HRTEM

High Resolution Transmission Electron Microscopy

Luiza Souza & Henrik Stenbrink
CHEM-E4205

03.05.2023

A”

Aalto University
School of Chemical
Engineering



Introduction

* Microscopy techniques used to reveal small objects
beyond visual capacity

+ Without the help of any instrument, the resolution of
naked eyes is only about 0.1 mm, or 100 um

* The earlydeveloped light microscope (LM) magnify
objects by optical lenses using visible lights

+ resolution of LM can be improved to below 1 ym at
several hundred nanometers
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» After the LM technique, it was discovered that electrons
could be used as the illumination source to improve the
imaging resolution

+ Several microscopy (EM) techniques have been
developed

» Ernst Ruska developed the first electron
microscope, a TEM, with the assistance of Max
Knolls in 1931

* In these techniques, various detected signals come from
the electron—-specimen interactions

» If the sample is thin enough, the electrons can penetrate
right through the samples to form images using
electromagnetic lenses.
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Principles of TEM & schematic
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Objective Lens and Objective Aperture = The objective lens is used for focusing and
| magnifying the object. us the
' Projector Lens = The projector lens is used to further magnify the images formed by the

intermediate lens. The projector lens has a great depth of focus.
. Viewing Screen and Camera = The viewing screen is d with phosphor [ |

| powders, which emit visible lights upon being bombarded by high-energy electrons.
Recording can be done by a film camera or a CCD camera. If a CCD camera is available, the
TEM data are recorded directly to digital files.

wenhnelt, and these electrons are accelerated by a high voitage (the TEM working voitage)
between the Wehnelt and anode plate. A crossover is formed in this gap.

A LaB6 filament can provide about 10 times brighter beam than a W filament with several
times extended lifetime, while a higher gun vacuum level is required.
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Fig. 3.1 Schematic construction of a TEM.
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Principles of HRTEM

A Transmission Electron Microscope uses a beam of electrons instead of light,
exploiting the wave-particle duality of electrons.
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Utilization of HRTEM — Sample preparation

Sample preparation is one of the most critical step to get
meaningful TEM results:

1. To preserve the original structure of the sample;

2. To be as thin as possible, typically at least less thar
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punching into

vacuum

chamber;

6. To be preferably electrically conductive to avoid

beam charging effect causing beam damage;

7. To be surface clean with minimum contaminations.
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Table 2.1 TEM sample preparation of material samples.

Ion
Grids | millizz Electronalizll; i Microtomy
Metal and | No Yes | Yes Yes No
alloy =
Cerjimic Not Yes No Yes No
B comraon
lzck}' Mot Yes No Yes No
L mineral common
Polymer and | No Yes No Yes Yes, if not
polymer too hard
composite
Metal or Not Yes Yes if conductive Yes No
ceramic common
composite
Solid thin No Yes Not common Yes No
film
Powder Yes Yes (with No Yes Yes (with
embedding) (with embedding)
embed
ding)
Particles for | Yes No No No No
fibers in
liquid solu-
tion




Data Retrieved

« Different types of information can be gained including point defects, packing,
particle size, lattice planes, angles and distances between planes/lattices

« It can provide not only a high imaging resolution down to angstroms or even sub
angstrom level but also structural information through electron diffraction

 Due to high resolution, minimal crystal lattice imperfections can be seen
« Resolution is sub-angstrom level at best

« Also, provides chemical composition information through the interactions of high-
energy electrons with core electrons of the specimen
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Data Retrieved

Causes for incorrect data;

» Particle size: Orientation effects, since it’s a 2D projection of a
3D property

 Thickness of sample can cause problems:

« Can lead to difficulty of interpretation due to multiple
scattering of electron beams.
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Data Retrieved

« In order to get sample thickness, imaging has to be done of the cross section - Data
interpretation might be difficult, due to both sides of the interface needing to diffract
strongly

« Statistics:
Images are of atiny area > either need lots of pictures or can’t say much about the
structure in general.
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Reason for high resolution

 Add definition of resolution “smallestsize that can be identified”
» Theoretical limit of resolution:
0.61)

usinf
(Rayleigh criterion)

* Thiscomesfromthe diffraction limit
 Shorterwavelength leadsto higher resolution (resolutionlimit when intensities overlap)

* In practice: thelimit is higher dueto factors such as spherical aberration fromthelens and
chromatic aberrationfrom the electrongun

« Electron pathway positionthrough thelenses would presentdifferentoutcomesaccordingto the
spherical aberration.

