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Ordered and real-closed fields

The field of real numbers R comes with a canonical ordering which is compatible
with its field operations. This means, for example, that if a ≥ 0 then a + b ≥ b for
all b and a · b ≥ 0 provided that also b ≥ 0. In this chapter we introduce ordered
fields and capture their orderings algebraically using the notion of a cone. Classical
algebraic geometry works best over algebraically closed fields. The analogue of this
in the ordered setting is a real-closed field. We prove that every ordered field can
be embedded into a real-closed one and that real closures are unique up to unique
isomorphism. The presentation closely follows [BCR98, Chapter 1].

1.1 Ordered fields and cones

Recall that a binary relation ≤ on a set X is a partial order of X if it is reflexive,
transitive and antisymmetric. A partial order can have incomparable elements, i.e.,
x, y ∈ X such that neither x ≤ y nor y ≤ x holds. If any two elements are comparable,
the ordering is total or linear. As usual, a partial order defines an opposite partial
order x ≥ y :⇔ y ≤ x and a strict (irreflexive) ordering x < y :⇔ x ≤ y ∧ x 6= y.

Definition 1.1. An ordered field (F,≤) consists of a field F equipped with a total
order ≤ on its elements which is compatible with the field operations:

1. if x ≤ y then x+ z ≤ y + z for every z;
2. if x, y ≥ 0 then xy ≥ 0.

To reduce notational load we will often refer to an ordered field (F,≤) simply as F in
contexts where the ordering is clear from context or arbitrary.

Remark 1.2. We will have occasions to talk about ordered rings as well using the
defining properties of Definition 1.1 verbatim. However, the rings we are interested in
are integral domains and then Exercise 1.4 shows that its orderings are determined by
the orderings of its field of fractions, so there is no loss of generality in treating ordered
fields only.

Example 1.3. The fields Q and R come equipped with their usual order. For both of
them, this order is at the same time the only possible order relation that turns them
into ordered fields. For Q this follows from Exercise 1.4 because it is the fraction field
of Z which clearly has a unique ordering induced by n < n+ 1, which is mandated by
the definition of an ordered ring. A more specific proof is Exercise 1.3. For the real
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numbers, this follows from the existence of square roots for all positive numbers, as
will be seen in Exercise 1.7. 4

Example 1.4: Infinitesimals. The field R(x) generated by one transcendental x over
R is the field of fractions of the polynomial ring R[x]. Since x satisfies no non-trivial
algebraic relations over R, we are free to insert it at any point on the (extended) real
line. This extends the ordering of R to R ∪ { x }. The axioms of an ordered ring then
automatically prescribe the ordering of every polynomial in R[x], hence R[x] becomes
an ordered ring and R(x) an ordered field by Remark 1.2.

Conversely, fix an ordering of R(x). The element x defines a partition of R into two
blocks A = { a < x } and B = { b > x }; such a partition is called a cut and denoted as
A < x < B. The possible cuts are

— ∅ < x < R when x is negatively infinite.
— (−∞, a) < x < [a,∞) when x is infinitesimally smaller than a,
— (−∞, a] < x < (a,∞) when x is infinitesimally greater than a,
— R < x < ∅ when x is positively infinite.

All of these orderings are related by rational coordinate changes of R. Of special
importance is the cut (−∞, 0] < x < (0,∞) where x is a (positive) infinitesimal.
We usually use the letter ε instead of x to suggest this. 4

The first property of the ordering implies that it can be recovered from the non-
negative elements alone because x ≤ y if and only if 0 ≤ y − x. The next definition
captures basic properties of non-negativity algebraically:

Definition 1.5. Let F be a field. A cone is a subset P ⊆ F such that (1) P+ P ⊆ P,
(2) P · P ⊆ P, and (3) x2 ∈ P for all x ∈ F. A cone is proper if it does not contain −1.

Lemma 1.6. A cone P over F (of characteristic not 2) is proper if and only if it is a
proper subset of F.

Proof. One direction is obvious. For the other direction suppose that −1 ∈ P and let
a ∈ F be arbitrary. Since F has characteristic 6= 2 we can write a =

(
a+1
2

)2
+ (−1) ·(

a−1
2

)2 ∈ P and thus P = F.

