Coding Theory on Non-Standard Alphabets

A Brief Introduction into Traditional Coding Theory

Marcus Greferath

Department of Mathematics and Systems Analysis
Aalto University School of Sciences
marcus.greferath@aalto.fi
May 2023

Definition: Let C be an \mathbb{F}_{q}-linear code of length n.

- For every element $f \in \mathbb{F}_{q}$ we reserve an indeterminate x_{f} and form the the polynomial ring $\mathbb{C}\left[x_{f} \mid f \in \mathbb{F}\right]$.
- Define the complete (weight) enumerator of C to be the polynomial

$$
W(C):=\sum_{c \in C} \prod_{i=1}^{n} x_{c_{i}}
$$

- In the bivariate polynomial ring $\mathbb{C}[x, y]$ we define the Hamming weight enumerator

$$
W_{H}(C)=\sum_{c \in C} x^{n-w_{H}(c)} y^{w_{H}(c)}
$$

- Remark: We obtain the Hamming weight enumerator from the complete enumerator by applying the identification homomorphism $\mathbb{C}\left[x_{f} \mid f \in \mathbb{F}_{q}\right] \longrightarrow \mathbb{C}[x, y]$ that extends

$$
x_{f} \mapsto\left\{\begin{array}{lll}
x & : & f=0 \\
y & : & \text { otherwise }
\end{array}\right.
$$

- Example: Consider the binary linear [7, 3, 4]-code C generated by the matrix

$$
G=\left[\begin{array}{lllllll}
1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Listing all words reveals the complete and Hamming weight enumerator as

$$
W(x, y)=W_{H}(x, y)=x^{7}+7 x^{3} y^{4}
$$

- For $\mathbb{F}_{4}=\left\{0,1, a, a^{2}\right\}$ consider the famous \mathbb{F}_{4}-linear hexacode C generated by the matrix

$$
G=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & a & a \\
0 & 1 & 0 & a & 1 & a \\
0 & 0 & 0 & a & a & 1
\end{array}\right] .
$$

Its complete enumerator in $\mathbb{C}[x, e, u, v]$ is given by

$$
\begin{aligned}
W(C)=x^{6} & +15 x^{2}\left(e^{2} u^{2}+e^{2} v^{2}+u^{2} v^{2}\right) \\
& +15 e^{2} u^{2} v^{2}+e^{6}+u^{6}+v^{6},
\end{aligned}
$$

while its Hamming weight enumerator is

$$
W_{H}(D)=x^{6}+45 x^{2} y^{4}+18 y^{6} .
$$

- Let $\chi: \mathbb{F}_{q} \longrightarrow \mathbb{C}^{\times}$be a non-trivial character. We consider the \mathbb{C}-algebra homomorphism

$$
M: \mathbb{C}\left[x_{r} \mid r \in \mathbb{F}_{q}\right] \longrightarrow \mathbb{C}\left[x_{r} \mid r \in \mathbb{F}_{q}\right], \quad f \mapsto M f
$$

extending the assignment

$$
x_{r} \mapsto M x_{r}:=\sum_{s \in \mathbb{F}} \chi(r s) x_{s}
$$

- Let $C \leq{ }_{R} R^{n}$ be an \mathbb{F}_{q}-linear code, with complete enumerator

$$
W(C):=\sum_{c \in C} \prod_{i=1}^{n} x_{c_{i}}
$$

Let C^{\perp} denote the dual code of C.

