
Lecture 1. Machine Learning Systems in
Production
Note: This note is a work-in-progress, created for the course CS 329S: Machine Learning
Systems Design (Stanford, 2022). For the fully developed text, see the book Designing Machine
Learning Systems (Chip Huyen, O’Reilly 2022).

Errata, questions, and feedback -- please send to chip@huyenchip.com. Thank you!

Table of contents
When to Use Machine Learning 3

Machine Learning Use Cases 8

Understanding Machine Learning Systems 12
Mind vs. Data 12
Machine learning in research vs. in production 15

Stakeholders and their objectives 15
Computational priority 17

Latency vs. throughput 17
Data 19
Fairness 20
Interpretability 21
Discussion 22

Machine learning systems vs. traditional software 23

Designing ML Systems in Production 25
Requirements for ML Systems 25

Reliability 25
Scalability 26
Maintainability 26
Adaptability 26

Iterative Process 27

Summary 29

https://cs329s.stanford.edu/
https://cs329s.stanford.edu/
https://www.amazon.com/Designing-Machine-Learning-Systems-Production-Ready/dp/1098107969
https://www.amazon.com/Designing-Machine-Learning-Systems-Production-Ready/dp/1098107969
mailto:chip@huyenchip.com

In November 2016, Google announced that it had incorporated its multilingual neural machine
translation system into Google Translate, marking one of the first success stories of deep neural
artificial neural networks in production at scale1. According to Google, with this update, Google
Translate’s quality of translation improved more in a single leap than they had seen in the
previous ten years combined.

Since then, more and more companies have turned towards machine learning (ML) for solutions
to their most challenging problems. In just five years, ML has found its way into almost every
aspect of our lives, from how we access information, how we communicate, how we work, to
how we find love. The spread of ML has been so rapid that it’s already hard to imagine life
without it. Yet, there are still many more use cases for ML waiting to be explored: in healthcare,
in transportation, in farming, even in helping us understand the universe2.

Many people, when they hear “machine learning system”, think of ML algorithms such as
logistic regression or different types of neural networks. However, the algorithm is only a small
part of an ML system in production. The system also includes the interface where users and
developers interact with your system, the data stack to manage your data, the hardware backend
your ML algorithm runs on, and the infrastructure to allow the system to be developed, deployed,
monitored, and updated. Figure 1.1 shows you the different components of an ML system.

Figure 1-1: Different components of an ML system. “ML algorithms” is usually what people
think of when they say machine learning, but it’s only a small part of the entire system.

2 A method to image black holes (MIT News 2019)

1 Zero-Shot Translation with Google’s Multilingual Neural Machine Translation System (Schuster et al., Google AI
Blog 2016)

https://news.mit.edu/2016/method-image-black-holes-0606
http://ai.googleblog.com/2016/11/zero-shot-translation-with-googles.html

There are many excellent books that can give readers a deep understanding of various ML
algorithms. This book doesn’t aim to explain any specific algorithms in detail but to help readers
understand the entire ML system as a whole. New algorithms are constantly being developed.
This book hopes to provide you with a process to develop a solution that best works for your
problem, regardless of which algorithm you might end up using. Chapter 5: Model
Development includes a section that helps you evaluate which algorithm is best for your
problem.

Because of the scale of many ML systems — they consume a massive amount of data, require
heavy computational power, and have the potential to affect the lives of so many people —
deploying them in production has many engineering and societal challenges. However, because
of the speed at which these applications are being deployed, these challenges are not always
properly understood, let alone addressed. In the best case, the failure to address these challenges
can lead to a few unhappy users. In the worst case, it can ruin people’s lives and bankrupt
companies.

This chapter aims to give you a high-level view of the challenges and requirements for deploying
ML systems in production. However, before talking about how to develop ML systems, it’s
important to take a step back and ask a fundamental question: when and when not to use machine
learning. We’ll cover some of the popular use cases of ML to illustrate this point.

After the use cases, we’ll move onto the challenges of deploying ML systems, and we’ll do so by
comparing ML in production to ML in research as well as to traditional software. We’ll continue
with an overview of ML systems design as well as the iterative process for designing an ML
system that is deployable, reliable, scalable, and adaptable.

If you’ve been in the trenches, you might already be familiar with what’s written in this chapter.
However, if you have only had experience with ML in an academic setting, this chapter will give
an honest view of what it takes to deploy ML in the real world, and, hopefully, set your first
application up for success.

When to Use Machine Learning
As its adoption in the industry quickly grows, ML has proven to be a powerful tool for a wide
range of problems. Despite an incredible amount of excitement and hype generated by people
both inside and outside the field, machine learning (ML) is not a magic tool that can solve all
problems. Even for problems that ML can solve, ML solutions might not be the optimal
solutions.

Before starting an ML project, you might want to ask whether ML is necessary3 or cost-effective.
We expect that most readers are familiar with the basics of ML. However, to understand what
ML can do, let’s take a step back and understand what ML is:

Machine learning is an approach to (1) learn (2) complex (3) patterns from (4) existing data
and use these patterns to make (5) predictions on (6) unseen data.

We’ll look at each of the underlined keyphrases in the definition to understand its implications to
the problems ML can solve.

1. Learn: the system has the capacity to learn
A relational database isn’t an ML system because it doesn’t have the capacity to learn.
You can explicitly state the relationship between two columns in a relational database, but
it’s unlikely to have the capacity to figure out the relationship between these two columns
by itself.

For an ML system to learn, there must be something for it to learn from. In most cases,
ML systems learn from data. In supervised learning, based on examples of what inputs
and outputs should look like, ML systems learn how to generate outputs for arbitrary
inputs. For example, if you want to build an ML system to learn to predict the rental price
for Airbnb listings, you need to provide a dataset where each input is a listing with all its
characteristics (square footage, number of rooms, neighborhood, amenities, rating of that
listing, etc.) and the associated output is the rental price of that listing. Once learned, this
ML system can predict the price of a new listing given its characteristics.

2. Complex: the patterns are complex
Consider a website like Airbnb with a lot of house listings, each listing comes with a zip
code. If you want to sort listings into the states they are located in, you wouldn’t need an
ML system. Since the pattern is simple—each zip code corresponds to a known
state—you can just use a lookup table.

The relationship between a rental price and all its characteristics follows a much more
complex pattern which would be very challenging to explicitly state by hand. ML is a
good solution for this. Instead of telling your system how to calculate the price from a list
of characteristics, you can provide prices and characteristics, and let your ML system
figure out the pattern.

ML has been very successful with tasks with complex patterns such as object detection
and speech recognition. What is complex to machines is different from what is complex

3 I didn’t ask whether ML is sufficient because the answer is always no.

to humans. Many tasks that are hard for humans to do are easy for machines. For
example, raising a number of the power of 10. Vice versa, many tasks that are easy for
humans can be hard for machines, e.g. deciding whether there’s a cat in a picture.