« Forexample, passing through the middle vs. edge

* Intensity depends oninteraction betweenelectronsand the sample
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Data interpretation

 Typical HRTEM image

* In this case, light areas are denser
with electrons vs. darker

» All examples mostly symmetrical,
structures but..

+ A few distinct spots with different
pattern

* Picture D shows both vacancies and
extra atoms.

Graphene
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Data interpretation

« The more you magnify, the more
detailed information can be obtained

* Picture B: 2 different colored areas,
packing density results in different
colors - Different phases

* Picture D & E: CNT’s, when
maghnified, reveals double walled
structure
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Data interpretation

2 different types of structures in one
sample

Deduce which packing according to
the pattern

Picture D showing hcp packing

Picture E showing fcc packing f1et,! L ORI
1)
‘ 0

0

? Aalto University
A School of Chemical
B Engineering Kou, Z.; Li, X.; Huang, R.; Yang, L.; Yang, Y.; Feng, T.; Lan, S.; Wilde, G.; Lai, Q.; Tang, S. Stress-Induced Phase Transformation and
Phase Boundary Sliding in Ti: An Atomically Resolved in-Situ Analysis. Journal of Materials Science & Technology 2023, 152, 30—36.

https://doi.org/10.1016/j.jmst.2022.12.029.



Data interpretation

 Areas R1 and R2 (Fig. A-C)
move as a function of time

= Phase sliding

« Boundary between FCC and HCP
(Fig. D-F) moves

« = Cracking
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Comparison of TEM
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Fig. 1.3 Comparison of different magnifying methods: (a) TEM;
(b) SEM; (c) AFM; (d) LM; and (e) projector.

(e) Slide projector. From left to right, the ray path is light source -» condenser lens (two
pieces of lenses combined together) -> slide (specimen) -> projector lens -» screen.
The ray path is similar to LM and TEM, except the objective lens that is missing since there
is no need to focus down the beam. The magnified image is a 2D projection of the slide,
which is similar to the TEM image.

TEM Fig.(c).
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Table 1.1 Comparison of TEM with LM, SEM, and AFM.

TEM LM SEM AFM
Sample Samples must be No Normally No
preparation | very thin (<100 restriction. dehydrated and restriction.
nm). Solid or thin surface is coated
sliced samples with a thin carbon
should be or metal layer if
dehydrated and nonconducting.
preferably Hydrated samples
conductive can be done using
(carbon coating low-vacuum mode,
needed for special capsules, or
nonconductive cryo-SEM.
samples). Liquid
can be prepared by
cryo-EM method.
Resolution | Angstroms or sub- Sub- Nanometers. Vertical:
angstroms. micrometers. angstroms
o 1 nm;
Lateral:
nanometers
Imaging Mass-thickness Low- 3D sample surface 3D sample
contrast imaging, magnification | observarion. surface
diffraction- imaging. imaging by
contrast imaging, 2D for thin profiling at
Z-contrast imaging | sections, or high
in STEM, and 3D using resolution.
phase-contrast in stereoscope
HRTEM; 2D only, | or optical
except 3D sectioning,
reconstruction by
electron
tomography.
Structure By electron No. By EBSD. No.
diffraction or
atomic imaging.
Chemical By EDS, EELS, or No. EDS or WDS, No.
analysis STEM. while sparial

resolution is lower

than TEM.

Luo, Z. A Practical Guide to Transmission Electron Microscopy: Fundamentals; Momentum Press: New York, UNITED STATES, 2015.