Every field F has a smallst cone which is generated from the squares in F by finite
sums and products. Since products of squares are again squares, we see immediately
that every element in this cone can be written in the form

∑
i a

2
i for finitely many

ai ∈ F. This is the sums of squares cone
∑

F2.

Proposition 1.7. The subset P = {x ∈ F : x ≥ 0 } of an ordered field (F,≤) is a
proper cone satisfying P ∪ −P = F. Conversely, every proper cone with this property
defines an ordering of F.

Proof. That the set of non-negative elements P is a cone is obvious from the two
properties of ≤ in Definition 1.1. In particular for every a ∈ F we have a2 = (−a)2 ≥ 0
since a ≥ 0 or −a ≥ 0. Because every element is comparable to zero, we have x ≤ 0 or
x ≥ 0 for each x, and hence P∪−P = F. If P is not proper, then P = F by Lemma 1.6.
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But then 0 ≤ x for all x which implies −x ≤ 0 by Exercise 1.1. But we also have
0 ≤ −x for all x. Since ≤ is antisymmetric, F = { 0 } — a contradiction.

In the opposite direction, we define an ordering by x ≤ y :⇔ y − x ∈ P. Reflexivity,
transitivity and compatibility with field arithmetic follow from cone properties. For anti-
symmetry one needs P ∩ −P = { 0 } which is derived from properness analogously to
Lemma 1.6. The condition P ∪ −P = F shows that ≤ is total.

Some authors refer to cones as preorders. Proposition 1.7 gives the additional
features that make a preorder into an order. As the pairs (F,≤) and (F,P) are
equivalent descriptions of an ordered field, we freely mix and switch between the two.

Definition 1.8. The cone P(F,≤) := {x ∈ F : x ≥ 0 } is the non-negative cone or
order cone of the ordered field F.

Example 1.9. The sums of squares are the smallest preorder but not necessarily an
order. This can be seen in the function field R(ε) with an infinitesimal ε > 0. This ε is
positive but not a sum of squares. Suppose otherwise, so that ε =

∑
f 2
i for rational

functions fi = gi/h ∈ R(ε) with common denominator h. After clearing denominators,
ε is seen to satisfy a non-zero(!) polynomial equation ε · h2 =

∑
i g

2
i over R[ε]. But this

cannot happen because ε is transcendental over R. 4

Lemma 1.10. Let P be a proper cone in a field F and −a 6∈ P. Then the set
P[a] := {x+ ay : x, y ∈ P } is a proper cone.

Proof. Closedness under addition and multiplication are obvious. Suppose P[a] is
not proper, so that −1 = x + ay for x, y ∈ P. If y = 0, we have an immediate
contradiction to P being proper. Otherwise we can write −a = 1+x

y
∈ P, which is also

a contradiction.

Theorem 1.11. Every proper cone P in F can be extended to an ordering of F.
Conversely, P is the intersection of all orderings of F extending it.

Proof. If P is a proper cone but not an order cone, then there exists a ∈ F such that
a 6∈ P ∪ −P. By Lemma 1.10 we may extend P to a proper cone including a. Hence,
using Zorn’s lemma on the poset of proper cones containing P, we obtain a maximal
proper cone P∗ ⊇ P. Since it is maximal it satisfies P∗ ∪ −P∗ = F and hence is an
ordering.

Clearly the intersection P′ of all orderings of F extending P is a proper cone
extending P. Suppose there exists a ∈ P′ \ P. Then P[−a] is a proper cone above P

which can be extended to an ordering of F by the first part of the proof. But a 6∈ P[−a]
which contradicts a ∈ P′.

Corollary 1.12. Let F be a field. The following are equivalent: (a) F can be ordered,
(b) F has a proper cone, (c) −1 6∈

∑
F2, (d) whenever

∑
i x

2
i = 0 in F then all xi = 0.

Definition 1.13. A field which can be ordered, and hence satisfies any of the above
equivalent conditions, is called (formally) real.
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1.2 Extensions and real closure

Definition 1.14. (1) Let (F1,≤1) and (F2,≤2) be two ordered fields. A function
ϕ : F1 → F2 is a homomorphism of ordered fields (or order-preserving homomorphism)
if ϕ is a field homomorphism such that ϕ(a) ≥2 0 whenever a ≥1 0.