3. Patterns: there are patterns to learn
ML solutions are only useful when there are patterns to learn. Sane people don’t invest
money into building an ML system to predict the next outcome of a fair die because
there’s no pattern in how these outcomes are generated4.

However, there are patterns in how stocks are priced, and therefore companies have
invested billions of dollars in building ML systems to learn those patterns.

Whether a pattern exists might not be obvious, or if patterns exist, your dataset might not
be sufficient to capture them. For example, there might be a pattern in how Elon Musk’s
tweets affect Bitcoin prices. However, you wouldn’t know until you’ve rigorously trained
and evaluated your ML models on his tweets. Even if all your models fail to make
reasonable predictions of Bitcoin prices, it doesn’t mean there’s no pattern.

4. Existing data: data is available, or it’s possible to collect data
Because ML learns from data, there must be data for it to learn from. It’s amusing to
think about building a model to predict how much tax a person should pay a year, but it’s
not possible unless you have access to tax and income data of a large population.

In the zero-shot learning (sometimes known as zero-data learning) context, it’s possible
for an ML system to make correct predictions for a task without having been trained on
data for that task. However, this ML system was previously trained on data for a related
task. So even though the system doesn’t require data for the task at hand to learn from, it
still requires data to learn.

It’s also possible to launch an ML system without data. For example, in the context of
online learning, ML models can be deployed without having been trained on any data, but
they will learn from data in production5. However, serving insufficiently trained models
to users comes with certain risks, such as poor customer experience.

Without data and without online learning, many companies follow a ‘fake-it-til-you make
it’ approach: launching a product that serves predictions made by humans, instead of ML
algorithms, with the hope of using the generated data to train ML algorithms.

5 We’ll go over online learning in Chapter 7.

4 Patterns are different from distributions. We know the distribution of the outcomes of a fair die, but there are no
patterns in the way the outcomes are generated.

https://en.wikipedia.org/wiki/Zero-shot_learning

5. Predictions: it’s a predictive problem
ML algorithms make predictions, so they can only solve problems that require
predictions. ML can be especially appealing when you can benefit from a large quantity
of cheap but approximate predictions. In English, “predict” means “estimate a value in
the future.” For example, what would the weather be like tomorrow? What would win the
Super Bowl this year? What movie would a user want to watch next?

As predictive machines (e.g. ML models) are becoming more effective, more and more
problems are being reframed as predictive problems. Whatever question you might have,
you can always frame it as: “What would the answer to this question be?”, regardless of
whether this question is about something in the future, the present, or even the past.

Compute-intensive problems are one class of problems that have been very successfully
reframed as predictive. Instead of computing the exact outcome of a process, which
might be even more computationally costly and time-consuming than ML, you can frame
the problem as: “What would the outcome of this process look like?” and approximate it
using an ML algorithm. The output will be an approximation of the exact output, but
often, it’s good enough. You can see a lot of it in graphic renderings, such as image
denoising6 and screen-space shading7.

6. Unseen data: Unseen data shares patterns with the training data
The patterns your model learns from existing data are only useful if unseen data also
share these patterns. A model to predict whether an app will get downloaded on
Christmas 2020 won’t perform very well if it’s trained on data from 2008 when the most
popular app on the App Store was Koi Pond. What’s Koi Pond? Exactly.

In technical terms, it means your unseen data and training data should come from similar
distributions. You might ask: “If the data is unseen, how do we know what distribution it
comes from?” We don’t, but we can make assumptions—such as we can assume that
users’ behaviors tomorrow won’t be too different from users’ behaviors today—and hope
that our assumptions hold. If they don’t, we’ll find out soon enough.

Due to the way most ML algorithms today learn, ML solutions will especially shine if your
problem has these additional following characteristics.

7. It’s repetitive
Humans are great at few-shot learning: you can show kids a few pictures of cats and most
of them will recognize a cat the next time they see one. Despite exciting progress in

7 Deep Shading: Convolutional Neural Networks for Screen-Space Shading (Nalbach et al., 2016)

6 Kernel-predicting convolutional networks for denoising Monte Carlo renderings (Bako et al., ACM Transactions
on Graphics 2017)

https://arxiv.org/abs/1603.06078
https://studios.disneyresearch.com/wp-content/uploads/2019/03/Kernel-Predicting-Convolutional-Networks-for-Denoising-Monte-Carlo-Renderings-Paper33.pdf

few-shot learning research, most ML algorithms still require many examples to learn a
pattern. When a task is repetitive, each pattern is repeated multiple times, which makes it
easier for machines to learn it.

8. The cost of wrong predictions is cheap
Unless your ML model’s performance is 100% all the time, which is highly unlikely for
any meaningful tasks, your model is going to make mistakes. ML is especially suitable
when the cost of a wrong prediction is low. For example, one of the biggest use cases of
ML today is in recommender systems because with recommender systems, a bad
recommendation is usually forgiving — the user just won’t click on the recommendation.

If one prediction mistake can have catastrophic consequences, ML might still be a
suitable solution if the benefits of correct predictions outweighs the cost of wrong
predictions. Developing self-driving cars is difficult because an algorithmic mistake can
lead to death. However, many companies still want to develop self-driving cars because
they can save many lives if self-driving cars are statistically safer than human drivers.

9. It’s at scale
ML solutions often require non-trivial upfront investment on data, compute,
infrastructure, and talent, so it’d make sense if we can use these solutions a lot.

“At scale” means different things for different tasks, but it might mean making a lot of
predictions. Examples include sorting through millions of emails a year or predicting
which departments thousands of support tickets should be sent to a day.

A problem might appear to be a singular prediction but it’s actually a series of
predictions. For example, a model that predicts who will win a US presidential election
seems like it only makes one prediction every four years, but it might actually be making
a prediction every hour or even less because that prediction has to be updated to new
information over time.

Having a problem at scale also means that there’s a lot of data for you to collect, which is
useful for training ML models.

10. The patterns are constantly changing
Cultures change. Tastes change. Technologies change. What’s trendy today might be old
news tomorrow. Consider the task of email spam classification. Today, an indication of a
spam email is a Nigerian prince but tomorrow it might be a distraught Vietnamese writer.

If your problem involves one or more constantly changing patterns, hard-coded solutions
such as hand-written rules can become outdated quickly. Figuring how your problem has
changed so that you can update your hand-written rules accordingly can be too expensive
or impossible. Because ML learns from data, you can update your ML model with new
data without having to figure out how the data has changed. It’s also possible to set up
your system to adapt to the changing data distributions, an approach we’ll discuss in
Chapter 8.

The list of use cases can go on and on, and it’ll grow even longer as ML adoption matures in the
industry. Even though ML can solve a subset of problems very well, it can’t solve and/or
shouldn’t be used for a lot of problems. Most today’s ML algorithms shouldn’t be used under any
of the following conditions.

