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Code Optimality

▶ Let R be a finite ring and let δ be a metric on R , addi-
tively extended to a metric on Rn .

▶ Definition: For non-negative numbers d and n define

AR,δ(n,d) := max{M | ∃ (n,M,d)-Code over R}.

▶ Goal: Determine AR,δ(n,d) for given n and d .

▶ Note: Here d is (obviously) referring to the minimum
distance with respect to the metric δ .

▶ In all what follows either R = F2 and δ = δH the Ham-
ming metric, or R = Z4 and δ = δLee the Lee metric.
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An optimal binary (10,40,4) code

▶ It was known for long that

AF2,δH (10,4) ≤ 40.

▶ Best [1978] came up with the construction of a binary code
meeting this bound. It consists of the words

0100000011,0011111101,1100101100,0001010111

together with all cyclic shifts of these.

▶ The distance enumerator of Best’s code is given by

DH(x , y) = x10 + 22x6y4 + 12x4y6 + 5x2y8.
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An optimal binary (10,40,4) code

▶ Best also determined the automorphism group of the code
in question: it is a semidirect product of the dihedral group
D5 and Z5

2 and hence has 320 elements.

▶ Litsyn and Vardy [1993] showed that Best’s code is unique,
i.e. any binary (10,40,4) code must be isometric to Best’s
code.

▶ Applying what is called Construction A to Best’s
(10,40,4) code yields the densest sphere packing
presently known in 10 dimensions.
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Z4 representation of binary codes
The Gray isometry

▶ Recall the Lee metric on Z4 defined as

δLee : Z4 × Z4 −→ N,
(x , y) 7→ min{|(x − y)4|, |4 − (x − y)4|}.

▶ It turns out that (Z4, δLee) is isometric to (Z2
2, δH) via the

so-called Gray isometry:

Z4 −→ Z2
2,

a + 2 b 7→ a (0,1) + b (1,1).
01

00

10

11

3

2

0

1

▶ Componentwise extension of this mapping to Zn
4 yields an

isometry between (Zn
4, δLee) and (Z2n

2 , δH) .
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The pentacode
An observation by Conway and Sloane 1994

▶ The Code P ⊆ Z5
4 consisting of all words

(c − d ,b, c,d ,b + c) where b, c,d ∈ {1,3}

and all cyclic shifts of these has parameters (5,40,4) .

▶ The Gray image of P is (up to equivalence) the (10,40,4)
code discovered by Best.

▶ P is invariant under the automorphisms
(a,b, c,d ,e) 7→ (−a,−b,−c,−d ,−e),
(a,b, c,d ,e) 7→ (−a,2 − b, c,2 − d ,−e),
(a,b, c,d ,e) 7→ (b, c,d ,e,a),
(a,b, c,d ,e) 7→ (2 + e,2 + d ,2 + c,2 + b,2 + a).
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Cyclic codes and group rings
▶ For a finite ring R consider the group ring

R[Zn] := set of all R -valued functions on Zn

equipped with natural addition + and multiplication ⋆ that
is given by cyclic convolution

g ⋆ f (i) :=
∑
j∈Zn

g(i − j)f (j).

▶ A cyclic code of length n over R can then be under- stood
as a subset in R[Zn] that is closed under multi- plication by
δ1 , where

δ1(i) =
{

1 : i = 1,
0 : otherwise.
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Discrete Fourier transform

Definition: Let S : R be a ring extension that contains a
primitive n -th root of unity ω , and assume n ∈ R× .

▶ For f ∈ S[Zn] define the Fourier transform f̂ ∈ S[Zn] by

f̂ (i) :=
∑
j∈Zn

f (j)ω−ji .

▶ In fact, the inverse transform is given by

f̃ (i) :=
1
n

∑
j∈Zn

f (j)ωij ,

and this means we have ˜̂f = f = ˆ̃f for all f ∈ S[Zn] .
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The Fourier transform of the pentacode

▶ We chose to analyse the pentacode, because Best’s
original binary code does not satisfy n ∈ F×

2 .

▶ For this we find that the Galois ring GR(4,4) as an
extension of Z4 contains the required primitive 5-th root of
unity ω .

▶ The minimal polynomial of ω over Z4 is given by

φω = x4 + x3 + x2 + x + 1.