- Theorem: With notation introduced above, there holds

$$
W\left(C^{\perp}\right)=\frac{1}{|C|} M W(C) .
$$

- Now consider the \mathbb{C}-algebra homomorphism

$$
N: \mathbb{C}[x, y] \longrightarrow \mathbb{C}[x, y], \quad f \mapsto N f
$$

extending the assignment

$$
x \mapsto N x:=x+(q-1) y \text { and } y \mapsto N y:=x-y .
$$

- Let C be an \mathbb{F}_{q}-linear code of length n with Hamming weight enumerator

$$
W_{H}(C):=\sum_{c \in C} x^{n-w_{H}(c)} y^{w_{H}(c)}
$$

- With notation introduced above, there holds

$$
W_{H}\left(C^{\perp}\right)=\frac{1}{|C|} N W_{H}(C)
$$

- Example: Consider the binary linear [7, 3, 4]-code C generated by the matrix

$$
G=\left[\begin{array}{lllllll}
1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Its Hamming weight enumerator is

$$
W_{H}(C)=x^{7}+7 x^{3} y^{4}
$$

Its dual code C^{\perp} is a [7,4] code.

- We compute the Hamming weight enumerator of C^{\perp} as

$$
\begin{aligned}
W_{H}\left(C^{\perp}\right) & =\frac{1}{8}\left[(x+y)^{u}+7(x+y)^{3}(x-y)^{4}\right] \\
& =x^{7}+7 x^{4} y^{3}+7 x^{3} y^{4}+y^{7}
\end{aligned}
$$

- This particularly shows that $d_{\text {min }}\left(C^{\perp}\right)=3$.
- Have another look at the \mathbb{F}_{4}-linear hexacode C generated by the matrix

$$
G=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & a & a \\
0 & 1 & 0 & a & 1 & a \\
0 & 0 & 0 & a & a & 1
\end{array}\right]
$$

with Hamming weight enumerator

$$
W_{H}(C)=x^{6}+45 x^{2} y^{4}+18 y^{6}
$$

- Its dual code C^{\perp} has the Hamming weight enumerator

$$
\begin{aligned}
W_{H}\left(C^{\perp}\right) & =\frac{1}{4^{3}}\left[(x+3 y)^{6}+45(x+3 y)^{2}(x-y)^{4}+18(x-y)^{6}\right] \\
& =x^{6}+45 x^{2} y^{4}+18 y^{6},
\end{aligned}
$$

which means, C and C^{\perp} have the same Hamming weight enumerators.

- This observation would usually raise the suspicion that D actually is a self-dual code, however this is not the case.
- We call C a formally self-dual code if $W_{H}(C)=W_{H}\left(C^{\perp}\right)$.
- If C is equivalent to C^{\perp}, then we call C an iso-dual code.

Existence Bounds and Code Families

- One of the foremost problems of Coding theory is the maximization of $M=|C|$, whenever the length n and the minimum distance d is given.
- Alternatively, we seek to maximize d, once n and M have been specified.
- A third version is to minimize n, when M and d are given.
- Sphere-Packing Bound: If C is an (n, M, d) code over a q-element alphabet, and $t=\left\lfloor\frac{d-1}{2}\right\rfloor$ then

$$
M \cdot \sum_{i=0}^{t}\binom{n}{i}(q-1)^{i} \leq q^{n}
$$

- Codes that meet the sphere-packing bound with equality, are called perfect codes.
- Theorem: The parameter triples of all perfect codes are known.
- For q-ary alphabets, these are ($n=\frac{q^{r}-1}{q-1}, q^{n-r}, 3$), where r is a positive integer, and q is a prime power.
- In the binary and ternary case we have the parameters $\left(23,2^{12}, 7\right)$ and $\left(11,3^{6}, 5\right)$.
- All other perfect codes have trivial parameter, i.e. are 1-element, repetition, or full space codes.
- Singleton Bound: For every (n, M, d) code over a q-element alphabet, there holds

$$
M \leq q^{n+1-d}
$$

- Codes that meet the Singleton bound with equality, are called maximum distance separable codes (MDS).
- The characterization of all MDS codes is a still open problem.
- We refer to the famous MDS conjecture: If C is an $[n, k, d]$ MDS code over \mathbb{F}_{q} then if $k \leq q$ then $n \leq q+1$ except in a certain set of cases, where $n \leq q+2$.
- Gilbert Bound: There exists a code with parameters (n, M, d) over \mathbb{F}_{q} that satisfies

