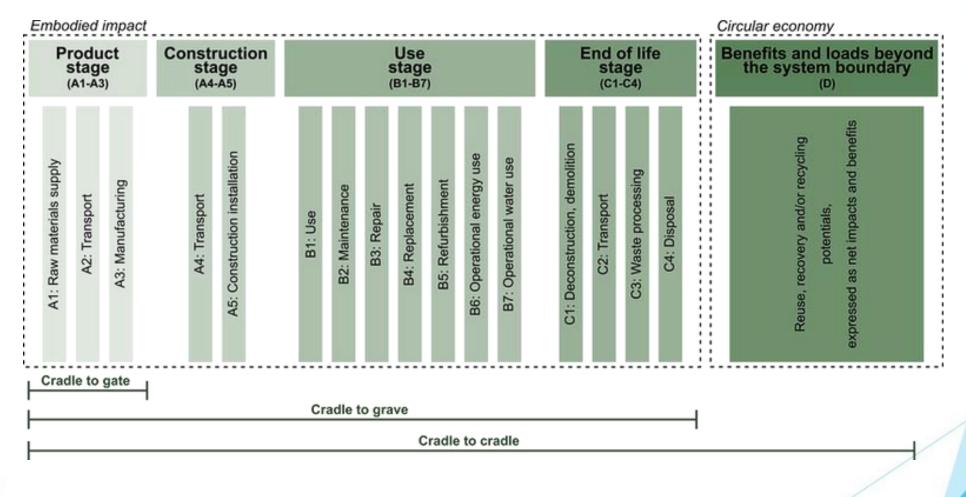
Current barriers

- Lack of knowledge and experience;
- Laws and building regulations;
- Lack of procedures to document/certify secondary materials/products;
- Who bears the risk?
- What about economics? Cultural bias;
- Lack of market/databases with avialable materials.



Politechnika Ślaska

The life cycle of a building



LCA cont.

Circularity in LCA

			+				(C)
		Denmark	Finland	Iceland	Norway	Sweden	EU
<u>}</u>	A1-A3 Raw materials, transport, manufactoring	Zero 🗸	Zero 🗸	TBD	Zero, but if there is Global Warming Potential from processing of the reused products it must be counted (not if negligible i.e GWP from washing the reused products)	Zero 🗸	Not defined
Ð	A4/A5 Transport to site, installation	Not declared	Either generic values from national database *** or calculate exact emissions 🗸	тво	Either 300 km, generic values* ✔	Either generic values from national database or calculate exact emissions **** 🗸	Not defined
0	B2 Maintenence	Not declared	Not declared	TBD	Maintainance is included	Not declared	Not defined
7	B4 Replacement	Zero	Replacement to a new product	TBD	Replacement to a new product	Not declared	Not defined
1 miles	C1/C2 Demolition works, transport	Not declared	Included according to the scenarios in the national database	TBD	Not declared	Not declared	Not defined
Ø	C3/C4 Waste management, final disposal	Zero	Included according to the scenarios in the national database	TBD	Not declared	Not declared	Not defined

*https://lca.no/transportkalkulator/

***Finish national database: CO2data.fi

** Replacements are included, an assumption has to be made that if a reused product will be replaced, it will be replaced to a new functionally similar product (not another reused product)

****Swedish national database: Climate database from Boverket - Boverket

Politechnika Śląska

Examples of circular buildings

Kristian Augusts Gate 13, Norway Credit: Kyrre Sundal/Mad arkitekter

Drangar, Iceland

Politechnika Sląska

Kristian Augusts Gate 13, Norway Credit: Kyrre Sundal/Mad arkitekter

- focus on reuse and design-for-disassembly;
- \succ almost 80% of the materials were reused;
- reusing of existing building;
- ➤ "material providers" from < 5 km.</p>

Politechnika Śląska

Windows dismantled from a housing project in Kvaernerbyen. Photo: Resirqel Facade extension, designed with 1) New windows, 2) Used windows. Illustrations: Mad architects

Around 60% costs and 90% of CO2eq emissions saved due to windows reusing.

Politechnika Sląska

Photo from inspection, Oppsal nursing home. Photo: Randi Lunke Cutting and assembly work. Photo: Anne S Nordby Facade panels during installation. Photo: Randi Lunke

Around 97% of CO2eq emissions saved due to facade panels reusing.