▶ We computed the Fourier transform of all words of the
pentacode and arrived at the following list.
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The Fourier transform of the pentacode

(1, 3 ω3 + ω2, 3 ω3 + 3 ω2 + 2 ω + 3, ω3 + ω2 + 2 ω + 1, ω3 + 3 ω2)

(1, ω3 + 3 ω2 + 3 ω, ω3 + 2 ω + 1, 2 ω3 + 3 ω2 + 2 ω + 3, 2 ω2 + ω + 1)
(1, 2 ω3 + ω2 + 3 ω + 1, 3 ω3 + 2 ω2 + ω, ω3 + 2 ω2 + 3 ω + 3, 2 ω3 + 3 ω2 + ω + 2)
(1, 3 ω3 + 3 ω2 + 3 ω + 2, ω3 + 3, ω2 + 3, ω + 3)
(1, 3 ω3 + ω2 + 3 ω + 2, 3 ω3 + 2 ω2 + 2 ω + 1, ω2 + 2 ω + 3, 2 ω3 + ω + 3)
(1, 2 ω3 + ω2 + 3 ω + 2, 3 ω3 + 2 ω2 + ω + 1, ω3 + 2 ω2 + 3 ω, 2 ω3 + 3 ω2 + ω + 3)
(1, 3 ω + 1, 3 ω2 + 1, 3 ω3 + 1, ω3 + ω2 + ω + 2)
(1, ω3 + ω2 + 2 ω, 3 ω3 + ω2 + 3, ω3 + 3 ω2 + 3, 3 ω3 + 3 ω2 + 2 ω + 2)
(1, ω3 + ω2 + 2 ω + 2, 3 ω3 + ω2 + 1, ω3 + 3 ω2 + 1, 3 ω3 + 3 ω2 + 2 ω)

(1, 2 ω2 + 3 ω + 3, 2 ω3 + ω2 + 2 ω + 1, 3 ω3 + 2 ω + 3, 3 ω3 + ω2 + ω)

(1, ω3 + ω2 + 3 ω, 3 ω3 + 2 ω2 + 3, 2 ω3 + 3 ω2 + 3, 2 ω3 + 2 ω2 + ω + 1)
(1, 3 ω2 + ω, ω3 + 2 ω2 + ω + 1, ω3 + 3 ω, 2 ω3 + 3 ω2 + 3 ω + 3)
(1, 2 ω3 + 3 ω + 1, 3 ω2 + 2 ω + 1, ω3 + 2 ω2 + 2 ω + 3, ω3 + 3 ω2 + ω + 2)
(1, 2 ω3 + ω2 + ω + 1, 3 ω3 + ω, 3 ω3 + 2 ω2 + 3 ω + 3, ω2 + 3 ω)

(1, 2 ω3 + 2 ω2 + 3 ω + 3, 2 ω3 + ω2 + 1, ω3 + 2 ω2 + 1, 3 ω3 + 3 ω2 + ω)

(1, 3 ω3 + ω2 + 2, 3 ω3 + 3 ω2 + 2 ω + 1, ω3 + ω2 + 2 ω + 3, ω3 + 3 ω2 + 2)
(1, 2 ω3 + 3 ω2 + 3 ω, ω3 + 3 ω + 1, ω3 + 2 ω2 + ω + 2, 3 ω2 + ω + 1)
(1, ω2 + ω + 3, 3 ω3 + 3 ω + 2, ω3 + ω + 3, 3 ω2 + 3 ω + 2)
(1, ω2 + 3 ω + 3, 3 ω3 + 2 ω2 + 3 ω + 2, 3 ω3 + ω + 3, 2 ω3 + ω2 + ω)

(1, ω2 + ω + 2, 3 ω3 + 3 ω + 1, ω3 + ω + 2, 3 ω2 + 3 ω + 1)
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The Fourier transform of the pentacode

(3, 3 ω3 + 3 ω2 + 2 ω + 2, ω3 + 3 ω2 + 3, 3 ω3 + ω2 + 3, ω3 + ω2 + 2 ω)

(3, 2 ω3 + 3 ω2 + 3 ω + 3, ω3 + 3 ω, ω3 + 2 ω2 + ω + 1, 3 ω2 + ω)

(3, 2 ω3 + ω2 + ω, 3 ω3 + ω + 3, 3 ω3 + 2 ω2 + 3 ω + 2, ω2 + 3 ω + 3)
(3, 2 ω3 + ω + 3, ω2 + 2 ω + 3, 3 ω3 + 2 ω2 + 2 ω + 1, 3 ω3 + ω2 + 3 ω + 2)
(3, 2 ω3 + 2 ω2 + ω + 1, 2 ω3 + 3 ω2 + 3, 3 ω3 + 2 ω2 + 3, ω3 + ω2 + 3 ω)

(3, 3 ω2 + 3 ω + 1, ω3 + ω + 2, 3 ω3 + 3 ω + 1, ω2 + ω + 2)
(3, ω3 + 3 ω2, ω3 + ω2 + 2 ω + 1, 3 ω3 + 3 ω2 + 2 ω + 3, 3 ω3 + ω2)