1. It’s unethical.
2. Simpler solutions do the trick. In chapter 5, we’ll cover how to start with simple solutions

first before trying out ML solutions.
3. It’s not cost-effective.

However, even if ML can’t solve your problem, it might be possible to break your problem into
smaller components and ML can solve some of them. For example, if you can’t build a chatbot to
answer all your customers’ queries, it might be possible to build an ML model to predict whether
a query matches one of the frequently asked questions. If yes, automatically direct the customer
to the answer. If not, direct them to customer service.

I’d also want to caution against dismissing a new technology because it’s not as cost-effective as
older technologies at the moment. Most technological advances are incremental. A type of
technology might not be efficient now, but it might be in the future. If you wait for the
technology to prove its worth to the rest of the industry before jumping in, you might be years or
decades behind your competitors.

Machine Learning Use Cases
ML has found increasing usage in both enterprise and consumer applications. Since the
mid-2010s, there has been an explosion of applications that leverage ML to deliver superior or
previously impossible services to the consumers.

With the explosion of information and services, it’d have been very challenging for us to find
what we want without the help of ML, manifested in either a search engine or a
recommendation system. When you visit a website like Amazon or Netflix, you’re
recommended items that are predicted to best match your taste. If you don’t like any of your

recommendations, you might want to search for specific items, and your search results are likely
to be powered by ML.

If you have a smartphone, ML is likely already assisting you in many of your daily activities.
Typing on your phone is made easier with predictive typing, an ML system that gives you
suggestions on what you might want to say next. An ML system might run in your photo editing
app to suggest how best to enhance your photos. You might authenticate your phone using your
fingerprint or your face, which requires an ML system to predict whether a fingerprint or a face
matches yours.

The ML use case that drew me into the field was machine translation, automatically translating
from one language to another. It has the potential to allow people from different cultures to
communicate with each other, erasing the language barrier. My parents don’t speak English, but
thanks to Google Translate, now they can read my writing and talk to my friends who don’t
speak Vietnamese.

ML is increasingly present in our homes with smart personal assistants such as Alexa and
Google Assistant. Smart security cameras can let you know when your pets leave home or if
you have an uninvited guest. A friend of mine was worried about his aging mother living by
herself -- if she falls, no one is there to help her get up -- so he relied on an at-home health
monitoring system that predicts whether someone has fallen in the house.

Even though the market for consumer ML applications is booming, the majority of ML use cases
are still in the enterprise world. Enterprise ML applications tend to have vastly different
requirements and considerations from consumer applications. There are many exceptions, but for
most cases, enterprise applications might have stricter accuracy requirements but be more
forgiving with latency requirements. For example, improving a speech recognition system’s
accuracy from 95% to 95.5% might not be noticeable to most consumers, but improving a
resource allocation system’s efficiency by just 0.1% can help a corporation like Google or
General Motors save millions of dollars. At the same time, latency of a second might get a
consumer distracted and open something else, but enterprise users might be more tolerant of that.
For people interested in building companies out of ML applications, consumer apps might be
easier to distribute but much harder to make money out of. However, most enterprise use cases
aren’t obvious unless you’ve encountered them yourself.

According to Algorithmia’s 2020 state of enterprise machine learning survey, ML applications in
enterprises are diverse, serving both internal use cases (reducing costs, generating customer
insights and intelligence, internal processing automation) and external use cases (improving
customer experience, retaining customers, interacting with customers).8

8 2020 state of enterprise machine learning (Algorithmia, 2020)

https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf

Figure 1-2: 2020 state of enterprise machine learning by Algorithmia.

Fraud detection is among the oldest applications of ML in the enterprise world. If your product
or service involves transactions of any value, it’ll be susceptible to fraud. By leveraging ML
solutions for anomaly detection, you can have systems that learn from historical fraud
transactions and predict whether a future transaction is fraudulent.

Deciding how much to charge for your product or service is probably one of the hardest business
decisions, why not let ML do it for you? Price optimization is the process of estimating a price
at a certain time period to maximize a defined objective function, such as the company’s margin,
revenue, or growth rate. ML-based pricing optimization is most suitable for cases with a large
number of transactions where demand fluctuates and consumers are willing to pay a dynamic
price, e.g. Internet ads, flight tickets, accommodation bookings, ride-sharing, events.

To run a business, it’s important to be able to forecast customer demand so that you can
prepare a budget, stock inventory, allocate resources, and update pricing strategy. For example, if
you run a grocery store, you want to stock enough so that customers find what they’re looking
for, but you don’t want to overstock, because if you do, your groceries might go bad and you lose
money.

Acquiring a new user is expensive. As of 2019, the average cost for an app to acquire a user
who’ll make an in-app purchase is $86.619. The acquisition cost for Lyft is estimated at
$158/rider10. This cost is so much higher for enterprise customers. Customer acquisition cost is
hailed by investors as a startup killer11. Reducing customer acquisition costs by a small amount
can result in a large increase in profit. This can be done through better identifying potential
customers, showing better-targeted ads, giving discounts at the right time, etc.—all of which are
suitable tasks for ML.

After you’ve spent so much money acquiring a customer, it’d be a shame if they leave. The cost
of acquiring a new user is approximated to be 5 to 25 times more expensive than retaining an
existing one. Churn prediction is predicting when a specific customer is about to stop using
your products or services so that you can take appropriate actions to win them back. Churn
prediction can be used not only for customers but also for employees.

To prevent customers from leaving, it’s important to keep them happy by addressing their
concerns as soon as they arise. Automated support ticket classification can help with that.
Previously, when a customer opens a support ticket or sends an email, it needs to first be
processed then passed around to different departments until it arrives at the inbox of someone
who can address it. An ML system can analyze the ticket content and predict where it should go,
which can shorten the response time and improve customer satisfaction. It can also be used to
classify internal IT tickets.

Another popular use case of ML in enterprise is brand monitoring. The brand is a valuable
asset of a business12. It’s important to monitor how the public and how your customers perceive
your brand. You might want to know when/where/how it’s mentioned, both explicitly (e.g. when
someone mentions “Google”) or implicitly (e.g. when someone says “the search giant”) as well
as the sentiment associated with it. If there’s suddenly a surge of negative sentiment in your
brand mentions, you might want to do something about it as soon as possible. Sentiment analysis
is a typical ML task.

A set of ML use cases that has generated much excitement recently is in health care. There are
ML systems that can detect skin cancer and diagnose diabetes. Even though many healthcare
applications are geared towards consumers, because of their strict requirements with accuracy
and privacy, they are usually provided through a healthcare provider such as a hospital or used to
assist doctors in providing diagnosis.

