Coding Theory on Non-Standard Alphabets

Group testing with error correction

Marcus Greferath

Department of Mathematics and Systems Analysis
Aalto University School of Sciences
marcus.greferath@aalto.fi
June 2023

Incidence Structures and Incidence Matrices

For most of what follows, let (P, B) be an incidence structure on the v-element set P of points, and let $b=|B|$ denote the number of blocks of B.

Definition

A binary matrix $M \in \mathbb{B}_{2}^{b \times v}$ is called an incidence matrix for (P, B), if its rows are labelled by the blocks, while its columns are labelled by the points of (P, B), such that

$$
M_{c, p}= \begin{cases}1 & : p \in c, \\ 0 & :\end{cases}
$$

Incidence matrices may thus be considered as indicator functions of their underlying incidence relation.

Partial Linear Spaces

Definition

For natural number s and t, a finite incidence structure (P, L) consisting of points and lines is called a partial linear space of order (s, t) if the following axioms hold:

- Two different points are connected by at most one line.
- Every line is incident with $s+1$ points, and every point is incident with $t+1$ lines.

Note: Interchanging the terms "line" and "point" will transform a partial linear space of order (s, t) into a partial linear space of order (t, s).
This comes from the fact, that any two lines in a partial linear space may intersect in at most one point.

Generalized Quadrangles

A well-understood class of partial linear spaces is that of the generalized quadrangles, first introduced by J . Tits.

Definition

A partial linear space (P, L) of order (s, t) is called a generalized quadrangle, denoted by $G Q(s, t)$, if for any non-incident point-line pair (p, ℓ), there exists a unique point q on ℓ that is connected with p by a line.

Remark: A generalized quadrangle of order (s, t) has $(s+1)(s t+1)$ points and $(t+1)(s t+1)$ lines.

Figure: $\mathrm{GQ}(2,2)$ aka $\mathrm{W}(2)$

Group Testing Schemes from Partial Linear Spaces

The proof of the following result is rather simple, so we leave it to the interested audience.

Theorem

Let (P, L) be a partial linear space of order (s, t), and let $\ell_{1}, \ldots \ell_{m}$ denote a collection of m distinct lines in L. If $\ell \in L$ is a line with $\ell \subseteq \ell_{1} \cup \cdots \cup \ell_{m}$ then $\ell=\ell_{j}$ for some $1 \leq j \leq m$ provided $m \leq s$.

For the incidence matrix of a partial linear space (P, L) we may derive the following immediate conclusion.

Corollary
The group testing scheme resulting from the incidence matrix of a partial linear space of order (s, t) satisfies condition \mathbf{t}-rev.

Message Space: Coding vs Group Testing

- In coding theory, the message space is typically of the form $M=\mathbb{F}_{2}^{k}$. Due to compression, all messages are of equal probability.
- This implies, that a code

$$
C=\{x G \mid x \in M\},
$$

with a $k \times n$-generator matrix, will be a k-dimensional subspace of \mathbb{F}_{2}^{n} which is endorsed with the uniform distribution.

- This in turn is responsible for the fact that a maximum-likelyhood decoder for the code C is equivalently described by a minimum-distance decoder.
- Understanding group testing as a generalization of coding theory, we need to see where this scenario changes.

Message Space: Coding vs Group Testing (cont’d)

- Messages in \mathbb{B}_{2}^{n} represent infection patterns coming with a binomial distribution with parameter σ (prevalence).
- This means, that the message space $M=\mathbb{B}_{2}^{n}$ carries the distribution

$$
P(x)=\sigma^{w(x)}(1-\sigma)^{n-w(x)}, \text { for } x \in \mathbb{B}_{2}^{n}
$$

- The group testing scheme $f: \mathbb{B}_{2}^{n} \longrightarrow \mathbb{B}_{2}^{k}$ takes this distribution to \mathbb{B}_{2}^{k}, such that

$$
P_{f}(z)=\sum_{\substack{x \in \mathbb{B}^{n} \\ f(x)=z}} \sigma^{w(x)}(1-\sigma)^{n-w(x)}, \text { for } z \in \mathbb{B}_{2}^{k}
$$

- Already on message layer, we have a rate $R \leq 1$, namely the Shannon entropy

$$
R=H(\sigma)=-\sigma \log _{2}(\sigma)-(1-\sigma) \log _{2}(1-\sigma)
$$

Rate and Noise

- The rate of the group testing scheme should apparently be defined as $R_{f}=H(\sigma) \cdot \frac{n}{k}$.
- In the noiseless case, such schemes should exist, provided $R_{f} \leq 1$, in other words,

$$
H(\sigma) \leq \frac{k}{n} .
$$

- Noise: Simple antigen tests, say, for CoVid19 are cheap nowadays, however their accuracy has frequently been questioned.
false pos: The probability p of a single false positive test is generally around 2%, whereas
false neg: the probability q of a false negative test can easily exceed 20%.

