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Block Codes

▶ Let F be a q -element set, referred to as the alphabet.

▶ A block code of length n is a non-empty subset C ⊆ F n .

▶ The size of C is M := |C| , and

R :=
1
n

logq(M)

is called the rate of C .

▶ The elements of C are referred to as codewords.

▶ F n is called the ambient space of C .
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▶ The following illustrates the general structure of a
communication scheme.
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▶ Let C ⊆ F n be a block code. A maximum likelihood
decoder is a partial mapping f : F n −→ C such that for all
z ∈ C there holds

Prob(f (z) trans | z rec) = max
c∈C

Prob(c trans | z rec).

▶ If f : F n −→ C is a decoder, the probability of a decision
error whenever c ∈ C was transmitted as

Perr(f , c) :=
∑
z∈Fn
f (z) ̸=c

Prob(z rec | c trans),

and by averaging, we set

Perr(f ,C) :=
1
|C|

∑
c∈C

Perr(f , c).
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▶ Observation: The maximum likelihood decoder will
minimize the error probability among all possible decoders.

▶ Shannon’s Theorem: Given a discrete channel on the
alphabet F with capacity C . For 0 < R < C , there exists a
family (Cn)n∈N of block codes over F , together with
maximum likelihood decoders fn : F n −→ Cn , such that:

▶ Cn is a code of length n of rate at least R .

▶ lim
n→∞

Perr(fn,Cn) = 0.

▶ Summary: Keeping the rate at given level below the
capacity, an investment in the length of the code used will
yield arbitrary good reliability of communication.
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▶ Although not obvious to most beginners, both the encoding
and the decoding function are generally hard to evaluate in
terms of complexity theory.

▶ Hence, efficient ways to evaluate these functions are
desired.

▶ Restricting to block codes with structure will easily provide
highly efficient schemes to perform the encoding process.

▶ This will often be beneficial for the complexity of the
desired decoding schemes.

▶ Shannon’s theorem has a converse, that says that
exceeding the capacity will be punished on the spot.
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▶ Shannon’s theorem in the above form deals with
capacities, rates, and error probabilities.

▶ It does not say anything yet about one other important
parameter of a code: the minimum distance.

▶ Definition: For an alphabet F , define the Hamming
distance

dH : F × F −→ {0,1}, (x , y) 7→
{

1 : x ̸= y
0 : otherwise.

For positive length n , extend this function additively to

dH : F n × F n −→ N, (x , y) 7→ #{i | xi ̸= yi}.
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▶ Observation: dH is a metric on F n , as it is symmetric,
strictly positive, and satisfies the triangle inequality

dH(x , z) ≤ dH(x , y) + dH(y , z) for all x , y , z ∈ F n .

▶ Definition: The minimal distance of d = dH(C) of a code
C is defined as

dH(C) := min{dH(x , y) | x , y ∈ C, x ̸= y}

▶ For i ∈ {0, . . . ,n} consider

Bi :=
1
|C|

#
{
(u, v) ∈ C × C | dH(u, v) = i

}
,

and B(x , y) :=
n∑

i=0
Bix iyn−i , the distance enumerator of C .
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▶ With all what we previously defined, we describe a block
code C by a triple (n,M,d) where n is the length and M
is the number of elements in C , and where d = dH(C) .

▶ Such a code can detect up to d − 1 errors, while it can
correct up to ⌊d−1

2 ⌋ errors.

▶ Example: Consider the binary code

C = {00000000,11011001,00111110,11100111}.

Here, n = 8, M = 4 and the minimum distance is 5.

▶ We could use these words to communicate four different
messages, where the most efficient way to represent these
is to think of the words 00,01,10 and 11.
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▶ An encoder will therefore assign:

00 7→ 00000000 01 7→ 00111110
10 7→ 11011001 11 7→ 11100111

▶ At the receiving end of our channel we are told that the
word 11000101 has been received.

▶ This is not a word in C ! There must have been an error.
Which word has most likely been sent?

▶ This of course depends on the structure of the channel,
and the probabilities involved.

▶ By hand, we find out that among all words in C the word
11100111 is closest to the received word 11000101.

▶ Using a minimum distance decoder, we decide that the
word 11100111 was the one originally sent.
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▶ Illustration of the packing, and the decoding process.
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▶ When the underlying noisy channel π has the form

π =


1 − p p

q−1
p

q−1 . . . p
q−1

p
q−1 1 − p p

q−1 . . . p
q−1

...
. . . . . . . . .

...
p

q−1
p

q−1 . . . p
q−1 1 − p


then this is the right procedure for decoding.

▶ More-over, the distance enumerator can particularly easily
be used to compute the error probability Pu(C) .

▶ Here Pu(C) the probability, that, if the code is used for
error detection only, that an undetected error occurs.

▶ This probability will then be Pu(C) = B(p,1 − p) .


