MEC-E8003 Beam, Plate and Shell models, onsite exam 18.04.2023

1. Use the definition V2 =V -V to derive the Laplacian operator in the cylindrical coordinate system.

2. Derive the component forms of the thin slab equilibrium equation V-N +b =0 in the polar
coordinate system.

3. Consider the curved beam of the figure forming a 90-degree
circular segment of radius R in the horizontal plane. Find the
stress resultants N(s), Q,(s), Qy(s), T(s), M,(s), and
My (s) . Use the equilibrium equations of the beam model in )
the (s,n,b)—coordinate system.

4. Consider the bending of a cantilever plate strip which is
loaded by distributed force p [N/ m] acting on the free | n
edge. Write down the equilibrium equations,
constitutive equations, and boundary conditions for the
bending mode according to the Kirchhoff model. After |« >|
that, solve the equations for the stress resultant,
displacement, and rotation components. Thickness and length of the plate are t and L,
respectively. Young’s modulus E and Poisson’s ratio v are constants. Consider a plate of width
H but assume that stress resultants, displacements, and rotations depend on y only.

5. Asteel ring of length L, radius R, and thickness t is loaded by
radial surface force p acting on the inner surface. No forces are
acting on the ends. Model the ring as a cylindrical membrane,
write down the equilibrium and constitutive equations, and solve
for the radial displacement. Assume rotation symmetry. Young’s
modulus E and Poisson’s ratio v of the material are constants.




Use the definition V2 = V-V to derive the Laplacian operator in the cylindrical coordinate system.

Solution
Gradient operator and the derivatives of the basis vectors of the cylindrical (r, ¢, z) — coordinate system
are (formula collection)
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Combining the results for the terms gives
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Derive the component forms of the thin slab equilibrium equation V-N +b =0 in the polar coordinate
system.

Solution
1p The component forms of stress, external force, and gradient operator of the polar coordinate system
are
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Then the same manipulation for the second term of the displacement gradient
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Finally, by combining the terms of the divergence and external loading
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Consider the curved beam of the figure forming a 90-degree
circular segment of radius R in the horizontal plane. Find the stress
resultants N(s), Q,(s), Qy(s), T(s), M(s), and My(s). Use
the equilibrium equations of the beam model in the (s,n,b)—
coordinate system.

Solution

In a statically determined case, stress resultants follow from the equilibrium equations and boundary
conditions at the free end of the beam (or directly from a free body diagram). In (s,n,b) coordinate
system, equilibrium equations are

N'—Qpx + Dby T'-Mx+Cq
Qn+Nx—-Qpzr+b, =0 and M, +Tx-Mpr-Qy +C,=0.
Qp +Qpr+by Mg +M7+Q, +¢y

For a circular beam, curvature and torsion are x =1/ R (constant) and 7 =0.

2p As external distributed forces and moments vanish i.e. by =b, =b, =¢, =c, =c, =0, equilibrium
equations and the boundary conditions at the free end simplify to (notice that the external force acting
at the free end is acting in the oppisite direction to &)
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Q, =0 and {M,:=0 s=R%.
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4p Equations constitute a boundary value problem which can be solved by hand calculations without
too much effort;

Q=0 SG]O,R%[ and Q,+P=0 s:R% = Qys)=-P. €

Eliminating Q,, and N from the remaining two connected force equilibrium equations and using the
original equations to find the missing boundary condition give

N”+%N:O SE]O,R%[ and N'=N=0 s=R% = N(s)=0 €

The first equilibrium equation gives

Qn(S)ZO. €

After that, continuing with the moment equilibrium equations with the solutions to the force
equilibrium equations



M =0 SE]O,R%[ and My =0 s:R% = My(s)=0. €

Eliminating M, and T from the remaining two connected moment equilibrium equations and using
the original equations to find the missing boundary condition gives

.S
T”+iT+E:0 SE]O,RE[ and T'=T=0 s=RZ = T =PR(sin=-1). €
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Knowing this, the first moment equilibrium equation gives

Mp(s)=RT'= RPcos% . €



Consider the bending of a cantilever plate strip which is
loaded by distributed force p [N / m] acting on the free edge. | n
Write down the equilibrium equations, constitutive
equations, and boundary conditions for the bending mode
according to the Kirchhoff model. After that, solve the | >|
equations for the stress resultant, displacement, and rotation

components. Thickness and length of the plate are t and L, respectively. Young’s modulus E and
Poisson’s ratio v are constants. Consider a plate of width H but assume that stress resultants,
displacements, and rotations depend on y only.

Solution
The starting point is the full set of Reissner-plate bending mode equations in the Cartesian (x, y,n)—
coordinate system.
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3p If all derivatives with respectto x vanish, the plate equations of the Cartesian (x, y, n) — coordinate
according to the Kirchhoff model (Kirchhoff constraint replaces the constitutive equation for the shear
stress resultant) system simplify to
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The boundary conditions are

W(0) =0, #(0)=0, My,(L)=0, Qy(L)=—p.

3P As the stress resultant are known at the free end, the equilibrium equations can be solved first for
the stress resultants. The boundary value problems for the stress resultants give

d&:o ye(O,L) and Qy(L)=-p

dy = Qy(Y):_pa €

— P —Q,=-p ye@L) and My (L)=0 = My(y)=-p(y-L). €

After that, displacement and rotation follow from the constitutive equation, Kirchhoff constraint, and
boundary conditions at the clamped edge
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dw %(%yz_m ye(OL) and w(0)=0 = w(y):g(%yg’—%yz). €
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A steel ring of length L, radius R, and thickness t is loaded by radial
surface force p acting on the inner surface. No forces are acting on
the ends. Model the ring as a cylindrical membrane, write down the
equilibrium and constitutive equations, and solve for the radial
displacement. Assume rotation symmetry and ug=0. Young’s
modulus E and Poisson’s ratio g of the material are constants.

Solution
According to the formulae collection, equilibrium and constitutive equations of a cylindrical membrane
in (z,¢,n) coordinates are (notice that €, is directed inwards)
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3p Due to the rotation symmetry, the derivatives with respect to the angular coordinate vanish and
Ug=0. External distributed force b, =—p is due to the traction acting on the inner boundary.
Therefore, the equilibrium equations and constitutive equations simplify to a set of ordinary differential
equations
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As the edges are stress-free i.e.

N;; =0 and N,,=0 on {O,L}.

3P Solution to the stress resultants, as obtained from the equilibrium equations, are
NZZ =0, NZ¢:0,and NW:Rp

Constitutive equations give
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