The Binary Asymmetric Channel (BAC)

- This gives rise to what is called a binary asymmetric channel $\operatorname{BAC}(p, q)$, described by the channel matrix:

$$
\pi(p, q)=\left[\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right]
$$

- The literature provides formulae for the capacity of $\pi(p, q)$.
- The formula is complicated, and for $p=0.02$ and $q=0.2$ we obtain the capacity

$$
\mathcal{C}(\pi)=0.5488
$$

which is attained if the prevalence $\sigma=0.4536$.

- We expect a Shannon-like theorem for the (asymptotic) existence of (error-correcting) group testing schemes if

$$
R_{f} \leq R<\mathcal{C}(\pi) .
$$

A Non-Probabilistic Approach

- The prevalence σ may also be understood as an upper bound resulting as a ratio $\sigma=\frac{t}{n}$.
- In this case, we wish to identify infection patterns of Hamming weight $\leq t$ out of the n-element population
- We suggest to consider a binary layer code

$$
C_{t}:=f\left(B_{n}(0, t)\right) \subseteq \mathbb{B}_{2}^{k}
$$

- This code will have size $M_{t} \leq \sum_{i=0}^{t}\binom{n}{i}$, and a certain minimum distance δ_{t}, that allows for error correction.
- We will present a few examples of such codes in the sequel. We found them simply by experimentation.

Examples

7 Samples - 7 Tests:

Let $\mathbb{B}_{2}^{7} \longrightarrow \mathbb{B}_{2}^{7}$ be the group testing scheme based on the incidence matrix of the binary Fano plane PG(2,2). By this, we mean $f(x)=x H$ for all $x \in \mathbb{B}_{2}^{7}$ where

$$
H=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

We observe, that f satisfies \mathbf{d}-rev for $d \leq 2$ and consider two layer codes induced by this matrix in \mathbb{B}_{2}^{7} :
Example A1: $A_{1}:=B_{7}(0,1) \cdot H$ is a $(7,8,3)$-code with dist. enumerator

$$
E\left(A_{1}\right)=8+14 z^{3}+42 z^{4}
$$

This scheme reliably identifies one infected sample out of 7 and

Examples

Example A2: $A_{2}:=B_{7}(0,2) \cdot H$ is a $(7,29,2)$-code with distance enumerator

$$
E\left(A_{2}\right)=29+294 z^{2}+14 z^{3}+420 z^{4}+42 z^{5}+42 z^{6} .
$$

This scheme identifies two infected samples out of 7 . Correction of a single flawed test result requires the probabilistic approach discussed earlier.

15 Samples - 15 Tests:

Consider $\mathbb{B}_{2}^{15} \longrightarrow \mathbb{B}_{2}^{15}$ be the group testing scheme represented by the full circulant matrix J induced by the generating word [000011101100101] of the binary $\mathrm{BCH}(15,5,7)$-code.
Again, this scheme satisfies \mathbf{d}-rev for $d \leq 2$ (but not $d=3$).

Example C1: $C_{1}:=B_{15}(0,1) \cdot J$ is a $(15,16,7)$-code with distance enumerator

$$
E\left(C_{1}\right)=16+30 z^{7}+210 z^{8} .
$$

This scheme identifies 1 out of 15 with 15 tests and at the same time recovers 3 test errors.

Example C2 : $C_{2}:=B_{15}(0,2) \cdot J$ is a $(15,121,4)$-code with distance enumerator

$$
\begin{aligned}
E\left(C_{2}\right)= & 121+3570 z^{4}+5040 z^{6}+30 z^{7} \\
& +5460 z^{8}+210 z^{11}+210 z^{12} .
\end{aligned}
$$

This scheme identifies 2 out of 15 and at the same time recover 1 test error. More will be possible using a probabilistic approach.

- Remark: Without further justification, we have used the concept of distance enumerator:

$$
E(C):=\sum\left\{z^{d(x, y)} \mid x, y \in C\right\}=\sum_{i=0}^{k} A_{i} z^{i},
$$

where $A_{i}=\left|\left\{(x, y) \in C^{2} \mid d(x, y)=i\right\}\right|$.

- It is easy to verify that $A_{0}=M$ and that the first exponent $i \in\{1, \ldots, k\}$ with $A_{i} \neq 0$ is the minimum distance of C.
- Moreover, $\sum_{i=0}^{k} A_{i}=M^{2}=A_{0}^{2}$.
- The Hamming distance d is not translation invariant, and hence this concept might not share properties commonly known from coding theory involving \mathbb{F}_{2}.