(3, 2 ω3 + 3 ω2 + ω + 2, ω3 + 2 ω2 + 3 ω + 3, 3 ω3 + 2 ω2 + ω, 2 ω3 + ω2 + 3 ω + 1)
(3, ω2 + 3 ω, 3 ω3 + 2 ω2 + 3 ω + 3, 3 ω3 + ω, 2 ω3 + ω2 + ω + 1)
(3, 3 ω3 + 3 ω2 + ω, ω3 + 2 ω2 + 1, 2 ω3 + ω2 + 1, 2 ω3 + 2 ω2 + 3 ω + 3)
(3, ω3 + ω2 + ω + 2, 3 ω3 + 1, 3 ω2 + 1, 3 ω + 1)
(3, 2 ω3 + 3 ω2 + ω + 3, ω3 + 2 ω2 + 3 ω, 3 ω3 + 2 ω2 + ω + 1, 2 ω3 + ω2 + 3 ω + 2)
(3, ω + 3, ω2 + 3, ω3 + 3, 3 ω3 + 3 ω2 + 3 ω + 2)
(3, 3 ω2 + ω + 1, ω3 + 2 ω2 + ω + 2, ω3 + 3 ω + 1, 2 ω3 + 3 ω2 + 3 ω)

(3, ω3 + 3 ω2 + 2, ω3 + ω2 + 2 ω + 3, 3 ω3 + 3 ω2 + 2 ω + 1, 3 ω3 + ω2 + 2)
(3, 3 ω3 + 3 ω2 + 2 ωω3 + 3 ω2 + 1, 3 ω3 + ω2 + 1, ω3 + ω2 + 2 ω + 2)
(3, 3 ω3 + ω2 + ω, 3 ω3 + 2 ω + 3, 2 ω3 + ω2 + 2 ω + 1, 2 ω2 + 3 ω + 3)
(3, ω3 + 3 ω2 + ω + 2, ω3 + 2 ω2 + 2 ω + 3, 3 ω2 + 2 ω + 1, 2 ω3 + 3 ω + 1)
(3, 2 ω2 + ω + 1, 2 ω3 + 3 ω2 + 2 ω + 3, ω3 + 2 ω + 1, ω3 + 3 ω2 + 3 ω)

(3, 3 ω2 + 3 ω + 2, ω3 + ω + 3, 3 ω3 + 3 ω + 2, ω2 + ω + 3)
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The Fourier transform of the pentacode
Results

▶ It is apparent that the spectrum of each word of P is not
only non-zero, but solely consists of invertible elements in
GR(4,4) .

▶ An afternoon’s work revealed the following fact. Let

f̂ := (1,3ω + 1,3ω2 + 1,3ω3 + 1,3ω4 + 1)
ĝ := (1,3ω + 2,3ω2 + 2,3ω3 + 2,3ω4 + 2)
ĥ := (1,2ω + 3,2ω2 + 3,2ω3 + 3,2ω4 + 3)
û := (1, ω, ω2, ω3, ω4)

Then for each word c ∈ P there holds

ĉ = (−1)i f̂ · ĝ j · ĥk · ûn, i , j , k ∈ Z2, n ∈ Z5.
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The algebraic structure of the pentacode
Results

▶ Transforming back we can reformulate, namely:

f = (2,0,1,1,1)
g = (2,3,0,0,0)
h = (3,2,0,0,0)
u = (0,1,0,0,0)

Then for each word c ∈ P there holds

c = (−1)i f ⋆ g j ⋆ hk ⋆ un, i , j , k ∈ Z2, n ∈ Z5.

▶ Remark: As gcd(10,2) ̸= 1, we would not have been able
to apply spectral arguments directly to Best’s code.

▶ We observe however that gcd(5,4) = 1, and this enabled
the current work!
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The algebraic structure of the pentacode
Results, continued

▶ Transferring this result into the ring Z4[x ]/(x5 − 1) we find
after rescaling:

f = x4 + x3 + x2 + 2
g = x + 2
h = 2x + 1
u = x

Here, h2 = 1, g is of order 10 and u = g6 .

▶ Conclusion: Each word c ∈ P is of the form

c = (−1)i f hj gk , i , j ∈ Z2, k ∈ Z10.
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The algebraic structure of the pentacode
Results, continued

▶ Consequently, the pentacode is a coset

P = f U

where U is a 40 element subgroup of the group of
invertible elements of Z4[x ]/(x5 − 1) .

▶ There are 155 subgroups of order 40 in the 480-element
unit group of Z4[x ]/(x5 − 1) .