Politechnika Sląska

Installation of used steel on site. Photo: Stokke Stål

Around 49% higher costs but 97% of CO2eq emissions saved due to steel reusing/recycling.

Politechnika Śląska

Original radiator in KA13. Photo: Anne S Nordby

Storage before flushing and pressure testing. Photo: Anders Sand

Sanitary equipment in the original building, under storage and installed in KA13. Photo: Anne S Nordby

Complete assembly after processing. Photo: Randi Lunke

Used fire hose cabinet from DEG8 mounted in KA13. Photo: Anne S Nordby

Resource Rows, Denmark

Lendager's <u>ResourceRows</u> in Copenhagen

Politechnika Śląska

Circl, Netherlands

"Circl" pavilion in Amsterdam

- focus on reuse, design-for-diassembly, and <u>design-for-adaptability;</u>
- insulating material from 16,000 pairs of jeans;
- plaster in the basement made out of textiles;
- ➤ wooden structure (beams) an be
 - disassembled and reused;
- sliding walls.

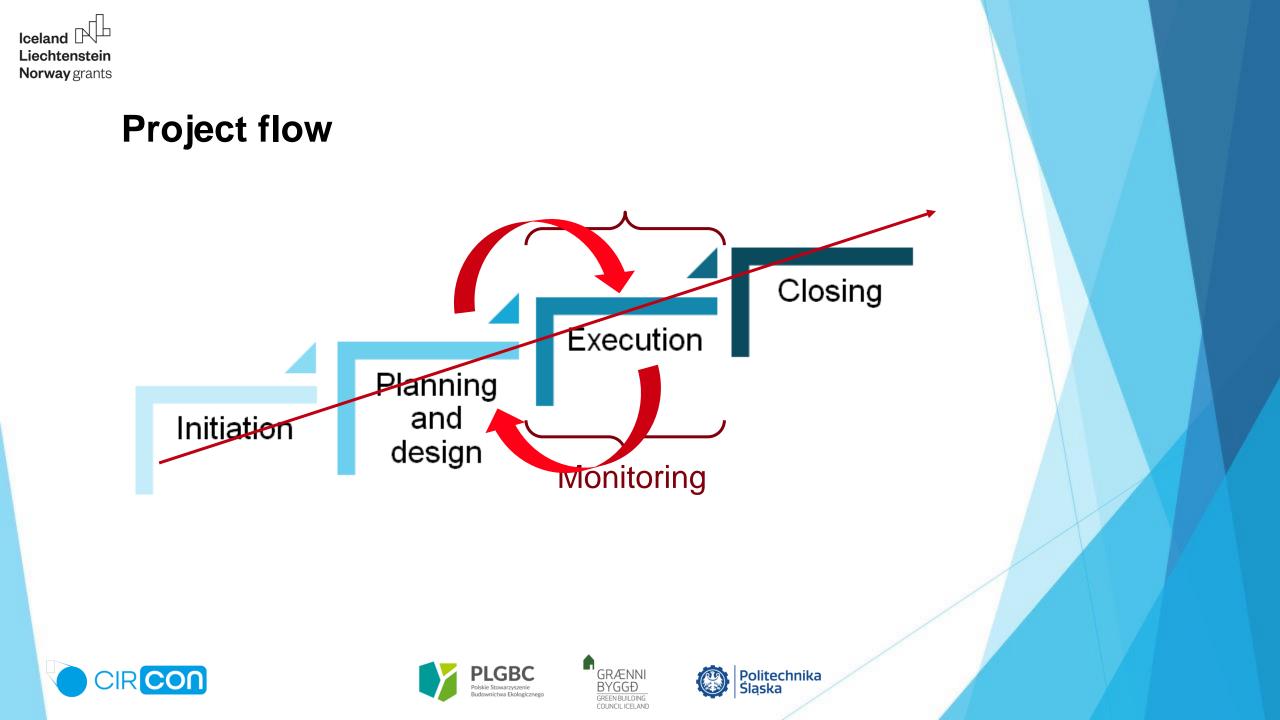
Drangar, Iceland

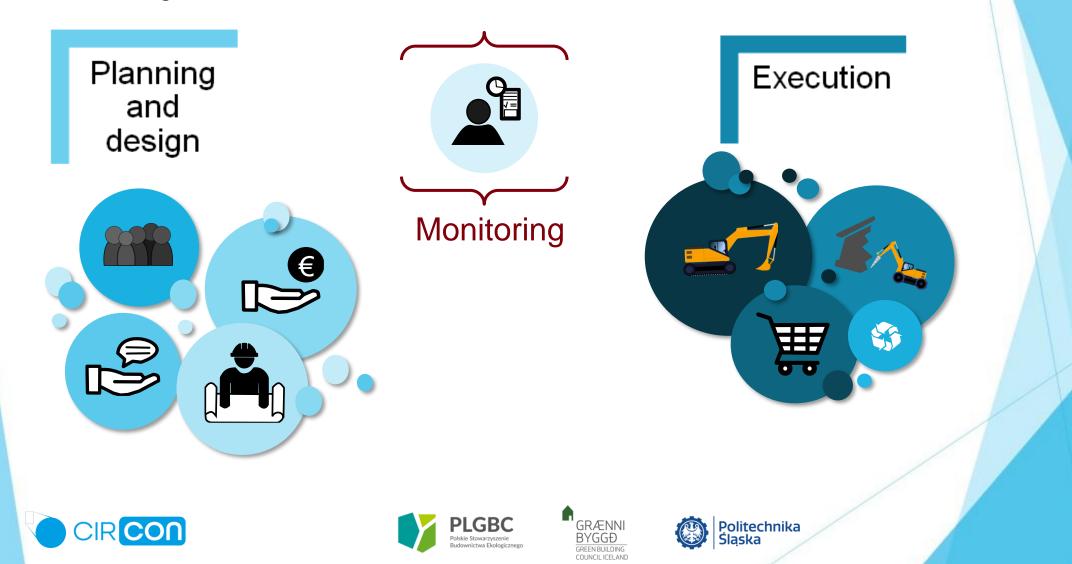
Drangar before and after the renovation*

T. Barna

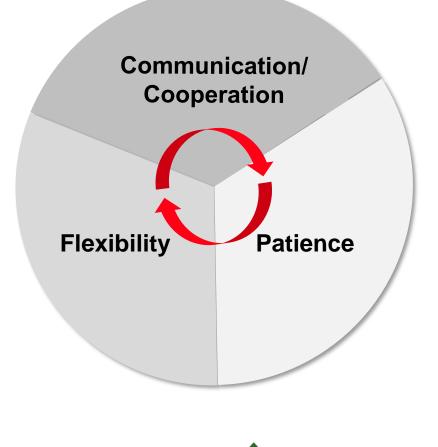
Drangar, Iceland cont.

The former farmhouse


The former tractor shed



Politechnika Śląska



Project actors

Three pilars of transition to CC

Project actors in circular construction

Thank you for your attention

kjag@graennibyggd.is

References cont.