12 Apple, Google, Microsoft, Amazon each has a brand estimated to be worth in the order of hundreds of millions
dollars (Forbes, 2020)

11 Startup Killer: the Cost of Customer Acquisition (David Skok, 2018)
10 Valuing Lyft Requires A Deep Look Into Unit Economics (Forbes, 2019)

9 Average mobile app user acquisition costs worldwide from September 2018 to August 2019, by user action and
operating system (Statista, 2019)

https://hbr.org/2014/10/the-value-of-keeping-the-right-customers
https://www.forbes.com/the-worlds-most-valuable-brands
https://www.forbes.com/the-worlds-most-valuable-brands
https://www.forentrepreneurs.com/startup-killer/
https://www.forbes.com/sites/jeffhenriksen/2019/05/17/valuing-lyft-requires-a-deep-look-into-unit-economics
https://www.statista.com/statistics/185736/mobile-app-average-user-acquisition-cost/
https://www.statista.com/statistics/185736/mobile-app-average-user-acquisition-cost/

Understanding Machine Learning Systems
Understanding ML systems will be helpful in designing and developing them. In this section,
we’ll start with the question: how important is data for building intelligent systems? We’ll then
go over how ML systems are different from both ML in research (or as often taught in school)
and traditional software, which motivates the need for this book.

Mind vs. Data
Progress in the last decade shows that the success of an ML system depends largely on the data it
was trained on. Instead of focusing on improving ML algorithms, most companies focus on
managing and improving their data.

Despite the success of models using massive amounts of data, many are skeptical of the
emphasis on data as the way forward. In the last three years, at every academic conference I
attended, there were always some debates among famous academics on the power of mind vs.
data. Mind might be disguised as inductive biases or intelligent architectural designs. Data might
be grouped together with computation since more data tends to require more computation.

In theory, you can both pursue intelligent design and leverage large data and computation, but
spending time on one often takes time away from another.

On the mind over data camp, there’s Dr. Judea Pearl, a Turing Award winner best known for his
work on causal inference and Bayesian networks. The introduction to his book, “The book of
why”, is entitled “Mind over data,” in which he emphasizes: “Data is profoundly dumb.” In one
of his more controversial posts on Twitter, he expressed his strong opinion against ML
approaches that rely heavily on data and warned that data-centric ML people might be out of job
in 3-5 years.

[QUOTE]
“ML will not be the same in 3-5 years, and ML folks who continue to follow the current

data-centric paradigm will find themselves outdated, if not jobless. Take note.”13

[/QUOTE]

There’s also a milder opinion from Professor Christopher Manning, Director of the Stanford
Artificial Intelligence Laboratory, who argued that huge computation and a massive amount of
data with a simple learning algorithm create incredibly bad learners. The structure allows us to
design systems that can learn more from fewer data14.

14 Deep Learning and Innate Priors (Chris Manning vs. Yann LeCun debate).
13 Tweet by Dr. Judea Pearl (2020)

https://anand.typepad.com/datawocky/2008/03/more-data-usual.html
https://anand.typepad.com/datawocky/2008/03/more-data-usual.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://www.youtube.com/watch?v=fKk9KhGRBdI&feature=emb_logo&ab_channel=StanfordAISalon
https://twitter.com/yudapearl/status/1310316514537385984

Many people in ML today are on the data over mind camp. Professor Richard Sutton, a professor
of computing science at the University of Alberta and a distinguished research scientist at
DeepMind, wrote a great blog post in which he claimed that researchers who chose to pursue
intelligent designs over methods that leverage computation will eventually learn a bitter lesson.

[QUOTE]
“The biggest lesson that can be read from 70 years of AI research is that general methods that
leverage computation are ultimately the most effective, and by a large margin. … Seeking an
improvement that makes a difference in the shorter term, researchers seek to leverage their

human knowledge of the domain, but the only thing that matters in the long run is the leveraging
of computation.”15

[/QUOTE]

When asked how Google search was doing so well, Peter Norvig, Google’s Director of Search,
emphasized the importance of having a large amount of data over intelligent algorithms in their
success: “We don’t have better algorithms. We just have more data.”16

Dr. Monica Rogati, Former VP of Data at Jawbone, argued that data lies at the foundation of data
science, as shown in Figure 1-3. If you want to use data science, a discipline of which machine
learning is a part of, to improve your products or processes, you need to start with building out
your data, both in terms of quality and quantity. Without data, there’s no data science.

16 The Unreasonable Effectiveness of Data (Alon Halevy, Peter Norvig, and Fernando Pereira, Google 2009)
15 The Bitter Lesson (Richard Sutton, 2019)

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/35179.pdf
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Figure 1-3: The data science hierarchy of needs (Monica Rogati, 201717)

The debate isn’t about whether finite data is necessary, but whether it’s sufficient. The term finite
here is important, because if we had infinite data, we can just look up the answer. Having a lot of
data is different from having infinite data.

Regardless of which camp will prove to be right eventually, no one can deny that data is
essential, for now. Both the research and industry trends in the recent decades show the success
of machine learning relies more and more on the quality and quantity of data. Models are getting
bigger and using more data. Back in 2013, people were getting excited when the One Billion
Words Benchmark for Language Modeling was released, which contains 0.8 billion tokens18. Six
years later, OpenAI’s GPT-2 used a dataset of 10 billion tokens. And another year later, GPT-3
used 500 billion tokens. The growth rate of the sizes of datasets is shown in Figure 1-4.

Figure 1-4: The size of the datasets used for language models over time (log scale)

Even though much of the progress in deep learning in the last decade was fueled by an
increasingly large amount of data, more data doesn’t always lead to better performance for your
model. More data at lower quality, such as data that is outdated or data with incorrect labels,
might even hurt your model’s performance.

18 1 Billion Word Language Model Benchmark (Chelba et al., 2013)
17 The AI Hierarchy of Needs (Monica Rogati, 2017)

http://www.statmt.org/lm-benchmark/
https://hackernoon.com/the-ai-hierarchy-of-needs-18f111fcc007

Machine learning in research vs. in production
As ML usage in the industry is still fairly new, most people with ML expertise have gained it
through academia: taking courses, doing research, reading academic papers. If that describes
your background, it might be a steep learning curve for you to understand the challenges of
deploying ML systems in the wild and navigate an overwhelming set of solutions to these
challenges. ML in production is very different from ML in research. Table 1-1 shows five of the
major differences.

Research Production

Objectives Model performance Different stakeholders have
different objectives

Computational priority Fast training, high throughput Fast inference, low latency

Data Static19 Constantly shifting

Fairness Good to have (sadly) Important

Interpretability Good to have Important

Table 1-1: Key differences between ML in research and ML in production.

Stakeholders and their objectives
Research and leaderboard projects often have one single objective. The most common objective
is model performance—develop a model that achieves the state-of-the-art (SOTA) results on
benchmark datasets. To edge out a small improvement in performance, researchers often resort to
techniques that make models too complex to be useful.

There are many stakeholders involved in bringing an ML system into production. Each
stakeholder has their own objective. Consider a project that recommends restaurants to users.
The project involves ML engineers, salespeople, product managers, infrastructure engineers, and
a manager.