Pros & Cons

Pros:

TEMs offer the most powerful
magnification, potentially over 50 million
times or more

TEMs have a wide-range of applications
(educational and industrial fields)

TEMSs provide information on compound
structure, defects and unit cell properties

Images are high-quality and detailed

TEMs are able to yield information of
surface features, shape, size and
structure
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cons:

TEMs are large and very expensive
Laborious sample preparation

Operation and analysis requires special
training

Samples are limited to those that are
electron transparent, able to tolerate the
vacuum chamber and small enough to fit
in the chamber

TEMs require special housing and
maintenance

Images are black and white

Statistically relevant data is an issue



« Sample grown by ALD/MLD

« Samples prepared for TEM by Cu layer, further protected by a
carbon layer and sample prepared with focused ion beam (FIB)
milling

» Structure analyzed by XRD and verified by TEM

TEM results compared with XRR, showing promise as XRR is a
faster method in gaining density information

(a) A6B6

p—

Al,o T W Ao, B
N T .
-———
= -——__
= R
o<-__—
— ©

S| T s s S—
I N —

B s seas =
-———
L I N
A6 A12 A6B6 A6B6-thick

50 nm

Figure 1. Cross section sketches of the present multi-layered
thin-film samples.
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Characterization of ZnO/AlOx/benzene
thin-film heterostructures grown
through atomic layer
deposition/molecular layer deposition

Fabian Krahl', Yanling Ge'-* and Maarit Karppinen'

! Dep: Chemistry and Materials Science, School of Chemical Engineering. Aalto University.
;
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Figure 3. Bright and dark field TEM images of samples A6B6 and A6B6-thick.

Krahl, F.; Ge, Y.; Karppinen, M. Characterization of ZnO/AIO  /Benzene Thin-Film Heterostructures Grown through Atomic Layer Deposition/Molecular Layer Deposition. Semicond. Sci.

Technol. 2021, 36 (2),025012. https://doi.org/10.1088/1361-6641/abcee2.




* Solid state synthesis, mixing Sr and
Co oxides.

 HRTEMused for identification of new
phase, “supercell” dimension,
monoclinic distortion

Chem. Mater. 2006, I8, 155—158
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Parent of Misfit-Layered Cobalt Oxides: [Sr:0:],C00: e

H. Yamauchi,” K. Sakai,” T. Nagai,* Y. Matsui,* and M. Karppinen®*

Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta,
Midori-ku, Yokohama 226-8503, Japan, and National Institute for Materials Science,
1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
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Figure 1. Crystal structures of misfit-layered cobalt oxides, [M,,A20,,+2. Figure 3. HRTEM image and ED patterns for [Sr20,]05C00;. (a) The

Co05, in general and of the new “zero” phase, [St205]o.sC0O5. The form HRTEM image represents the ({c.plar.le, e)_(hlbltmg the layer sequence of
contains hexagonal CoO, layers coupled incoherently with square-plan SrO—SrO—Co0; and a monoclinic distortion. The ED patterns are taken
AO and MO layers along the sequence, AO—(MO),,—AO—Co00,, where With the electron beam along (b) [010], (¢) [100], and (d) [001]. The first
the latter lacks the (MO),, “charge reservoir’. All the layers should 1 ED pattern confirms the monoclinic distortion and the last shows that the
considered potentially nonstoichiometric, at least in terms of oxygen. phase is commensurate, i.e., ¢ (=bu/bs) = 0.5.
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High-T, superconductivity in three-fluorite-layer copper oxides. II. (Cu,Mo)Sr,(Ce,Y)3;Cu,04;,5
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'Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
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(Received 19 February 2004; revised manuscript received 22 April 2004; published 17 November 2004)

(a) AS (b) HPO-100

+ Solid state synthesis by mixing oxides, Calcinated (950°C) and
sintered (1020°C).

« HRTEMused for structure confirmation and to check for stacking
faults and other defects
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FIG. 3. ED patterns for the AS (a) and HPO-100 (b) samples
with the incident beam along the directions, [001], [010], and

FIG. 2. HRTEM image for the HPO-100 sample. [i— 6] (i fhie: top 5 the betsmy.
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Ce,Y)3Cu2011+0d. Phys. Rev. B 2004, 70 (17), 174515. https://doi.org/10.1103/PhysRevB.70.174515.



Questions ?
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