(2) If ϕ is an injective order-preserving homomorphism, then we may regard F1 as
an ordered subfield of F2 and F2 as an ordered extension of F1.

(3) Given two extensions F1/F and F2/F (ordered or not) an F-homomorphism
F1 → F2 is a homomorphism which is the identity on F.

As the name suggests, an ordered extension extends not only the field as a set,
but also the ordering. If (F2,P2)/(F1,P1), then F2 ⊇ F1 and P2 ⊇ P1. Every order-
preserving homomorphism fixes Q with its unique order pointwise.

Example 1.15: Quadratic extensions. Let (F,≤) be an ordered field and suppose
there is 0 < a ∈ F which does not have a square root in F. The algebraic closure of
F has two square roots ±

√
a which yield a quadratic extension F(

√
a)/F. Recall that

every element in the extension can be written uniquely as x+
√
ay for x, y ∈ F. The

smallest cone P′ in F(
√
a) which contains P consists of finite sums the form

n∑
i=1

bi(ci + di
√
a)2,

where bi ∈ P and ci, di ∈ F. Since a is positive, P′ is proper(!) and contains neither√
a nor −

√
a. By Lemma 1.10 and Theorem 1.11 both extensions P′[

√
a] and P′[−

√
a]

give rise to (distinct but isomorphic) orderings of F(
√
a).

To solve a general quadratic equation ax2 + bx+ c it is necessary and sufficient to
adjoin the square root of its discriminant

√
b2 − 4ac, which reduces the general case to

the treatment of square roots. 4

An algebraically closed field is a field without proper algebraic extensions (since
every univariate polynomial splits into linear factors). The analogous concept for
ordered fields is this:

Definition 1.16. A real field without proper real algebraic extensions is real-closed.
A real algebraic extension F2/F1 in which F2 is real-closed is a real closure of F1.

From the maximality property and our treatment of quadratic extensions in Exam-
ple 1.15 we see immediately that real-closed fields have a unique ordering:

Corollary 1.17. A real-closed field has a unique ordering given by its squares.

In establishing the uniqueness of the real closure of an ordered field below, we need
the following lemmas; see [BCR98, Section 1.3] for a proof using the theory of Sturm
sequences.
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Lemma 1.18. Let (F,≤) be an ordered field, F∗ a real closed field and ϕ : F→ F∗ an
order-preserving homomorphism. If F′/F is an ordered extension of finite degree, then
there is an order-preserving extension ϕ′ : F′ → F∗ of ϕ.

Lemma 1.19. Let (F,≤) be an ordered field, f ∈ F[x] and F1 and F2 two real-closed
extensions of F. Then f has the same number of roots in F1 and in F2.

Theorem 1.20. Let (F,≤) be an ordered field. There exists a real closure rcl(F) of F.
The real closure is unique up to unique isomorphism, i.e., for every two real closures
rcl(F)1 and rcl(F)2 there exists a unique order-preserving F-isomorphism between them.

Proof. To prove existence, let acl(F) be an algebraic closure of F. We consider the poset
of ordered fields (F1,≤1) extending (F,≤) and lying below acl(F) ordered by extension
(as ordered fields). Every chain (Fi,Pi) in this poset has an upper bound (

⋃
i Fi,

⋃
i Pi),

so Zorn’s lemma implies that there is a maximal element (F∗,P∗). It follows easily from
its maximality and Example 1.15 that P∗ is the set of squares and therefore the unique
ordering of F∗. Thus if there is a proper real algebraic extension F′/F∗, then first F′
must lie in acl(F) (up to an order-preserving isomorphism) because it is algebraic over
F and furthermore any ordering of F′ must extend that of F∗. But then (F∗,P∗) would
not be maximal which in turn proves that F∗ is real-closed.

Let now F1 = rcl(F) be a real closure of F and F2 some real-closed extension of F.
We prove that there is a unique order-preserving F-homomorphism F1 → F2. Consider
the partially ordered set of all order-preserving homomorphisms ϕ : K→ F2 for any
intermediate field F ⊆ K ⊆ F1 equipped with its ordering induced by F1. Two such
homomorphisms φ : K→ F2 and φ′ : K′ → F2 are compared via φ ≤ φ′ if and only if
K ⊆ K′ and ϕ = ϕ′|K. Application of Zorn’s lemma gives a maximal homomorphism
ϕ∗ : K∗ → F2. By definition K∗ ⊆ F1. If there were a ∈ F1\K∗, then Lemma 1.18 would
show the existence of a strictly larger homomorphism ϕ′ : K∗(a)→ F2 contradicting
the maximality of ϕ. Thus we have an order-preserving F-homomorphism F1 → F2.