▶ Only 2 of these subgroups yield (up to equivalence) the
pentacode.

▶ Moreover, the pentacode occurs twice among the 12
cosets of each of these two subgroups.
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What can further be done?
Perspectives

▶ Definition: Let R be a finite ring and let n be a positive
integer, such that n ∈ R× . A strong character is a map
Zn

χ−→ R× ∩ Z (R) such that:

∑
j∈Z

χ(ji) =

{
n : if i = 0,
0 : otherwise.

▶ If this is the case we will say, R is target of a strong
character on Zn .

▶ We then obtain the Fourier transform of a word c ∈ Rn as
ĉ ∈ Rn defined by :

ĉi :=
∑
j∈Zn

cjχ(ji) for i ∈ Zn .
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The discrete Fourier transform (cnt’d)
▶ In fact, the inverse transform is given by

c̃i :=
1
n

∑
j∈Zn

cj χ(−ij) for i ∈ Zn ,

meaning that we have ˜̂c = c = ˆ̃c .

▶ Remark: The Fourier transform satisfies the famous
convolution theorem, which says

̂f ⋆ g = f̂ · ĝ, for all f ,g ∈ Rn .

▶ Here ⋆ denotes the additive convolution which means

(f ⋆ g)i =
∑

a+b=i

fagb.
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The discrete Fourier transform (cnt’d)

▶ So far, the convolution theorem relies on the character χ
taking values only in the center Z (S) .

▶ Fourier transform and convolution theorem are both
important ingredients in the proof of the BCH bound.

▶ Original question: Which finite rings are target of a strong
character on Zn ?

▶ Relaxed version: Which finite rings R have a unital
extension S that is target of a strong character on Zn ?
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Previous results: strong characters do exist

▶ Theorem (2011): Let n be a positive integer. Every finite
ring R with n ∈ R× has a unital extension S that is target
of a strong character on Zn .

▶ Proof: We define S := R[Zn]/I , where:

I :=
R[Zn]

〈 ∑
j∈Zn i

j | i ∈ Zn, i ̸= 0
〉
.

Then for χ : Zn −→ S, i 7→ i , most parts of the claim are
easily checked. The (crucial) fact that S ≥ R and
particularly S ̸= {0} follows from the fact that n ∈ R× and
I has trivial intersection with Rχ(0) .
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Technical preparation

▶ For all what follows, let R be a ring that is target of the
regular character χ on Zn where n ∈ R× .

▶ For k ∈ Zn consider the word q(k) ∈ Rn defined by

(q(k))i :=
1
n
[1 − χ(i − k)] .

▶ The only zero of this word is at i = k . For the Fourier
transform of q(k) we have

(q̂(k))i =


1 : i = 0,

−χ(−k) : i = 1,
0 : otherwise.
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Technical preparation (cnt’d)
▶ Lemma: For a subset T of Zn with |T | ≤ δ , the word

p :=
∏
k∈T

q(k)

has the following properties:
(i) pi = 0 for all i ∈ T .

(ii) p̂0 = 1.
(iii) p̂i = 0 for all i > δ .

▶ Proof: Property (i) directly follows from the construction of
p . In polynomial language, the word q̂(k) is given by
1 − χ(−k)x , and the convolution becomes ordinary
polynomial multiplication. This immediately yields (ii)
and (iii).



Aalto University
May 2023

22/23

Result: BCH bound for ring codes

▶ Theorem (2011): Let c ∈ Rn be a word with wH(c) ≤ δ . If
ĉ has δ consecutive zeros, then c = 0.

▶ Proof (cf. Wicker’s textbook): We apply the foregoing
lemma to T = supp(c) and obtain from (i) the equality
p · c = 0, which implies p̂ ⋆ ĉ = 0 by the convolution
theorem. This means that

∑n−1
j=0 p̂j ĉi−j = 0 for all i ∈ Zn .

Using (ii) and (iii) of the same lemma, we rewrite this as a
recursion formula:

ĉi = −
δ∑

j=1

p̂j ĉi−j for all i ∈ Zn .

If ĉ has δ consecutive zeros, then this results in ĉ = 0 and
consequently in c = 0.
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Possible goals for future endeavor

▶ Instead of Zn assume a possibly non-abelian group G to
be underlying.

▶ Design a Fourier transform ĉ for words c ∈ RG where R is
some finite ring.

▶ Develop a relationship between the properties of a word in
c ∈ RG and the properties of its Fourier transform ĉ ∈ S?

where S is a suitable ring extension of R .

▶ Prove BCH-bound like theorems for codes over finite fields
or rings, when G is underlying.

▶ This is ongoing work, but our success so far encourages
continuation.
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