$$
M \geq \frac{q^{n}}{\sum_{i=0}^{-1}\binom{n}{i}(q-1)^{i}}
$$

- Varshamov Bound: There exists a linear code with parameters $[n, k, d]$ provided, that

$$
\sum_{i=0}^{d-1}\binom{n-1}{i}(q-1)^{i}<q^{n-k}
$$

- Although the proof for the Gilbert bound is greedy-based in principle, it does not provide an efficient scheme of construction.
- Let \mathbb{F}_{q} be the underlying finite field, and recall the \mathbb{C}-algebra homomorphism

$$
N: \mathbb{C}[x, y] \longrightarrow \mathbb{C}[x, y], \quad f \mapsto N f
$$

extending the assignment

$$
x \mapsto N x:=x+(q-1) y \text { and } y \mapsto N y:=x-y .
$$

- Define the Krawtchouk polynomials implicitly by

$$
N\left(x^{n-z} y^{z}\right)=\sum_{i=0}^{n} P_{i}(z) x^{n-i} y^{i}
$$

- Alternatively, their explicit form is:

$$
P_{i}(z)=P_{i}(z, q, n)=\sum_{j=0}^{k}(-1)^{j}(q-1)^{k-j}\binom{z}{j}\binom{n-z}{k-j}
$$

- Linear Programming Bound: Let C be an (n, M, d)code. With the above notation, we have: holds:

$$
M \leq \max _{A} \sum_{i=0}^{n} A_{i}
$$

where the max is taken over all $A:=\left(A_{i}\right)_{i=0}^{n}$ satisfying

$$
\begin{aligned}
A_{i} & \geq 0 \\
A_{i} & =\left\{\begin{array}{ll}
1 & \text { if } \quad i=0 \\
0 & \text { if }
\end{array} \quad 0<i<d\right.
\end{aligned} \quad \text { and }
$$

- Let $\mathbb{P}\left(\mathbb{F}_{q}^{r}\right)$ be the projective space of rank r over \mathbb{F}_{q}.
- Each point of this space is of the form $\mathbb{F}_{q} x$ where $0 \neq x \in \mathbb{F}_{q}^{r}$.
- Choose a generator x in each of these points in such a way, that its first non-zero entry is a 1.
- Sort the $\frac{q^{r}-1}{q-1}$ chosen vectors lexicographically order and put them into an $r \times \frac{q^{r}-1}{q-1}$ matrix $H=H(q, r)$.
- Definition: The code checked by H is called Hamming Code of rank r over the field \mathbb{F}_{q}. Its parameters are $\left[n:=\frac{q^{r}-1}{q-1}, n-r, 3\right]$.
- For \mathbb{F}_{3} and $r=3$, we have the Hamming matrix

$$
H=\left[\begin{array}{lllllllllllll}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\
1 & 0 & 1 & 2 & 0 & 1 & 2 & 0 & 1 & 2 & 0 & 1 & 2
\end{array}\right]
$$

where we have assumed $0<1<2$.

- $\mathbb{F}_{4}=\left\{0,1, a, a^{2}\right\}$, ordered as presented, meaning $0<1<a<a^{2}$. For space reasons, we restrict to $r=2$ and obtain

$$
H=\left[\begin{array}{llllc}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & a & a^{2}
\end{array}\right]
$$

- Hamming codes satisfy the sphere packing bound with equality, and they form an example class of what we call perfect codes.
- Decoding the Hamming codes is easy. If $y=c+e$ is the received word, where c is the codeword and e is a single Hamming error, say $e=\lambda e_{i}$, then we compute the syndrome

$$
s:=y H^{\top}=e H^{\top}=\lambda e_{i} H^{\top}=\lambda H_{i}^{T},
$$

where H_{i} is the i-th column of H.

