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▶ Definition: Let ω be a primitive element of Fq , and let
0 ≤ b ≤ q − 2 and δ be a positive integer. The polynomial

g :=
b+δ−2∏

i=b

(x − ωi) ∈ Fq[x ]

generates a cyclic code of length q − 1 that we call a
Reed-Solomon Code.

▶ Remark: Using Vandermonde determinants one can show
that the Reed-Solomon code is a [q − 1,q − δ, δ] code.

▶ Reed Solomon codes satisfy the Singleton bound with
equality, and hence they are MDS codes.
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▶ Definition: Let n be a positive integer, and let ω be a
primitive n -th root of unity in an extension field Fqm of Fq .
Let 0 ≤ b ≤ n − 1 and δ be a positive integer. Let
g ∈ Fq[x ] be the non-zero (monic) polynomial of smallest
degree satisfying

g(ωi) = 0 for i = b,b + 1, . . . ,b + δ − 2 .

The cyclic code of length n generated by g is called a
BCH code of designed distance δ .

▶ Remark: BCH codes have minimum distance at least δ .
They were discovered by Bose, Chaudhuri and
Hocquenghem around 1960.

▶ They are not MDS in general, as the polynomial g will not
vanish on full cyclotomic cosets of the ωi involved.
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▶ Example: Let n = qr−1
q−1 with gcd(q, r) = 1 and let C1 be

the cyclotomic coset containing 1. For

g =
∏
i∈C1

(x − ωi),

the cyclic code generated by g is (equivalent to) the q -ary
Hamming code of rank r .

▶ So, at least for the case gcd(q, r) = 1, we see that there
are cyclic versions of the Hamming codes.

▶ The literature is full of further generalizations which run
under the names Alternant Codes, Goppa Codes, and
many more.

▶ All these codes can be decoded without big effort using the
Euclidean Algorithm to find gcds of polynomials.
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▶ The most famous algorithm for BCH decoding however is
the Berlekamp-Massey algorithm.

▶ More recent developments by M. Sudan and V. Guruswami
in the nineties allow to correct error patterns even beyond
half of the minimum distance of these codes.

▶ Further codes would deserve discussion, among them the
powerful Algebraic Geometry codes. We will not be able to
do this here in light of the temporal restrictions.

▶ Sudan’s list decoding algorithm was particularly
spectacular, as it allowed to decode even the Algebraic
Geometry codes, for which there had not been an efficient
decoder so far.
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▶ Let n be an odd prime and p an arbitrary prime such that
p is a quadratic residue modulo n .

▶ Let ω be a primitive n -th root (in some extension field of
Fp , and define

g0 :=
∏
i∈Q

(x − ωi) and g1 :=
∏
i∈N

(x − ωi)

where Q and N describe the quadratic residues (except
0) and non-residues modulo n .

▶ Definition: We have the factorization xn − 1 = (x − 1)g0g1
in Fp[x ] , and the cyclic code C generated by g0 (or g1 )
are called a Quadratic Residue Code.
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▶ Their extended versions are self-dual if n ≡ −1 (mod 4) ,
otherwise, they are not self-dual, but iso-dual.

▶ Important examples are the binary [7,4,3] Hamming code
of length and the two Golay codes.

▶ For their minimum distance dH(C) there is a rather weak
bound that says wH(C) ≥

√
n .

▶ The literature contains a number of (successful) attempts
to improve over this bound in given cases.

▶ The famous Gleason-Prange theory provides strong tools
to prove structural results and derive weight enumerators.
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Two miraculous non-linear families
Kerdock and Preparata codes

▶ 1967: Nordstrom and Robinson find an optimal binary
code with parameters (16,28,6) ; the best linear example
of same length and distance has 27 words.

▶ 1968: For even m ∈ N Preparata constructs a family of
optimal binary codes with parameters (2m,22m−2m,6) .

▶ 1972: Again, for even m ∈ N Kerdock discovers a family of
low rate codes with parameters (2m,22m,2m−1 − 2

m−2
2 ) .

