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Equivalence of linear codes
Two definitions

Definition 1: Two codes C,D ≤ RRn are called equivalent, if
there is a monomial transformation φ : RRn −→ RRn such that
φ(C) = D .

Recall: A monomial transformation φ on RRn can be written
as φ = PD where P ∈ Mn(R) is a permutation matrix, and
D ∈ Mn(R) is an invertible diagonal matrix.

Definition 2: Call two R -linear codes C and D isometric, if
there is an isomorphism φ : C −→ D that preserves the
distance of codewords.
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Equivalence of linear codes
A general justification

MacWilliams’ 1962: Every isometry between two linear codes
over Fq can be extended to a monomial transformation of the
ambient space.

Honold et al 1995: If R = Zm then every homogeneous
isometry (and every Hamming isometry) between R -linear
codes can be monomially extended.

Wood 1997: If R is a finite Frobenius ring then every Hamming
isometry between two R -linear codes can be monomially
extended.



Aalto University
May 2023

4/11

Further Results and Projects

G. and Schmidt 2000: Honold et al’s results are true for all
finite Frobenius rings. Moreover, a linear mapping between two
R -linear codes is a homogeneous isometry if and only if it is a
Hamming isometry.

Wood 2000: Characterisation of weight functions on a
commutative chain ring that allow for MacWilliams’ extension
theorem.

G., Honold, Wood, and Zumbrägel 2015: Characterisation of
all weight functions on a finite Frobenius ring that allow for
MacWilliams’ equivalence theorem.
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Code duality
Basic definitions

Definition: Let R be a finite Frobenius ring, and let C ≤ RRn

be a linear code.

▶ The dual of C is defined as

C⊥ :=
{

x ∈ Rn |
n∑

i=1

cixi = 0 for all c ∈ C
}
.

▶ The (Hamming) weight enumerator of C is the polynomial

WC(x , y) =
∑
c∈C

xwH(c)yn−wH(c).
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Code duality
A classical result

Question: Relation between weight enumerators of mutually
dual codes?

Theorem: (MacWilliams’ 1962) If C ≤ Fn
q is a linear code then

WC⊥(x , y) =
1
|C|

WC

(
x + (q − 1)y , x − y

)
.

Question: What can be said about this theorem in the
framework of ring-linear coding?
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Code duality
Generalisations

Wood 1997: If R is a finite Frobenius ring and C an R -linear
code of length n , then

WC⊥(x , y) =
1
|C|

WC

(
x + (|R| − 1)y , x − y

)
.

Wood 1997: An according result holds for the complete weight
enumerators, and certain symmetrised weight enumerators.

Byrne, G., and O’Sullivan 2007: A general MacWilliams
relation for compatible pairs of partitions on the base ring R .
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Existence bounds
A Plotkin bound

Premises:
▶ Let R be a finite Frobenius ring, and let w be the

homogeneous weight of average value γ on R .

▶ Agree on Aw (n,d) denoting the maximal possible code
cardinality under length n and distance d .

G. and O’Sullivan 2004: For every n,d with γ n < d there
holds

Aw (n,d) ≤ d
d − γ n

.
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Existence bounds
An Elias bound

Premise: Additionally, denote by Vw (n, t) the volume of the
homogeneous disk of radius t in n -space.

G. and O’Sullivan 2004: For every n,d , t with t ≤ γ n and
t2 − 2 tγ n + dγ n > 0 there holds

Aw (n,d) ≤ γ n d
t2 − 2 tγ n + dγ n

· |R|n

Vw (n, t)
.

Remark: The first result is the Plotkin bound, the second is the
Elias bound. Both results can also be combined to derive an
asymptotic version of the Elias bound.
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Existence bounds
Further bounds

Byrne, G., and O’Sullivan: Several versions of the LP-bound
allowing for symmetrisation with respect to
▶ homogeneous weights,
▶ subgroups of the group R× of invertible elements,
▶ further important weights, like the Lee-weight.

Remark:
▶ It is comparably trivial to formulate a sphere-packing and a

Gilbert-Varshamov bound (regardless of the underlying
weight).

▶ For a Singleton bound and further refinements see Byrne,
G., Kohnert, and Skachek 2010.
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A final remark
Is the Frobenius property necessary?

Question: The Frobenius property is sufficient. Is it necessary?

Results:
▶ Wood 1997: For commutative rings this can be shown

easily.

▶ Wood 2008: This also holds in the non-commutative case.

▶ G., Nechaev, and Wisbauer 2004: Exchanging the
alphabet R by the R -module R̂ all foundational
statements hold for any finite ring R .
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