Coding Theory on Non-Standard Alphabets

A Brief Introduction into Traditional Coding Theory

Marcus Greferath

Department of Mathematics and Systems Analysis
Aalto University School of Sciences
marcus.greferath@aalto.fi
May 2023

Linear Codes and Their Duals

- Definition: Let \mathbb{F}_{q} denote the q-element field, and let $w_{H}: \mathbb{F}_{q} \longrightarrow\{0,1\}$ with

$$
w_{H}(x)=\left\{\begin{array}{lll}
1 & : & x \neq 0 \\
0 & : & x=0
\end{array}\right.
$$

Extend this additively to the Hamming weight on \mathbb{F}_{q}^{n}, by

$$
\begin{aligned}
w_{H}: \mathbb{F}_{q}^{n} & \longrightarrow \mathbb{N} \\
x & \mapsto \sum_{i=1}^{n} w_{H}\left(x_{i}\right)=\#\left\{i \in\{1, \ldots, n\} \mid x_{i} \neq 0\right\}
\end{aligned}
$$

- This weight induces the Hamming distance

$$
d_{H}: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \longrightarrow \mathbb{N},(x, y) \mapsto d_{H}(x, y):=w_{H}(x-y)
$$

- As we sar, d_{H} is indeed a metric on \mathbb{F}_{q}^{n}, i.e. positive, symmetric, with triangle inequality.
- Its one-argument version w_{H} is often easier to handle, while essentially describing the same phenomena.
- A block code $C \subseteq \mathbb{F}_{q}^{n}$ will be called a linear code, if it is a subspace of \mathbb{F}_{q}^{n}. We will write $C \leq \mathbb{F}_{q}^{n}$ in this case.
- As before, n is called the length of the code, whereas $k:=\operatorname{dim}(C)$ is the dimension, so that we have $M=q^{k}$, and the rate $R=\frac{k}{n}$.
- If d is the minimum Hamming distance of C, we refer to C as an $[n, k, d]$-code, or an $[n, k, d]_{q}$-code including a reference to the (size of the) the field alphabet.
- The minimum distance d of a linear code is equivalently described by its minimum weight, which means

$$
d_{\text {min }}(C)=w_{\text {min }}(C)=\min \left\{w_{H}(c) \mid c \in C-\{0\}\right\} .
$$

- Combinatorially, an \mathbb{F}_{q}-linear $[n, k, d]_{q}$-code is a block code with parameters (n, q^{k}, d) over a size q alphabet.
- Linearity is implicitly emphasized by the choice of square brackets: $[n, k, d]_{q}$ instead of (n, M, d), where $M=q^{k}$.
- Example: The binary repetition code $C:=\{[0,0,0]$, $[1,1,1]\}$ is a linear code with parameters $[3,1,3]$.
- Example: The even weight code $E_{3}:=\{[0,0,0],[0,1,1]$, $[1,0,1],[1,1,0]\}$ is a linear code with parameters $[3,2,2]$.
- Definition: Let C be an \mathbb{F}_{q}-linear code of length n. A $k \times n$-matrix G with entries from \mathbb{F}_{q} is called a generator matrix for C, if

$$
C=\left\{x G \mid x \in \mathbb{F}_{q}^{k}\right\} .
$$

In this case, the rows of G span C.

- Definition: G is called a check matrix for C, if

$$
C=\left\{z \in \mathbb{F}_{q}^{n} \mid z G^{T}=0\right\}
$$

This means the given code is the null space of G^{T}.

- In most cases it is convenient (or even required) to assume that generator and check matrices are of full rank.
- Nota Bene: If C is an \mathbb{F}_{q}-linear $[n, k]$-code, then there exists a $k \times n$-generator matrix and an $(n-k) \times n$-check matrix for C.
- If $G=\left[I_{k} \mid A\right]$ is a generator matrix C, where I_{k} is the $k \times k$ identity matrix and A is an $k \times(n-k)$ matrix, then $H:=\left[-A^{T} \mid I_{n-k}\right]$ will be a check matrix for C.
- Not in each case, though, a code C possesses a generator matrix in standard form $\left[I_{k} \mid A\right]$.
- A coordinate permutation will help to arrive at generator matrix that allows for the standard form.
- This permutation will of course have to be reversed, once the check matrix of this matrix has been derived.
- Consider the binary matrix

$$
A=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right],
$$

which is a generator matrix for a binary $[7,3,4]$ code.