Note: The discovered families appear to be dual in terms of
their weight (or better distance) enumerators.
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A brief sketch: From Assmus & Mattson to Nechaev

▶ 1963: Assmus and Mattson mention rings as possible
alphabets in their article Error-Correcting Codes: an
Axiomatic Approach.

▶ 1972: Blake presents linear codes first over semi-simple,
later for primary integer residue rings.

▶ . . .

▶ 1987: Klemm considers linear codes over integer residue
rings and proves MacWilliams’ weight enumerator
theorem.

▶ 1989: Nechaev discovers that all Kerdock codes become
cyclic when considered as codes over Z4 .



Aalto University
May 2023

10/31

Z4 -linear representation of binary codes
The Gray isometry

▶ The Lee weight on Z4 is defined as

wLee : Z4 −→ N, x 7→ min{|x |, |4 − x |}.

▶ It turns out that (Z4,wLee) is isometric to (Z2
2,wH) via the

so-called Gray isometry:

Z4 −→ Z2
2,

a + 2 b 7→ a (0,1) + b (1,1).

01

00

10

11

3

2

0

1

▶ Componentwise extension of this mapping to Zn
4 yields a

Z4 -linear representation of the Kerdock, Preparata and
other Codes.
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Three important results

▶ 1994 Hammons et al: All Kerdock, Preparata, Goethals
and Goethals-Delsarte Codes are binary images of
Z4 -linear codes.

▶ 1995 Bonnecaze and Solé: How to obtain the Leech lattice
by construction A from a Z4 -version of the binary Golay
code.

▶ 1997 Calderbank and McGuire: Discovery of binary codes
with parameters (64,237,12) and (64,232,14) . These are
binary images of Z4 -linear codes with parameters
[32,16 + 5

2 ,12] and [32,16,14] .
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Finite rings and modules

Note: Rings R are associative and possess an identity 1.

Useful Facts:
▶ The Jacobson radical J(R) of R is the intersection of all

maximal (left) ideals of R . It is a two-sided ideal.

▶ If R is finite, then J(R) is a nilpotent ideal.

▶ If R is finite then R/J(R) is a direct product of full matrix rings
over finite fields.

▶ The left socle soc(RR) is the sum of all minimal left ideals of R .
It is two-sided, but might not coincide with the right socle.

▶ The polynomial ring R[x ] is anything but a unique factori- zation
domain. Is it a mess? Well. . .



Aalto University
May 2023

13/31

Finite rings and modules
Note: Modules RM will be unital, i.e. 1m = m for all m ∈ M .

Further Useful Facts:
▶ Projective modules RP are those where every epimorphism onto

RP has a kernel that is a direct summand.

▶ Projective modules are characterized as direct summands of
free modules.

▶ Injective modules occur as direct summands wherever they are
embedded.

▶ (Left) Self-injective rings R are those where the module RR is
injective.

▶ If R is finite, then self-injectivity is left-right symmetric; these
rings are then called quasi-Frobenius rings.
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Finite Frobenius rings

Recall: For a finite Ring R we have

▶ R̂ := HomZ(R,C×) , the character module of R .

▶ R̂ becomes an R -R -bimodule, by the definition:
▶ rχ(x) := χ(xr) , and
▶ χr (x) := χ(rx) ,

for all r , x ∈ R and χ ∈ R̂ .

Definition: R is called a Frobenius ring, if any of the following
equivalent (left-right symmetric) conditions hold:

▶ RR ∼= RR̂ ,

▶ soc(RR) is left principal.
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Examples of finite Frobenius rings
How the Frobenius property inherits

Examples:
▶ Every finite field is Frobenius.

▶ Every Galois ring is Frobenius.

▶ If R and S are Frobenius, then so will be R × S .

▶ If R is Frobenius, then so will be Mn(R) .

▶ If R is Frobenius and G is a finite group, then R[G] is
Frobenius.

