EXAMPLE: Potassium tetrachloroplatinate(II): $\mathrm{K}_{2} \mathrm{PtCl}_{4}$

Space group: P4/mmm (No. 123)
Lattice parameters: $a=b=7.023 \AA, c=4.1486 \AA$
Atomic positions: Pt 1a: 0,0,0
K $2 e: 0,1 / 2,1 / 2$
CI 4j: $x, x, 0 ; x=0.23247$
(a) Draw the unit cell with the atoms.
(b) Draw the projection of the unit cell in c-axis direction.
(c) Theoretical density is $3.37 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate Z ?
$\left(\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}\right.$; atomic weights: K 39.098 ; Pt 195.22; CI 35.453)
(d) Calculate the distances: $\mathrm{Pt}-\mathrm{Pt}, \mathrm{Pt}-\mathrm{K}, \mathrm{Pt}-\mathrm{Cl}$.
(e) What is the coordination number of platinum?
(f) What is the site symmetry of platinum?

No. 123
P4/m 2/m 2/m Patterson symmetry $\quad P 4 / m m m$

Origio at centre ($4 / \mathrm{mmow}$)
Asymmetric unit $0 \leq x \leq 1 ; 0 \leq y \leq 1: 0 \leq z \leq 1 ; x \leq y$
Symmetry operations

$$
\begin{array}{|ll|}
\hline \mathrm{Pt} & 1 a: 0,0,0 \\
\mathrm{~K} & 2 e: 0,1 / 2,1 / 2 \\
\mathrm{Cl} & 4 j: x, x, 0 ; x=0.23247 \\
\hline
\end{array}
$$

Maximal nee-isomorphic subgroups

```
l lll
    [2]P4/m11(P4/m) 1;2,3;4;9;10;11;12
    \2]P4mm
    (2]P4m2 2 (P)
```

 \(\begin{array}{lll}12] P 2 / \mathrm{m} 2 / \mathrm{m} 1(\text { PMmm }) & 1: 2: 5 ; 69 ; 10 ; 13: 14 \\ 12] P 2 / \mathrm{m} 12 / \mathrm{m}(\mathrm{Cmmm}) & 1: 2: 7 ; 8 ; 9 ; 10 ; 15 ; 16\end{array}\)
 Ha nce
 (2) C $4 / \mathrm{m}$ लd $\left(a^{\prime}-2 a \cdot b^{\prime}-2 b\right)(P 4 / m b m): 12 \mid C 4 / a w w\left(a^{\prime}=2 a, b^{\prime}=2 b\right)(P 4 / a=m)$

Maximal isemorphic subgroups of lowest index
Ile $[2] P 4 / m m m\left(c^{\prime}=2 e\right) ;[2] C 4 / / w w w\left(a^{\prime}-2 a \cdot b^{\prime}-2 b\right)(P 4 / m m m)$
Minimal nen-isomorphic supergroups
I $[3]^{1 / w} 3$
II [2] $4 / \mathrm{mmm}$

Generators selected (1); $\quad t(1,0,0) ; \quad(0,1,0) ; \quad 1(0,0,1) ;$ (2); (3): (5); (9)
Positions
(Contimued on preceding page)

мatpay,	Coordinates			
$16 * 1$	(1) x, y, z	(2) $8.5,2$	(3) $9 x, z$	(4) $y, 8,8$
	(5) $8, y, t$	(6) $3.9,2$	(7) y, x :	(8) 9.8.:
	(13) $x .7$	(19) 1) $1, y$,	(15) $\mathrm{l}, 8.8$	(12) $16 . x$?

40 w $2 m \quad$ x.t. 4 R.t.t t.e.t t.e.t no extra condrions
$\begin{array}{lllllll}n & w 2 m & x, t, 0 & \text { R.t.0 } & \text { i.x. } 0 & \text { i.e. } 0 & \text { no cxtra canditions }\end{array}$

$4 \mathrm{~m} 2 \mathrm{~m} . \quad x, 0,0 \quad 1,0,0 \quad 0, x, 0 \quad 0,8,0 \quad$ Do entra conditioss

4	k	m	2 m	x, x, j	$8, R, \dagger$

kkl: $h+k=2 n$
no extro conditions
no extra coodtions
hat: $h+k=2$
$h k l: h+k=2 n$
no extra condition:
no extro conditions
no cetra conditions
1 b 4/nma 0.0
no extra conditions,
Symmetry of special projections
Along [001] $P 4 m a n$
$\begin{array}{ll}a^{\prime}=a & b^{\prime}=b \\ \text { Origin at } \\ 0,0,2\end{array}$

Abog [100] $\quad \mathrm{p} 2 \mathrm{~mm}$ $\begin{array}{ll}a^{\prime}=\boldsymbol{b} \\ \text { Origin } & \boldsymbol{b}^{\prime}=\boldsymbol{c}=\boldsymbol{c} \\ x, 0,0\end{array}$