- This code is called simplex code which is closely related to the binary Hamming code with parameters $[7,4,3]$ that we are going to discuss soon.
- The binary repetition code C of length 3 has the 1×3-matrix $B=[1,1,1]$ as generator matrix. The even weight code E_{3} is generated by the matrix

$$
G=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] .
$$

- Example: For $\mathbb{F}_{4}=\left\{0,1, a, a^{2}\right\}$, the matrix

$$
G=\left[\begin{array}{ccccc}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & a \\
0 & 0 & 1 & 1 & a^{2}
\end{array}\right]
$$

generates a [5, 3, 3]-code, that may be recognized as \mathbb{F}_{4}-linear Hamming Code of rank 2.

- This code is equally well described by the check matrix

$$
H=\left[\begin{array}{llllc}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & a & a^{2}
\end{array}\right]
$$

- Proposition: Let C be an \mathbb{F}_{q}-linear code of length n, and let H be a check matrix for C. Then the following are equivalent:
- The minimum distance of C is d.
- Any $d-1$ columns of H are linearly independent, and there exists a d-element selection of linearly dependent columns.
- Definition: Let C be an \mathbb{F}_{q}-linear code of length n. We define

$$
C^{\perp}:=\left\{x \in \mathbb{F}_{q}^{n} \mid c x=0 \text { for all } c \in C\right\}
$$

and call it the dual code of C.

- Linear Algebra tells us that if $W \leq \mathbb{R}^{n}$ is a real vector space, then $W \cap W^{\perp}=\{0\}$, as there is no (non-zero) real vector which is orthogonal to itself.
- In finite Linear Algebra, this may be different, so that a code can even contain (or be contained in) its own dual.
- For example in even length, the binary repetition code is contained in the even weight code, which is its dual.
- Definition: A code C will be called self-dual, if $C^{\perp}=C$.
- It has been observed, that many good codes (of rate $1 / 2$) are actually self-dual. Therefore self-dual codes form a classically hot topic in algebraic coding theory.
- Definition: A block code $C \subseteq F^{n}$ is called a cyclic code, if with every codeword $\left[c_{0}, \ldots, c_{n-1}\right] \in C$ also the word $\left[c_{n-1}, c_{0}, \ldots, c_{n-2}\right] \in C$. This means, C is invariant under cyclic permutations.
- Observation: A cyclic linear code $C \leq \mathbb{F}_{q}^{n}$ can be represented as an ideal in the quotient ring $\frac{\mathbb{F}_{q}[x]}{\left(x^{n}-1\right)}$.
- This representation is based on the one-to-one correspondence:

$$
\left[c_{0}, \ldots, c_{n-1}\right] \in \mathbb{F}_{q}^{n} \longleftrightarrow \sum_{i=0}^{n-1} c_{i} x^{i}+\left(x^{n}-1\right) \in \frac{\mathbb{F}_{q}[x]}{\left(x^{n}-1\right)}
$$

- The cyclic shift is represented by multiplication by x.
- It is clumsy to write $\sum_{i=0}^{n-1} c_{i} x^{i}+\left(x^{n}-1\right)$ for the elements of this residual ring.
- So, one omits the expression $\left(x^{n}-1\right)$ in general, or one occasionally writes $\left(\bmod x^{n}-1\right)$ when it is suggested.
- Proposition: Let C be a cyclic \mathbb{F}_{q}-linear code. Then there is a unique monic divisor g of $x^{n}-1$ in $\mathbb{F}_{q}[x]$ such that

$$
C=\frac{\mathbb{F}_{q}[x] g}{\left(x^{n}-1\right)}
$$

- Definition: The polynomial g above is called the generator polynomial of C.
- The above allows to characterize all distinct cyclic codes of a given length, which only requires knowledge about the factorization of $x^{n}-1$ in the polynomial ring $\mathbb{F}_{q}[x]$.
- Example: Over the binary field \mathbb{F}_{2}, we factorize

$$
x^{7}+1=(x+1)\left(x^{3}+x+1\right)\left(x^{3}+x^{2}+1\right) .
$$

As there are 3 irreducible divisors involved, we conclude that we will have to deal with 8 distinct cyclic codes.