Note: The class of finite Frobenius rings is large. As a
non-Frobenius example consider Z2[x , y ]/(x2, y2, xy) .
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The discrete Fourier transform
Definition: Let R be a finite Frobenius ring, and let χ be a
generating character, i.e. R̂ is generated by χ .

▶ For a complex valued function f on R define its Fourier
transform f̂ : R −→ C by

f̂ (s) :=
∑
r∈R

f (r)χ(−rs), for s ∈ R .

▶ The inverse transform is given by

f̃ (s) :=
1
|R|

∑
r∈R

f (r)χ(sr), for s ∈ R ,

meaning, we have ˜̂f = f = ˆ̃f .
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Homogeneous weights

History: Homogeneous weights were introduced by Heise et
al. [1995] for Zm to generalise the Hamming weight.

Definition: Let R be a finite ring. A map w : R −→ Q is called
homogeneous weight if w(0) = 0 and there is γ ∈ Q such that
for all x , y ∈ R :

(i) Rx = Ry implies w(x) = w(y) ,

(ii)
1

|Rx |
∑

y∈Rx

w(y) = γ , provided x ̸= 0.

Remark: Indeed, property (ii) is a length 1 version of a
well-known fact in finite-field coding theory:

1
|C|

∑
c∈C

wH(c) =
q − 1

q
|supp(C)|.
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Homogeneous weights on Frobenius rings

▶ Homogeneous weights do exist on any finite ring and
module.

▶ They enjoy a description involving the Möbius function on
the poset of principal left ideals of the underlying ring.

▶ Theorem: Homogeneous weights on a finite Frobenius
ring R are of the form

w : R −→ Q, x 7→ γ
[
1 − 1

|R×|
∑

u∈R×

χ(xu)
]
,

where again, χ is a generating character of R .
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Examples of homogeneous weights
▶ wH on Fq is homogeneous with γ = q−1

q ; the Lee weight
wLee on Z4 is homogeneous with γ = 1.

▶ If R is a chain ring with q -element residue field then
homogeneous weights have the form

R −→ Q, r 7→ γ


q − 1 : r ̸∈ soc(RR),

q : 0 ̸= r ∈ soc(RR),
0 : r = 0.

▶ Homogeneous weights on M2(Z2) are given by

M2(Z2) −→ Q, A 7→ γ


1 : rk(A) = 2,
2 : rk(A) = 1,
0 : A = 0.
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Cyclic codes

▶ Definition: An R -linear code is called cyclic, if it is
invariant under cyclic coordinate shifts.

▶ Cyclic codes of length n can be identified with ideals in the
residue ring R[x ]/(xn − 1) .

▶ Known Fact: If C ≤ Fn
q is a cyclic code then there exists a

unique monic divisor g of xn − 1 in Fq[x ] such that

C = Fq[x ]g/(xn − 1).

▶ The proof of this fact is quite elementary, however vastly
relies on the euclidean property of Fq[x ] .

▶ Question: What remains true in the ring-linear case?
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Cyclic codes

▶ Definition: Let R be a finite ring. We call an R -linear code
C ≤ RRn a splitting code, if it is a direct summand of RRn .

▶ G. 1997: For a linear code C ≤ RRn the following are
equivalent:
▶ C is a cyclic splitting code.
▶ There exists a polynomial g dividing xn − 1, such that

C = R[x ]g/(xn − 1).

▶ The proof of this fact is less elementary; it relies on all the
facts that we mentioned in the preliminaries on finite rings
and modules.
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Equivalence of linear codes
Two definitions

Definition 1: Two codes C,D ≤ RRn are called equivalent, if
there is a monomial transformation φ : RRn −→ RRn such that
φ(C) = D .

Recall: A monomial transformation φ on RRn can be written
as φ = PD where P ∈ Mn(R) is a permutation matrix, and
D ∈ Mn(R) is an invertible diagonal matrix.

Definition 2: Call two R -linear codes C and D isometric, if
there is an isomorphism φ : C −→ D that preserves the
distance of codewords.
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Equivalence of linear codes
A general justification

MacWilliams’ 1962: Every isometry between two linear codes
over Fq can be extended to a monomial transformation of the
ambient space.