- 1. Elma Durmisevic, Reversible Building design guidelines WP3 Reversible Building Design (Report WP3I10IUT from the BAMB project).
- 2. https://www.bamb2020.eu/topics/pilot-cases-in-bamb/bric/
- 3. Sabau et al., Comparative carbon emission assessments of recycled and natural aggregate concrete: Environmental influence of cement content, Geoscience Frontiers 12, 2021.
- 4. Khadim et al., Critical review of nano and micro-level building circularity indicators and frameworks, Journal of Cleaner Production 357, 2022.
- 5. https://www.graennibyggd.is/en/lifsferilsgreining
- 6. https://nordicsustainableconstruction.com/news/2023/may/reuse-of-construction-materials
- 7. Erfaringsrapport ombruk (Eng. Experience report reuse) Kristian Augusts gate 13 https://www.entra.no/news-and-media/rapport-om-ka13/2114
- 8. https://lendager.com/project/resource-rows/
- 9. https://inhabitat.com/sustainable-circular-economy-principles-inform-amsterdams-flexible-circl-pavilion/
- 10. https://www.oneplanetnetwork.org/news-and-events/news/construction-circl-pavilion-amsterdam
- 11. https://architecturenow.co.nz/articles/from-the-inside-sustainability-in-interiors/

Politechnika Ślaska

References cont.

- 1. <u>https://www.doepelstrijkers.com/en//circl_interior_abn_amro/</u>
- 2. https://circl.nl/
- 3. https://www.graennibyggd.is/circon-newsletter
- 4. <u>https://studiogranda.is/Gen/Drangar/Text.html</u>