- The co-divisor $h=\frac{x^{n}-1}{g}$ is usually referred to as the check polynomial of C.
- The polynomial $h^{\text {rev }}(x)=x^{\operatorname{deg}(h)} h\left(\frac{1}{x}\right)$ generates C^{\perp}.
- We wonder, how to derive new codes from given ones.
- Puncturing: Let C be an \mathbb{F}_{q}-linear Code of length n. For chosen $i \in\{1, \ldots, n\}$ define the code

$$
C_{i}:=\left\{\left[c_{1}, \ldots, c_{i-1}, c_{i+1}, \ldots, c_{n}\right] \mid\left[c_{1}, \ldots, c_{n}\right] \in C\right\}
$$

and say, C_{i} is the code C punctured in coordinate i.

- C_{i} is linear of length $n^{\prime}=n-1$; its dimension k^{\prime} and minimum distance d^{\prime} satisfy $k-1 \leq k^{\prime} \leq k$ and $d-1 \leq d^{\prime} \leq d$.
- Generally, we have $k^{\prime}=k$, at least if $d \geq 2$, and mostly $d^{\prime}=d-1$, however $d^{\prime}=d$ can happen as well in given cases.
- Example: Let C be the binary $[8,4,4]$-code spanned by the rows of the generator matrix

$$
G=\left[\begin{array}{lllllll|l}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right] .
$$

Let C_{8} be the code resulting from puncturing C in the 8th coordinate.

- The matrix consisting of the first 7 columns of G is a generator matrix for C_{8}.
- It turns out that C_{8} has parameters $[7,4,3]$.
- Extending: Let C be an \mathbb{F}_{q}-linear Code of length n. For a linear form $\lambda: C \longrightarrow \mathbb{F}_{q}$, define the code

$$
C_{\lambda}:=\left\{\left[c_{1}, \ldots, c_{n}, \lambda(c)\right] \mid c=\left[c_{1}, \ldots, c_{n}\right] \in C\right\}
$$

and call C_{λ} the extended code of C.

- In most cases, a special choice of λ is used, namely

$$
\lambda(c)=-\sum_{i=1}^{n} c_{i} \quad \text { for } c \in C
$$

- Example: Let C be the binary [6, 3, 3]-code spanned by the rows of the generator matrix

$$
G=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

- Extending this code yields the code $C_{\text {ext }}$, and we find the matrix

$$
G_{\mathrm{ext}}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]
$$

to be a suitable generator matrix for $C_{\text {ext }}$. It turns out that this code has parameters $[7,3,4]$.

- Shortening: Let C be an \mathbb{F}_{q}-linear Code of length n. For a chosen $i \in\{1, \ldots, n\}$ we define the code
$C_{i}:=\left\{\left[c_{1}, \ldots, c_{i-1}, c_{i+1}, \ldots, c_{n}\right] \mid\left[c_{1}, \ldots, c_{n}\right] \in C\right.$ and $\left.c_{i}=0\right\}$
and say, C_{i} is the code C shortened in coordinate i.
- C^{i} is a linear of length $n^{\prime}=n-1$ for any $i \in\{1, \ldots, n\}$.
- Its dimension k^{\prime} and minimum distance d^{\prime} satisfy $k-1 \leq k^{\prime} \leq k$ and $d^{\prime}=d$.
- Generally, we have $k^{\prime}=k-1$, except in the case, where position i was a zero coordinate of C.
- Such a situation will never be interesting in applications, however for the theory, it might be worth mentioning.
- Example: Let C be the binary $[8,4,4]$-code spanned by the rows of the generator matrix

$$
G=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

- Applying Gaussian elimination focusing on the 8th coordinate, we obtain the generator matrix

$$
G^{\prime}=\left[\begin{array}{lllllll|l}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

- Shortening C in the 8 th coordinate yields the code C^{8}, for which the lower left part $G^{\prime \prime}$ of G^{\prime} is a generator matrix.

$$
G^{\prime \prime}=\left[\begin{array}{lllllll}
1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

generates C^{8}, which has parameters $[7,3,4]$.