Honold et al 1995: If R = Zm then every homogeneous
isometry (and every Hamming isometry) between R -linear
codes can be monomially extended.

Wood 1997: If R is a finite Frobenius ring then every Hamming
isometry between two R -linear codes can be monomially
extended.



Aalto University
May 2023

24/31

Further Results and Projects

G. and Schmidt 2000: Honold et al’s results are true for all
finite Frobenius rings. Moreover, a linear mapping between two
R -linear codes is a homogeneous isometry if and only if it is a
Hamming isometry.

Wood 2000: Characterisation of weight functions on a
commutative chain ring that allow for MacWilliams’ extension
theorem.

G., Honold, Wood, and Zumbrägel 2015: Characterisation of
all weight functions on a finite Frobenius ring that allow for
MacWilliams’ equivalence theorem.
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Code duality
Basic definitions

Definition: Let R be a finite Frobenius ring, and let C ≤ RRn

be a linear code.

▶ The dual of C is defined as

C⊥ :=
{

x ∈ Rn |
n∑

i=1

cixi = 0 for all c ∈ C
}
.

▶ The (Hamming) weight enumerator of C is the polynomial

WC(x , y) =
∑
c∈C

xwH(c)yn−wH(c).
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Code duality
A classical result

Question: Relation between weight enumerators of mutually
dual codes?

Theorem: (MacWilliams’ 1962) If C ≤ Fn
q is a linear code then

WC⊥(x , y) =
1
|C|

WC

(
x + (q − 1)y , x − y

)
.

Question: What can be said about this theorem in the
framework of ring-linear coding?
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Code duality
Generalisations

Wood 1997: If R is a finite Frobenius ring and C an R -linear
code of length n , then

WC⊥(x , y) =
1
|C|

WC

(
x + (|R| − 1)y , x − y

)
.

Wood 1997: An according result holds for the complete weight
enumerators, and certain symmetrised weight enumerators.

Byrne, G., and O’Sullivan 2007: A general MacWilliams
relation for compatible pairs of partitions on the base ring R .
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Existence bounds
A Plotkin bound

Premises:
▶ Let R be a finite Frobenius ring, and let w be the

homogeneous weight of average value γ on R .

▶ Agree on Aw (n,d) denoting the maximal possible code
cardinality under length n and distance d .

G. and O’Sullivan 2004: For every n,d with γ n < d there
holds

Aw (n,d) ≤ d
d − γ n

.
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Existence bounds
An Elias bound

Premise: Additionally, denote by Vw (n, t) the volume of the
homogeneous disk of radius t in n -space.

G. and O’Sullivan 2004: For every n,d , t with t ≤ γ n and
t2 − 2 tγ n + dγ n > 0 there holds

Aw (n,d) ≤ γ n d
t2 − 2 tγ n + dγ n

· |R|n

Vw (n, t)
.

Remark: The first result is the Plotkin bound, the second is the
Elias bound. Both results can also be combined to derive an
asymptotic version of the Elias bound.
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Existence bounds
Further bounds

Byrne, G., and O’Sullivan: Several versions of the LP-bound
allowing for symmetrisation with respect to
▶ homogeneous weights,
▶ subgroups of the group R× of invertible elements,
▶ further important weights, like the Lee-weight.

Remark:
▶ It is comparably trivial to formulate a sphere-packing and a

Gilbert-Varshamov bound (regardless of the underlying
weight).

▶ For a Singleton bound and further refinements see Byrne,
G., Kohnert, and Skachek 2010.
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A final remark
Is the Frobenius property necessary?

Question: The Frobenius property is sufficient. Is it necessary?

Results:
▶ Wood 1997: For commutative rings this can be shown

easily.

▶ Wood 2008: This also holds in the non-commutative case.

▶ G., Nechaev, and Wisbauer 2004: Exchanging the
alphabet R by the R -module R̂ all foundational
statements hold for any finite ring R .
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