Coding Theory on Non-Standard Alphabets

A Brief Introduction into Traditional Coding Theory

Marcus Greferath

Department of Mathematics and Systems Analysis
Aalto University School of Sciences
marcus.greferath@aalto.fi
May 2023

Block Codes

- Let F be a q-element set, referred to as the alphabet.
- A block code of length n is a non-empty subset $C \subseteq F^{n}$.
- The size of C is $M:=|C|$, and

$$
R:=\frac{1}{n} \log _{q}(M)
$$

is called the rate of C.

- The elements of C are referred to as codewords.
- F^{n} is called the ambient space of C.
- The following illustrates the general structure of a communication scheme.

- Let $C \subseteq F^{n}$ be a block code. A maximum likelihood decoder is a partial mapping $f: F^{n} \longrightarrow C$ such that for all $z \in C$ there holds

$$
\operatorname{Prob}(f(z) \text { trans } \mid z \text { rec })=\max _{c \in C} \operatorname{Prob}(c \text { trans } \mid z \text { rec }) .
$$

- If $f: F^{n} \longrightarrow C$ is a decoder, the probability of a decision error whenever $c \in C$ was transmitted as

$$
P_{\mathrm{err}}(f, c):=\sum_{\substack{z \in n \\ t(z) \neq c}} \operatorname{Prob}(z \text { rec } \mid c \text { trans })
$$

and by averaging, we set

$$
P_{\mathrm{err}}(f, C):=\frac{1}{|C|} \sum_{c \in C} P_{\mathrm{err}}(f, c)
$$

- Observation: The maximum likelihood decoder will minimize the error probability among all possible decoders.
- Shannon's Theorem: Given a discrete channel on the alphabet F with capacity \mathcal{C}. For $0<R<\mathcal{C}$, there exists a family $\left(C_{n}\right)_{n \in \mathbb{N}}$ of block codes over F, together with maximum likelihood decoders $f_{n}: F^{n} \longrightarrow C_{n}$, such that:
- C_{n} is a code of length n of rate at least R.
- $\lim _{n \rightarrow \infty} P_{\text {err }}\left(f_{n}, C_{n}\right)=0$.
- Summary: Keeping the rate at given level below the capacity, an investment in the length of the code used will yield arbitrary good reliability of communication.
- Although not obvious to most beginners, both the encoding and the decoding function are generally hard to evaluate in terms of complexity theory.
- Hence, efficient ways to evaluate these functions are desired.
- Restricting to block codes with structure will easily provide highly efficient schemes to perform the encoding process.
- This will often be beneficial for the complexity of the desired decoding schemes.
- Shannon's theorem has a converse, that says that exceeding the capacity will be punished on the spot.
- Shannon's theorem in the above form deals with capacities, rates, and error probabilities.
- It does not say anything yet about one other important parameter of a code: the minimum distance.
- Definition: For an alphabet F, define the Hamming distance

$$
d_{H}: F \times F \longrightarrow\{0,1\}, \quad(x, y) \mapsto\left\{\begin{array}{lll}
1 & : & x \neq y \\
0 & : & \text { otherwise. }
\end{array}\right.
$$

For positive length n, extend this function additively to

$$
d_{H}: F^{n} \times F^{n} \longrightarrow \mathbb{N}, \quad(x, y) \mapsto \#\left\{i \mid x_{i} \neq y_{i}\right\} .
$$

- Observation: d_{H} is a metric on F^{n}, as it is symmetric, strictly positive, and satisfies the triangle inequality

$$
d_{H}(x, z) \leq d_{H}(x, y)+d_{H}(y, z) \text { for all } x, y, z \in F^{n}
$$

- Definition: The minimal distance of $d=d_{H}(C)$ of a code C is defined as

$$
d_{H}(C):=\min \left\{d_{H}(x, y) \mid x, y \in C, x \neq y\right\}
$$

- For $i \in\{0, \ldots, n\}$ consider

$$
B_{i}:=\frac{1}{|C|} \#\left\{(u, v) \in C \times C \mid d_{H}(u, v)=i\right\}
$$

and $B(x, y):=\sum_{i=0}^{n} B_{i} x^{i} y^{n-i}$, the distance enumerator of C.

- With all what we previously defined, we describe a block code C by a triple (n, M, d) where n is the length and M is the number of elements in C, and where $d=d_{H}(C)$.
- Such a code can detect up to $d-1$ errors, while it can correct up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors.
- Example: Consider the binary code

$$
C=\{00000000,11011001,00111110,11100111\} .
$$

Here, $n=8, M=4$ and the minimum distance is 5 .

- We could use these words to communicate four different messages, where the most efficient way to represent these is to think of the words $00,01,10$ and 11.
- An encoder will therefore assign:

00	\mapsto	00000000	01	\mapsto
10	\mapsto	11011001	11	\mapsto
111001111				

- At the receiving end of our channel we are told that the word 11000101 has been received.
- This is not a word in C ! There must have been an error. Which word has most likely been sent?
- This of course depends on the structure of the channel, and the probabilities involved.
- By hand, we find out that among all words in C the word 11100111 is closest to the received word 11000101.
- Using a minimum distance decoder, we decide that the word 11100111 was the one originally sent.
- Illustration of the packing, and the decoding process.

- When the underlying noisy channel π has the form

$$
\pi=\left[\begin{array}{ccccc}
1-p & \frac{p}{q-1} & \frac{p}{q-1} & \cdots & \frac{p}{q-1} \\
\frac{p}{q-1} & 1-p & \frac{p-1}{q-1} & \cdots & \frac{p-1}{q-1} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\frac{p}{q-1} & \frac{p}{q-1} & \cdots & \frac{p}{q-1} & 1-p
\end{array}\right]
$$

then this is the right procedure for decoding.

- More-over, the distance enumerator can particularly easily be used to compute the error probability $P_{\mathrm{u}}(C)$.
- Here $P_{\mathrm{u}}(C)$ the probability, that, if the code is used for error detection only, that an undetected error occurs.
- This probability will then be $P_{\mathrm{u}}(C)=B(p, 1-p)$.