- Puncturing and shortening a code allows repeated application, so that many different codes of various length $n^{\prime} \leq n$ will result.
- Plotkin Sum: Assume that C_{1} is an $\left[n, k_{1}, d_{1}\right]$ code and C_{2} is an $\left[n, k_{2}, d_{2}\right]$ code. Define the code

$$
C_{1} \oplus C_{2}:=\left\{[x, x+y] \mid x \in C_{1}, y \in C_{2}\right\}
$$

- The length of $C_{1} \oplus C_{2}$ is $2 n$, the dimension is $k_{1}+k_{2}$, and the minimum distance is given by $\min \left\{2 d_{1}, d_{2}\right\}$.
- This is superior to

$$
C_{1} \boxplus C_{2}:=\left\{[x, y] \mid x \in C_{1}, y \in C_{2}\right\}
$$

which is actually of minimum distance $\min \left\{d_{1}, d_{2}\right\}$

- Code Equivalence: We say, two block codes C and D are equivalent, if they are isometric, meaning there is a bijective mapping $\varphi: C \longrightarrow D$ such that

$$
d_{H}(\varphi(x), \varphi(y))=d_{H}(x, y) \text { for all } x, y \in C
$$

- If C and D are linear codes, we ask that φ be a linear mapping, which will be an isometry, if it preserves the weight w_{H}.
- Definition: An endomorphism $\varphi \in \operatorname{End}\left(\mathbb{F}_{q}^{n}\right)$ is called a monomial transformation, if there is a permutation $\pi \in S_{n}$ and $u_{1}, \ldots, u_{n} \in \mathbb{F}_{q}^{\times}$such that

$$
\varphi\left(\left[x_{1}, \ldots, x_{n}\right]\right)=\left[x_{\pi(1)} u_{1}, \ldots, x_{\pi(n)} u_{n}\right] \quad \text { for all } x \in \mathbb{F}_{q}^{n}
$$

- Every monomial transformation φ of \mathbb{F}_{q}^{n} is a Hamming isometry of this full vector space.
- If $\varphi: \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}^{n}$ is a Hamming isometry, then φ is a monomial transformation.
- If $C \leq \mathbb{F}_{q}^{n}$ is a linear code and $\varphi: \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}^{n}$ is a monomial transformation, then C and $\varphi(C)$ are equivalent.
- Lemma: Let C be an \mathbb{F}_{q}-linear code of length n. Then

$$
\frac{1}{|C|} \sum_{c \in C} w_{H}(c)=\frac{q-1}{q}|\operatorname{supp}(C)|,
$$

where supp (C) is the set of all coordinates, in which C takes nonzero values.

- Corollary: Let $C \leq \mathbb{F}_{q}^{n}$ be a linear code and $\psi: C \longrightarrow \mathbb{F}_{q}^{n}$ a Hamming isometry. Then

$$
\left|\left\{i \mid \pi_{i}(C)=\{0\}\right\}\right|=\left|\left\{i \mid \pi_{i} \psi(C)=\{0\}\right\}\right| .
$$

- Theorem: Let C and D be \mathbb{F}_{q}-linear codes of length n, and let $\psi: C \longrightarrow D$ be a Hamming isometry. Then there is a monomial transformation φ on \mathbb{F}_{q}^{n} such that $\varphi \mid C=\psi$.
- Remarks on proof:
- The theorem was proved first by F. J. MacWilliams in her thesis in 1962 for linear codes over prime fields.
- It can be proved in various ways, the simplest among which being induction on the length and using the above corollary.