To see that this homomorphism is unique, take any a ∈ F1 and consider its minimal
polynomial f over F. Since f is irreducible and F is perfect, all roots of f in any field
extending F are distinct. Let a1 < · · · < ak be the ordered sequence of roots of f in F1

and let a = aj. By Lemma 1.19, we have the same number of roots a′1 < . . . a′k of f in
F2. Any F-homomorphism ψ : F1 → F2 leaves f unchanged and hence maps a root of
f in F1 to a root in F2. Since field homomorphisms are injective this mapping between
the finitely many roots is bijective and if ψ is also order-preserving, then a = aj must
map to a′j. This uniquely determines ψ.

This yields unique F-homomorphisms between rcl(F)1 and rcl(F)2. Composing them
yields the unique F-homomorphisms on rcl(F)1 and rcl(F)2 which are the respective
identity maps. Hence the two real closures are isomorphic.

From the proof we can extract the following slightly more versatile result:

Corollary 1.21. Let (F,≤) an ordered field, rcl(F) its real closure and ϕ : F → F∗
an order-preserving homomorphism into a real-closed field. Then there is a unique
order-preserving extension ϕ′ : rcl(F)→ F∗.
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Theorem 1.22. For a real field F the following are equivalent:

(a) F is real-closed.
(b) F has a unique ordering given by its squares and every univariate

polynomial of odd degree has a root in F.
(c) F(

√
−1) is algebraically closed.

Proof. (a) ⇒ (b): The first part is Corollary 1.17. Suppose f ∈ F[x] is a poly-
nomial of odd degree without a root in F. We may suppose f to have the lowest
odd degree with this property and to be irreducible. Then F′ = F[x]/〈f〉 is a proper
algebraic extension of F and thus cannot be real. According to Corollary 1.12 we must
have −1 ∈

∑
F′2, say

−1 =
m∑
i=1

h2i + fg for hi, g ∈ F[x], deg hi < deg f.

The sum of squares term has even degree ≤ 2d − 2, so necessarily deg g ≤ d − 2 is
odd. By minimality of deg f , g has a root a ∈ F but then −1 =

∑m
i=1 h

2
i (a) ∈

∑
F2

contradicts Corollary 1.12.

(b) ⇒ (c): First let f ∈ F[x] of degree d = 2mn where n is odd. If m = 0, then f
has a root in F by assumption. We now proceed by induction on m. Let y1, . . . , yd be
the roots of f in an algebraic closure of F and consider the sequence of polynomials

gh =
∏
i<j

(x− yi − yj − hyiyj), for h ∈ Z.

Since gh is invariant under permuting the roots yi, Galois theory implies that gh ∈ F[x].
Its degree is

(
d
2

)
= 2m−1n′ for an odd n′ and hence gh has a root yi+yj+hyiyj ∈ F(

√
−1)

by our induction hypothesis. With h = 0 and h = 1 we see that yi + yj ∈ F(
√
−1) and

yiyj ∈ F(
√
−1). But these are the roots of the quadratic equation x2 + (yi+ yj)x+ yiyj

which is solvable in F(
√
−1). Hence f has a root.

This settles the case when f ∈ F[x]. Let now f ∈ F(
√
−1)[x] and f the conjugate

polynomial obtained by replacing all
√
−1 in the coefficients by −

√
−1. Then ff ∈ F[x]

and has a root in F(
√
−1) by the preceding part of the proof. The root is either one of

f or of f . In the first case we are done and in latter case, we have the conjugate root
x as a root of f and are also done.

(c) ⇒ (a): Suppose F′/F is an algebraic extension. By Theorem A.1, F′ = F(a) for
some primitive element a ∈ F′. But then F(a,

√
−1)/F(

√
−1) is an algebraic extension

of an algebraically closed field and must be trivial, showing a ∈ F(
√
−1) and hence

F′ = F or F′ = F(
√
−1). In the latter case, the extension cannot be real.