Reflestion conditions
General:
no conditions

Special
no extra canditions
no extra canditions
no extra comacitioas
to catra conditions
exta condrition
extra conditikess
axtra condition

$\begin{array}{llll}8 & 8 \mathrm{~mm} & 0,0, z & 0,0,2\end{array}$
${ }^{2}$ C mmm. $0,4,1 \quad$ t.0.t

1 c 4/4wew \quad. 1.0
 $a^{\prime}=\{(-a+b)$
Orizin at $x . x, 0$

List all atom duplicates based on Wyckoff position

Atom	Wyckoff site	Atom counting	Position	Coordinates
Pt	1 a	1	000	000
K	2 e	1	$0,1 / 2,1 / 2$	$0,1 / 2,1 / 2$
		2	$1 / 2,0,1 / 2$ $(x=0.23247)$	$1 / 2,0,1 / 2$
Cl	4	1	$-x,-x, 0$	$0.23,0.23,0$
		3	$-x, x, 0$	$0.77,0.23,0$
		4	$x,-x, 0$	$0.23,0.77,0$

Drawing tactic: framework

$a=b=7.023 \AA, c=4.1486 \AA$
\rightarrow The box is a bit flat, more wide than high

Atoms have z coordinates 0 and $1 / 2$
\rightarrow Three 'levels' in the structure
(since $z=0$ means we also draw those atoms at $z=1$)

Drawing tactic: add atom Pt

Atom Pt is at $(0,0,0)=$ in each cormer

Also add these same atoms in the 'floor plan' drawings for $z=0$ and $z=1$

Drawing tactic: add atom K

Atom K is at $(0,1 / 2,1 / 2) \&(1 / 2,0,1 / 2)$
= middle of each side face ("outer walls")

Add these in the 'floor plan' drawings, all of them are on level $z=1 / 2$

Drawing tactic: add atom Cl

- Atom K has four positions: ($0.23,0.23,0$); (0.77, 0.77, 0); (0.77, 0.23, 0); and (0.23, 0.77, 0)

All of these atoms are on the $z=0$ and $z=1$ drawings only.
In this case it might be easier to find their locations here first, and then copy to the box drawing.
The approximate location is in the middle of the 'quarters' of level $z=0$ and $z=1$

Compare to the image made in Vesta

Nearby atoms and bond distances

The floor drawings show the nearby atoms in the same plane:
Pt has neighbour Cl -atoms in diagonal directions (remember the neighbor cells also)

$\mathrm{Pt}-\mathrm{Cl}$ bond length can be found by trigonometry:

$$
L=\sqrt{\left(x_{P t}-x_{C l}\right)^{2}+\left(y_{P t}-y_{C l}\right)^{2}+\left(z_{P t}-z_{C l}\right)^{2}}
$$

Nearby atoms and bond distances

Pt: 1 atom in unit cell
K: 2 atoms in unit cell
$\mathrm{Cl}: 4$ atoms in unit cell

Bond lengths:
Pt-Pt: $(1-0)^{2} \cdot 4.15 \AA$
Pt-K: $\sqrt{ }\left[(0.5-0)^{2} \cdot 7.023 \AA ̊+(0.5-0)^{2} \cdot 4.149 \AA ̊\right]=4.08 \AA$
$\mathrm{Pt}-\mathrm{Cl}: \sqrt{ }\left[(0.232-0)^{2} \cdot 7.023 \AA \AA+(0.232-0)^{2} \cdot 7.023 \AA ̊\right]=2.30 \AA$

Site symmetry of Pt: $D_{4 h}$
ab-projection
(seen from c-direction)

$\mathrm{K}_{2} \mathrm{PtCl}_{4}$

- $\rho=3.37 \times 10^{6} \mathrm{~g} / \mathrm{m}^{3}$
- $\mathrm{V}=7.023 \AA \times 7.023 \AA \times 4.1486 \AA=204.62 \times 10^{-30} \mathrm{~m}^{3}$
- $M=(2 \times 39.098+195.22+4 \times 35.453) \mathrm{g} / \mathrm{mol}=415.228 \mathrm{~g} / \mathrm{mol}$
- $Z=\left(\mathrm{V} \times \rho \times \mathrm{N}_{\mathrm{A}}\right) / \mathrm{M}=1$
- Distances:Pt-Pt:4.15 A $]$ Too long distance \rightarrow not a chemical bond,

Pt-K: $4.08 \AA$ 」 but can have electrostatic attraction
Pt-Cl:2.31 A (\rightarrow chemical bond)

- $\mathrm{CN}(\mathrm{Pt})=4$
- PI site symmetry: $D_{4 \mathrm{~h}}$