- The error value of e is then the first nonzero entry of $y H^{\top}$, for the position search for $\frac{s}{\lambda}$ in the lexicographically sorted check matrix H.
- Example: Let $q=3$ and $r=3$, so that H is the matrix in the above example. Assume, we have received the word $y=[1,0,2,1,2,0,0,1,2,0,2,2,2]$.
- Compute the syndrome $s:=y H^{T}=[2,0,1]^{T}$ and conclude that the error value $\lambda=2$.
- After dividing the syndrome by λ, we seek $\frac{s^{T}}{\lambda}=[1,0,2]^{T}$ among the columns of H and arrive at column 7.
- For this reason, the single error is a 2 in the 7 th position of y. Consequently, the codeword we search for is

$$
\begin{aligned}
c & =y-[0,0,0,0,0,0,2,0,0,0,0,0,0] \\
& =[1,0,2,1,2,0,1,1,2,0,2,2,2]
\end{aligned}
$$

- Let $q=2$ and m be a natural number. For $0 \leq r \leq m$ we define the two-parametric family of codes $\mathrm{RM}(r, m)$ by
$-\mathrm{RM}(0, m)$ is the repetition code of length 2^{m}.
- $\mathrm{RM}(m, m)$ is the full space code of length 2^{m}.
- $\mathrm{RM}(r, m):=\mathrm{RM}(r, m-1) \oplus \operatorname{RM}(r-1, m-1)$ for all $1 \leq r \leq m-1$. Here \oplus denotes the Plotkin sum that we studied earlier.
- Definition: The codes $\mathrm{RM}(r, m)$ are called Reed Muller Codes.
- They are $[n, k, d]$ codes for

$$
n=2^{m}, \quad k=\sum_{i=0}^{r}\binom{m}{i}, \quad \text { and } d=2^{m-r}
$$

- Example: Find a generator matrix for $\operatorname{RM}(2,3)$!
- First, observe that $\mathrm{RM}(2,3)=\mathrm{RM}(2,2) \oplus \mathrm{RM}(1,2)$, and $R M(1,2)=R M(1,1) \oplus R M(0,1)$.
- Writing down generator matrices $G_{r, m}$ for all components $\mathrm{RM}(r, m)$, we start with

$$
G_{2,2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad G_{1,1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

and

$$
G_{0,1}=\left[\begin{array}{ll}
1 & 1
\end{array}\right]
$$

- Therefore, we obtain

$$
G_{1,2}=\left[\begin{array}{c|c}
G_{1,1} & G_{1,1} \\
\hline 0 & G_{0,1}
\end{array}\right]=\left[\begin{array}{cc|cc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
\hline 0 & 0 & 1 & 1
\end{array}\right]
$$

Finally, we arrive at

$$
G_{2,3}=\left[\begin{array}{c|c}
G_{2,2} & G_{2,2} \\
\hline 0 & G_{1,2}
\end{array}\right]=\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] .
$$

- Definition: The cyclic code Gol $_{23}$ of length 23 that is generated by the polynomial

$$
x^{11}+x^{9}+x^{7}+x^{6}+x^{5}+x+1 \in \mathbb{F}_{2}[x],
$$

and the cyclic code Gol $_{11}$ of length 11 generated by the polynomial

$$
x^{5}+x^{4}-x^{3}+x^{2}-1 \in \mathbb{F}_{3}[x]
$$

are called Golay Codes.

- Remark: Gol $_{23}$ and Gol $_{11}$ are perfect codes with parameters $[23,12,7]$ and $[11,6,5]$, respectively.
- A result by van Lint and Tietäväinen (1973), says that any (non-trivial) perfect code must have the parameters of either the Hamming Codes or the two Golay Codes.
- The extended versions Gol_{24} and Gol_{12} have attracted a lot of interest for many combinatorial reasons. They are examples of self-dual codes.
- They are closely related to prominent structures in group theory, and can be used to construct very dense lattices.
- E. Viterbo and M. Elia have designed what are called algebraic decoders for the cyclic versions.
- There is a quite entertaining article by A. Barg describing the history around the discovery of the Golay codes.