The following important corollary is left as Exercise 1.5:

Corollary 1.23: Intermediate value theorem. Let F be real-closed and f ∈ F[x].
If there are a < b in F such that f(a) < 0 < f(b), then f has a root between a and b.
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Example 1.24. The field R is real-closed because C = R(
√
−1) is algebraically closed.

The real closure of Q is not R but the countable subset of R which contains the
algebraic numbers over Q. A real-closed extension of R(ε) is the field of Puiseux series ;
see [BPR06, Section 2.6] for more information. 4

1.3 Exercises

Choose exercises to solve from the list below. The target value is 15 points. By solving
more exercises, you can get up to 20 points this week. Solutions must be submitted on
MyCourses by the end of Thursday, May 4.

1.1 Let (F,≤) be an ordered field. Prove the following facts about non-negative
elements: (1) If x ≤ 0 ≤ y then xy ≤ 0. (2) If x > 0 then 1/x > 0. 2 points

1.2 Let P be a cone in F. Show that P is proper if and only if P∩−P = { 0 }. 1 point

1.3 Prove that the unique ordering of Q is given by its sums of squares. 2 points

1.4 An ordered ring (R,≤) is a commutative ring with unity equipped with a total
order obeying the same properties as in Definition 1.1. (1) Prove that an ordered
ring has characteristic zero and that if R has no nilpotent elements, then it has
no zero divisors. (2) Suppose that R is an integral domain. Show that there is a
one-to-one correspondence between the orderings of R and its field of fractions.
5 points

1.5 Prove the Intermediate Value Theorem for polynomials over a real-closed field,
Corollary 1.23. (Hint: factor f over the algebraic closure of F.) 4 points

1.6 An ordered field (F,≤) is archimedean if for any x ∈ F there is an integer n
such that n > x (under the canonical embedding Z ↪→ F). (1) Show that F is
archimedean if and only if the rational numbers are dense in F with its order
topology, i.e., every non-empty interval in F contains a rational number. (2) Prove
that R and all its subfields are archimedean. (Hint: You may use that the order
topology of R is the usual euclidean topology.) (3) Conclude that F is archimedean
if and only if it can be embedded as an ordered field into R. (4) Give an example
of a non-archimedean ordered field. 10 points

1.7 An ordered field (F,≤) is euclidean if for every a ∈ F with a > 0 there is b ∈ F
such that b2 = a. (1) Prove that a euclidean field has a unique ordering. (2) Prove
that real-closed fields are euclidean. Hence, every ordered field F has a smallest
euclidean extension in a real closure rcl(F), which is its euclidean closure with
respect to rcl(F). (3) Prove that two euclidean closures of F (taken in different
real closures) are equal up to a unique order-preserving F-isomorphism. 5 points

1.8 Let F be an ordered field, fix a real closure rcl(F) and consider the affine plane
over it. A point (x, y) ∈ rcl(F)2 with x, y ∈ F is F-rational. A point (x, y) in rcl(F)2

is a ruler and compass point (rcp) if it is F-rational or if it can be constructed in
one of the following ways:
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(a) As the intersection point of two distinct lines through rcps (rcp lines);
(b) As an intersection point of an rcp line and a circle through an rcp and

centered at an rcp (an rcp circle); or
(c) As an intersection point of two distinct rcp circles.

By definition, every rcp can be constructed from finitely many F-rational points
using finitely many rcp lines and circles. A ruler and compass number is an
x ∈ rcl(F) such that (x, 0) is an rcp. Let rcn(F) denote the set of all ruler and
compass numbers over F.

(1) Prove that rcn(F) is a field between F and rcl(F).

Hence rcn(F) inherits a canonical ordering from rcl(F) which extends that of F.

(2) Prove that rcn(F) is the euclidean closure eucl(F).

(3) Let α ∈ rcn(F). Show that [F(α) : F] is a power of two.

(4) Conclude from the trigonometric identity cos θ = 4 cos3 θ/3− 3 cos θ/3
that it is impossible to trisect an arbitrary given angle cos θ using ruler
and compass over F = Q(cos θ).

Consult [Mar98] for the geometric constructions that prove closure properties of
ruler and compass numbers. 15 points