● The ML engineers want a model that recommends restaurants that users will most likely
order from, and they believe they can do so by using a more complex model with more
data.

19 A subfield of research focuses on continual learning: developing models to work with changing data distributions.
We’ll cover continual learning in Chapter 7.

● The sales team wants a model that recommends restaurants that pay the highest
advertising fee to be shown in-app, since ads bring in more revenue than just service fees.

● The product team notices that every drop in latency leads to drop in orders through the
service, so they want a model that can do inference20 faster than the model that the ML
engineers are working on.

● As the traffic grows, the infrastructure team has been woken up in the middle of the
night because of problems with scaling their existing system, so they want to hold off the
production line so they could update the infrastructure.

● The manager wants to maximize the margin, and one way to achieve it is to let go of the
ML team21.

These objectives require different models, yet the stakeholders will have to collaborate to
somehow create a model that will satisfy all of them.

Production having different objectives from research is one of the reasons why successful
research projects might not always be used in production. Ensembling is a technique popular
among the winners of many ML competitions, including the famed $1M Netflix Prize. It
combines “multiple learning algorithms to obtain better predictive performance than could be
obtained from any of the constituent learning algorithms alone.22” While it can give you a small
improvement, ensembled systems risk being too complex to be useful, e.g. more error-prone to
deploy, slower to serve, or harder to interpret.

For many tasks, a small improvement in performance can result in a huge boost in revenue or
cost savings. For example, a 0.2% improvement in the click-through-rate for a product
recommendation system can result in millions of dollars increase in revenue for an ecommerce
site. However, for many tasks, a small improvement might not be noticeable for users. From a
user’s point of view, a speech recognition app with a 95% accuracy is not that different from an
app with a 95.2% accuracy. For the second type of tasks, if a simple model can do a reasonable
job, complex models must perform significantly better to justify the complexity.

Side bar: In recent years, there have been many critics of ML leaderboards, both research
leaderboards such as GLUE and competitions such as Kaggle.

An obvious argument is that in these competitions, many hard steps needed for building ML
systems are already done for you23.

23 Machine learning isn’t Kaggle competitions (Julia Evans, 2014)
22 Ensemble learning (Wikipedia)

21 It’s common for the ML and data science teams to be among the first to go during a company’s mass layoff. See
IBM, Uber, Airbnb, and this analysis on How Data Scientists Are Also Susceptible To The Layoffs Amid Crisis
(AIM, 2020).

20 Inference here means “generate predictions”.

https://jvns.ca/blog/2014/06/19/machine-learning-isnt-kaggle-competitions/
https://en.wikipedia.org/wiki/Ensemble_learning
https://www.theregister.com/2020/05/22/ibm_layoffs/
https://observer.com/2020/05/uber-layoff-coronavirus-pandemic-cuts-high-tech-division/
https://adage.com/article/cmo-strategy/airbnb-job-cuts-took-heavy-toll-marketers-designers-and-data-scientists/2256246
https://analyticsindiamag.com/how-data-scientists-are-also-susceptible-to-the-layoffs-amid-crisis/

A less obvious argument is that due to the multiple-hypothesis testing scenario that happens
when you have multiple teams testing on the same hold-out test set, a model can do better than
the rest just by chance24.

The misalignment of interests between research and production has been noticed by
researchers. In an EMNLP 2020 paper, Ethayarajh and Jurafsky argued that benchmarks have
helped drive advances in NLP by incentivizing the creation of more accurate models at the
expense of other qualities valued by practitioners such as compactness, fairness, and energy
efficiency25.

Computational priority
When designing an ML system, people who haven’t deployed an ML system often make the
mistake of focusing entirely on the model development part.

During the model development process, you train different iterations of your model multiple
times. The trained model then runs inference on the test set once to report the score. This means
training is the bottleneck. Once the model has been deployed, however, its job is to do inference,
so inference is the bottleneck. Most research prioritizes fast training whereas most production
prioritizes fast inference.

Latency vs. throughput
One corollary of this is that research prioritizes high throughput whereas production prioritizes
low latency. In case you need a refresh, latency refers to the time it takes from receiving a query
to returning the result. Throughput refers to how many queries are processed within a specific
period of time.

[WARNING]
Terminology clash
Some books make the distinction between latency and response time. According to Martin
Kleppmann in his foundational book Designing Data-Intensive Applications, “the response time
is what the client sees: besides the actual time to process the request (the service time), it
includes network delays and queueing delays. Latency is the duration that a request is waiting to
be handled — during which it is latent, awaiting service.”

25 Utility is in the Eye of the User: A Critique of NLP Leaderboards (Ethayarajh and Jurafsky, EMNLP 2020)
24 AI competitions don’t produce useful models (Luke Oakden-Rayner, 2019)

https://arxiv.org/abs/2009.13888
https://lukeoakdenrayner.wordpress.com/2019/09/19/ai-competitions-dont-produce-useful-models/

In this book, to simplify the discussion and to be consistent with the terminology used in the ML
community, we use latency to refer to the response time, so the latency of a request measures the
time from when the request is sent to the time a response is received.
[/WARNING]

For example, the average latency of Google Translate is the average time it takes from when a
user clicks Translate to when the translation is shown, and the throughput is how many queries it
processes and serves a second.

If your system always processes one query at a time, higher latency means lower throughput. If
the average latency is 10ms, which means it takes 10ms to process a query, the throughput is 100
queries/second. If the average latency is 100ms, the throughput is 10 queries/second.

However, because most modern distributed systems batch queries to process them together, often
concurrently, higher latency might also mean higher throughput. If you process 10 queries at a
time and it takes 10ms to run a batch, the average latency is still 10ms but the throughput is now
10 times higher—1000 queries/second. If you process 100 queries at a time and it takes 50ms to
run a batch, the average latency now is 50ms and the throughput is 2000 queries/second. Both
latency and throughput have increased!

This is further complicated if you want to batch online queries. Batching requires your system to
wait for enough queries to arrive in a batch before processing them, which further increases
latency.

In research, you care more about how many samples you can process in a second (throughput)
and less about how long it takes for each sample to be processed (latency). You’re willing to
increase latency to increase throughput, e.g. with aggressive batching.

However, once you deploy your model into the real world, latency matters a lot. In 2017, an
Akamai study found that 100ms delay can hurt conversion rates by 7%. In 2019, Booking.com
found that an increase of about 30% in latency cost about 0.5% in conversion rates — “a
relevant cost for our business.”26 In 2016, Google found that more than half of mobile users will
leave a page if it takes more than 3 seconds to load. Users today are even less patient.

Reducing latency might reduce the number of queries you can process on the same hardware at a
time. If your hardware is capable of processing much more than one sample at a time, using it to
process only one sample means making processing one sample more expensive.

26 150 Successful Machine Learning Models: 6 Lessons Learned at Booking.com (Bernardi et al., KDD 2019)

https://www.prnewswire.com/news-releases/akamai-online-retail-performance-report-milliseconds-are-critical-300441498.html
https://www.thinkwithgoogle.com/consumer-insights/consumer-trends/mobile-site-load-time-statistics/
https://www.thinkwithgoogle.com/consumer-insights/consumer-trends/mobile-site-load-time-statistics/
https://blog.kevinhu.me/2021/04/25/25-Paper-Reading-Booking.com-Experiences/bernardi2019.pdf

When thinking about latency it’s important to keep in mind that it’s not just an individual number
but a distribution. It’s tempting to simplify a distribution by using a single number like the
average (arithmetic mean) latency of all the requests within a time window, but this number can
be misleading. Imagine you have 10 requests whose latency numbers are 100ms, 102ms, 100ms,
100ms, 99ms, 104ms, 110ms, 90ms, 3000ms, 95ms. The average latency of these 10 requests is
390ms, which makes your system seem slower than it actually is. What might happen is that
there was a network error that made one request much slower, and you should investigate that
troublesome request.

It’s usually better to think in percentiles as they tell you about the percentages of your users who
are experiencing something. The most common percentile is the 50th percentile, abbreviated as
p50. It’s also known as median. If the median is 100ms, half of the requests take longer than
100ms, and half of the requests take less than 100ms.

Higher percentiles also help you discover outliers, which might be symptoms of something
wrong. Typically, the percentiles you’ll want to look at are p90, p95, and p99. The 90th
percentile (p90) for the 10 requests above is 3000ms, which is an outlier.

Higher percentiles are important to look at because even though they account for a small
percentage of your users, sometimes they can be the most important users. For example, on
Amazon website, the customers with the slowest requests are often those who have the most data
on their accounts because they have made many purchases — that is, they’re the most valuable
customers27.

It’s a common practice to use high percentiles to specify the performance requirements for your
system, for example, a product manager might specify that the 90th percentile or 99.9th
percentile latency of a system must be below a certain number.

Data
During the research phase, the datasets you work with are often clean and well-formatted, freeing
you to focus on developing and training models. They are static by nature so that the community
can use them to benchmark new architectures and techniques. This means that many people
might have used and discussed the same datasets, and quirks of the dataset are known. You might
even find open-source scripts to process and feed the data directly into your models.

In production, data, if available, is a lot more messy. It’s noisy, possibly unstructured, constantly
shifting. It’s likely biased, and you likely don’t know how it’s biased. Annotated labels, if there
are any, are sparse, imbalanced, outdated, or incorrect. Changing project or business

27 Designing Data-Intensive Applications (Martin Kleppmann, O’Reilly 2017)

requirements might require adding another label class or merging two existing label classes. This
can happen even after a model has been trained and deployed. If you work with users’ data,
you’ll also have to worry about privacy and regulatory concerns.

In research, since you don’t serve your models to users, you mostly work with historical data,
e.g. data that already exists and is stored somewhere. In production, most likely you’ll also have
to work with data that is being constantly generated by users, systems, and third-party data.

Figure 1-5 is a great graphic by Andrej Karpathy, head of AI at Tesla, that illustrates the data
problems he encountered during his PhD compared to his time at Tesla.

Research Production

● Clean
● Static
● Mostly historical data

● Messy
● Constantly shifting
● Historical + streaming data
● Privacy + regulatory concerns

Figure 1-5: Data in research vs. data in production by Andrej Karpathy28

Fairness
During the research phase, a model is not yet used on people, so it’s easy for researchers to put
off fairness as an afterthought: “Let’s try to get state-of-the-art first and worry about fairness
when we get to production.” When it gets to production, it’s too late. On top of that, as of 2021,

28 Building the Software 2.0 Stack (Andrei Karpathy, Spark+AI Summit 2018)

https://www.youtube.com/watch?v=y57wwucbXR8

fairness isn’t yet a metric for researchers to optimize on. If you optimize your models for better
accuracy or lower latency, you can show that your models beat state-of-the-art. But there’s no
equivalent state-of-the-art for fairness metrics.

You or someone in your life might already be a victim of biased mathematical algorithms
without knowing it. Your loan application might be rejected because the ML algorithm picks on
your zip code, which embodies biases about one’s socio-economic background. Your resume
might be ranked lower because the ranking system employers use picks on the spelling of your
name. Your mortgage might get a higher interest rate because it relies partially on credit scores,
which reward the rich and punish the poor. Other examples of ML biases in the real world are in
predictive policing algorithms, personality tests administered by potential employers, and college
ranking.

In 2019, “Berkeley researchers found that both face-to-face and online lenders rejected a total of
1.3 million creditworthy black and Latino applicants between 2008 and 2015.” When the
researchers “used the income and credit scores of the rejected applications but deleted the race
identifiers, the mortgage application was accepted”29. For even more galling examples, I
recommend Cathy O’Neil’s Weapons of Math Destruction30.

ML algorithms don’t predict the future, but encode the past, perpetuating the biases in the data
and more. When ML algorithms are deployed at scale, they can discriminate against people at
scale. If a human operator might only make sweeping judgments about a few individuals at a
time, an ML algorithm can make sweeping judgments about millions in split seconds. This can
especially hurt members of minority groups because misclassification on them has minor effects
on models’ overall performance metrics.

If an algorithm can already make correct predictions on 98% of the population, and improving
the predictions on the other 2% would incur multiples of cost, some companies might,
unfortunately, choose not to do it. During a McKinsey & Company research in 2019, only 13%
of the large companies surveyed said they are taking steps to mitigate risks to equity and fairness,
such as algorithmic bias and discrimination31.

Interpretability
In early 2020, the Turing Award winner Professor Geoffrey Hinton proposed a heatedly debated
question about the importance of interpretability in ML systems.

[QUOTE]

31 AI Index 2019 (Stanford HAI, 2019)
30 Weapon of Math Destruction (Cathy O’Neil, Crown Books 2016)
29 Mortgage discrimination: Black and Latino paying millions more in interest, study shows (CBS News, 2019)

https://hai.stanford.edu/research/ai-index-2019
https://www.cbsnews.com/news/mortgage-discrimination-black-and-latino-paying-millions-more-in-interest-study-shows/

“Suppose you have cancer and you have to choose between a black box AI surgeon that cannot
explain how it works but has a 90% cure rate and a human surgeon with an 80% cure rate. Do

you want the AI surgeon to be illegal?”32

[/QUOTE]

A couple of weeks later, when I asked this question to a group of 30 technology executives at
public non-tech companies, only half of them would want the highly effective but
unable-to-explain AI surgeon to operate on them. The other half wanted the human surgeon.

While most of us are comfortable with using a microwave without understanding how it works,
many don’t feel the same way about AI yet, especially if that AI makes important decisions
about their lives.

Since most ML research is still evaluated on a single objective, model performance, researchers
aren’t incentivized to work on model interpretability. However, interpretability isn’t just optional
for most ML use cases in the industry, but a requirement.

First, interpretability is important for users, both business leaders and end-users, to understand
why a decision is made so that they can trust a model and detect potential biases mentioned
above. Second, it’s important for developers to debug and improve a model.

Just because interpretability is a requirement doesn’t mean everyone is doing it. As of 2019, only
19% of large companies are working to improve the explainability of their algorithms33.

Discussion
Some might argue that it’s okay to know only the academic side of ML because there are plenty
of jobs in research. The first part — it’s okay to know only the academic side of ML — is true.
The second part is false.

While it’s important to pursue pure research, most companies can’t afford it unless it leads to
short-term business applications. This is especially true now that the research community took
the “bigger, better” approach. Oftentimes, new models require a massive amount of data and tens
of millions of dollars in compute alone.

As ML research and off-the-shelf models become more accessible, more people and
organizations would want to find applications for them, which increases the demand for ML in
production.

33 AI Index 2019 (Stanford HAI, 2019)
32 https://twitter.com/geoffreyhinton/status/1230592238490615816

https://hai.stanford.edu/research/ai-index-2019
https://twitter.com/geoffreyhinton/status/1230592238490615816

The vast majority of ML-related jobs will be, and already are, in productionizing ML.

Machine learning systems vs. traditional software
Since ML is part of software engineering (SWE), and software has been successfully used in
production for more than half a century, some might wonder why we don’t just take
tried-and-true best practices in software engineering and apply them to ML.

That’s an excellent idea. In fact, ML production would be a much better place if ML experts
were better software engineers. Many traditional SWE tools can be used to develop and deploy
ML applications.

However, many challenges are unique to ML applications and require their own tools. In SWE,
there’s an underlying assumption that code and data are separated. In fact, in SWE, we want to
keep things as modular and separate as possible (see Separation of concerns).

On the contrary, ML systems are part code, part data, and part artifacts created from the two. The
trend in the last decade shows that applications developed with the most/best data win. Instead of
focusing on improving ML algorithms, most companies will focus on improving their data.
Because data can change quickly, ML applications need to be adaptive to the changing
environment which might require faster development and deployment cycles.

In traditional SWE, you only need to focus on testing and versioning your code. With ML, we
have to test and version our data too, and that’s the hard part. How to version large datasets?
How to know if a data sample is good or bad for your system? Not all data samples are equal --
some are more valuable to your model than others. For example, if your model has already
trained on 1M scans of normal lungs and only 1000 scans of cancerous lungs, a scan of a
cancerous lung is much more valuable than a scan of a normal lung. Indiscriminately accepting
all available data might hurt your model’s performance and even make it susceptible to data
poisoning attacks (see Figure 1-6).

https://en.wikipedia.org/wiki/Separation_of_concerns

Figure 1-6: An example of how a face recognition system can be poisoned, using malicious data,
to allow unauthorized people to pose as someone else.

Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning
(Chen et al., 2017)

The size of ML models gives another challenge. As of 2021, it’s common for ML models to have
hundreds of billions, if not trillions, of parameters, which requires GBs of RAM to load them
into memory. A few years from now, a billion parameters might seem quaint — like can you
believe the computer that sent men to the moon only had 32MB of RAM?

However, for now, getting these large models into production, especially on edge devices34, is a
massive engineering challenge. Then there is the question of how to get these models to run fast
enough to be useful. An autocompletion model is useless if the time it takes to suggest the next
character is longer than the time it takes for you to type.

Monitoring and debugging these models in production is also non-trivial. As ML models get
more complex, coupled with the lack of visibility into their work, it’s hard to figure out what
went wrong or be alerted quickly enough when things go wrong.

The good news is that these engineering challenges are being tackled at a breakneck pace. Back
in 2018, when the BERT (Bidirectional Encoder Representations from Transformers) paper first
came out, people were talking about how BERT was too big, too complex, and too slow to be
practical. The pretrained large BERT model has 340M parameters and is 1.35GB35. Fast forward

35 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al., 2018)
34 We’ll cover edge devices in Chapter 6. Deployment.

https://arxiv.org/abs/1712.05526
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

two years later, BERT and its variants were already used in almost every English search on
Google36.

Designing ML Systems in Production
Now that we’ve discussed what it takes to develop and deploy an ML system, let’s get to the fun
part of actually designing one. This section aims to give you an overview of machine learning
systems design. It starts by explaining what machine learning systems design is and covers the
requirements for ML systems. We will then go over the iterative process for designing systems to
meet those requirements.

ML systems design is the process of defining all the components of an ML system, including
interface, algorithms, data, infrastructure, and hardware, so that the system satisfies
specified requirements.

Requirements for ML Systems
Before building a system, it’s essential to define requirements for that system. Requirements vary
from use case to use case. However, most systems should have these four characteristics:
reliable, scalable, maintainable, and adaptable.

We’ll walk through each of these concepts in detail. Let’s take a closer look at reliability first.

Reliability
The system should continue to perform the correct function at the desired level of
performance even in the face of adversity (hardware or software faults, and even human error).

“Correctness” might be difficult to determine for ML systems. For example, your system might
call the function “.predict()” correctly, but the predictions are wrong. How do we know if a
prediction is wrong if we don’t have ground truth labels to compare it with?

With traditional software systems, you often get a warning, such as a system crash or runtime
error or 404. However, ML systems fail silently. End users don’t even know that the system has
failed and might have kept on using it as if it was working. For example, if you use Google
Translate to translate a sentence into a language you don’t know, it might be very hard for you to
tell even if the translation is wrong.

36 Google SearchOn 2020.

https://searchon.withgoogle.com/

Scalability
As the system grows (in data volume, traffic volume, or complexity), there should be reasonable
ways of dealing with that growth.

Scaling isn’t just up-scaling37 — expanding the resources to handle growth. In ML, it’s also
important to down-scale — reducing the resources when not needed. For example, at peak, your
system might require 100 GPUs. However, most of the time, your system needs only 10 GPUs.
Keeping 100 GPUs up all the time can be costly, so your system should be able to scale down to
10 GPUs.

An indispensable feature in many cloud services is autoscaling: automatically scaling up and
down the number of machines depending on usage. This feature can be tricky to implement.
Even Amazon fell victim to this when their autoscaling feature failed on Prime Day, causing
their system to crash. An hour downtime was estimated to cost it between $72 million and $99
million38.

Maintainability
There are many people who will work on an ML system. They are ML engineers, DevOps
engineers, and subject matter experts (SMEs). They might come from very different
backgrounds, with very different languages and tools, and might own different parts of the
process. It’s important to structure your project and set up your infrastructure in a way such that
different contributors can work using tools that they are comfortable with, instead of one group
of contributors forcing their tools onto other groups. When a problem occurs, different
contributors should be able to work together to identify the problem and implement a solution
without finger-pointing. We’ll go more into this in chapter 7.

Adaptability
To adapt to changing data distributions and business requirements, the system should have some
capacity for both discovering aspects for performance improvement and allowing updates
without service interruption.

Because ML systems are part code, part data, and data can change quickly, ML systems need to
be able to evolve quickly. This is tightly linked to maintainability. We’ll go more into this in
chapter 7.

38 Wolfe, Sean. 2018. “Amazon's one hour of downtime on Prime Day may have cost it up to $100 million in lost
sales.” Business Insider.
https://www.businessinsider.com/amazon-prime-day-website-issues-cost-it-millions-in-lost-sales-2018-7.

37 Up-scaling and down-scaling are two aspects of “scaling out”, which is different from “scaling up”. Scaling out is
adding more equivalently functional components in parallel to spread out a load. Scaling up is making a component
larger or faster to handle a greater load.

https://blog.turbonomic.com/blog/on-technology/cloud-scalability-scale-vs-scale
https://blog.turbonomic.com/blog/on-technology/cloud-scalability-scale-vs-scale
https://blog.turbonomic.com/blog/on-technology/cloud-scalability-scale-vs-scale

Iterative Process
Developing an ML system is an iterative and, in most cases, never ending process39. You do
reach the point where you have to put the system into production, but then that system will
constantly need to be monitored and updated.

Before deploying my first ML system, I thought the process would be linear and straightforward.
I thought all I had to do was to collect data, train a model, deploy that model, and be done.
However, I soon realized that the process looks more like a cycle with a lot of back and forth
between different steps.

For example, here is one workflow that you might encounter when building an ML model to
predict whether an ad should be shown when users enter a search query40.

1. Choose a metric to optimize. For example, you might want to optimize for impressions --
the number of times an ad is shown.

2. Collect data and obtain labels.
3. Engineer features.
4. Train models.
5. During error analysis, you realize that errors are caused by wrong labels, so you relabel

data.
6. Train model again.
7. During error analysis, you realize that your model always predicts that an ad shouldn’t be

shown, and the reason is because 99.99% of the data you have is no-show (an ad
shouldn’t be shown for most queries). So you have to collect more data of ads that should
be shown.

8. Train model again.
9. Model performs well on your existing test data, which is by now two months ago. But it

performs poorly on the test data from yesterday. Your model has degraded, so you need to
collect more recent data.

10. Train model again.
11. Deploy model.
12. Model seems to be performing well but then the business people come knocking on your

door asking why the revenue is decreasing. It turns out the ads are being shown but few
people click on them. So you want to change your model to optimize for clickthrough
rate instead.

13. Go to step 1.

40 Praying and crying not featured but present through the entire process.
39 Which, as an early reviewer pointed out, is a property of traditional software.

Figure 1-7 shows an oversimplified representation of what the iterative process for developing
ML systems in production looks like.

Figure 1-7: The process of developing an ML system looks more like a cycle with a lot of back
and forth between steps.

While we’ll take a deeper dive into what each of these steps mean in practice in later chapters,
let’s take a brief look at what happens during each of the steps.

Step 1. Project scoping
A project starts with scoping the project, laying out goals, objectives, and constraints.
Stakeholders should be identified and involved. Resources should be estimated and allocated. We
already discussed different stakeholders and some of the focuses for ML projects in production
earlier in this chapter. We’ll discuss how to scope an ML project in the context of a business as
well as how to organize teams to ensure the success of an ML project in Chapter 9: The Human
Side of Machine Learning.

Step 2. Data engineering
A vast majority of ML models today learn from data, so developing ML models starts with
engineering data. In chapter 2, we’ll discuss the importance of data in ML and the fundamentals
of data engineering, which covers handling data from different sources and formats. With access
to raw data, we’ll want to curate training data out of it by sampling and generating labels.

Step 3. ML model development
With the initial set of training data, we’ll need to extract features and develop initial models
leveraging these features. This is the stage that requires the most ML knowledge and is most
often covered in ML courses. In chapter 4, we’ll discuss feature engineering and in chapter 5,
we’ll discuss model selection, training, and evaluation.

Step 4. Deployment
After a model is developed, it needs to be made accessible to users. Developing an ML system is
like writing — you will never reach the point when your system is done. But you do reach the
point when you have to put your system out there. We’ll discuss different ways to deploy an ML
model in chapter 6.

Step 5. Monitoring and continual learning
Once in production, models need to be monitored for performance decay and maintained to be
adaptive to changing environments and changing requirements. This step will be discussed in
chapter 7.

Step 6. Business analysis
Model performance needs to be evaluated against business goals and analyzed to generate
business insights. These insights can then be used to eliminate unproductive projects or scope out
new projects. Because this step is closely related to the first step, it will also be discussed in
chapter 9.

Summary
This opening chapter aims to give readers an understanding of what it takes to bring ML into the
real world. ML systems are complex, consisting of many different components. Data scientists
and ML engineers working with ML systems in production will likely find that focusing only on
the ML algorithms part isn’t enough. It’s important to know about other aspects of the system,
including data engineering, online vs. batch prediction, deployment, monitoring, maintenance,
etc. This book aims to cover the other aspects of the system instead of just ML algorithms.

We started with a tour of the wide range of use cases of ML in production today. While most
people are familiar with ML in consumer facing applications, the majority of ML use cases are
for enterprise. We also discussed when ML would be appropriate. Even though ML can solve
many problems very well, it can’t solve all the problems and it’s certainly not appropriate for all
the problems. However, for problems that ML can’t solve, it’s possible that ML can solve part of
them.

We continued to discuss a high-level debate that has consumed much of the ML literature: which
is more important — data or intelligent algorithms. There are still many people who believe that
having intelligent algorithms will eventually trump having a large amount of data. However, the
success of systems including AlexNet, BERT, GPT showed that the progress of ML in the last
decade relies on having access to a large amount of data. Regardless of whether data can
overpower intelligent design, no one can deny the importance of data in ML. A nontrivial part of
this book will be devoted to shedding light on various data questions.

This chapter highlighted the differences between ML in research and ML in production. The
differences include the stakeholders involved, computational priority, the properties of data used,
the gravity of fairness issues, and the requirements for interpretability. This section is the most
helpful to those coming to ML production from academia. We also discussed how ML systems
differ from traditional software systems, which motivated the need for this book.

Fortunately, complex ML systems are made up of simpler building blocks. Now that we’ve
covered the high-level overview of an ML system in production, we’ll zoom into its building
blocks in the following chapters, starting with the fundamentals of data engineering in the next
chapter. If any of the challenges mentioned in this chapter seems abstract to you, I hope that
specific examples in the following chapters will make them more concrete.

https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://arxiv.org/abs/1810.04805
https://openai.com/blog/better-language-models/

