

Coding Theory on Non-Standard Alphabets Finishing coding over finite rings

Marcus Greferath

Department of Mathematics and Systems Analysis Aalto University School of Sciences marcus.greferath@aalto.fi

May 2023

Code Optimality

- Let R be a finite ring and let δ be a metric on R, additively extended to a metric on Rⁿ.
- Definition: For non-negative numbers d and n define

 $A_{R,\delta}(n,d) := \max\{M \mid \exists (n, M, d) \text{-Code over } R\}.$

- **Goal:** Determine $A_{R,\delta}(n, d)$ for given *n* and *d*.
- Note: Here *d* is (obviously) referring to the minimum distance with respect to the metric δ.
- ▶ In all what follows either $R = \mathbb{F}_2$ and $\delta = \delta_H$ the Hamming metric, or $R = \mathbb{Z}_4$ and $\delta = \delta_{\text{Lee}}$ the Lee metric.

An optimal binary (10, 40, 4) code

It was known for long that

$$A_{\mathbb{F}_2,\delta_H}(10,4) \leq 40.$$

Best [1978] came up with the construction of a binary code meeting this bound. It consists of the words

0100000011, 0011111101, 1100101100, 0001010111

together with all cyclic shifts of these.

The distance enumerator of Best's code is given by

$$D_H(x,y) = x^{10} + 22x^6y^4 + 12x^4y^6 + 5x^2y^8.$$

An optimal binary (10, 40, 4) code

- Best also determined the automorphism group of the code in question: it is a semidirect product of the dihedral group D₅ and Z⁵₂ and hence has 320 elements.
- Litsyn and Vardy [1993] showed that Best's code is unique, i.e. any binary (10, 40, 4) code must be isometric to Best's code.
- Applying what is called Construction A to Best's (10, 40, 4) code yields the densest sphere packing presently known in 10 dimensions.

\mathbb{Z}_4 representation of binary codes The Gray isometry

• Recall the Lee metric on \mathbb{Z}_4 defined as

$$\begin{array}{rcl} \delta_{\mathsf{Lee}}:\mathbb{Z}_4\times\mathbb{Z}_4&\longrightarrow&\mathbb{N},\\ (x,y)&\mapsto&\min\{|(x-y)_4|,|4-(x-y)_4|\}. \end{array}$$

It turns out that (Z₄, δ_{Lee}) is isometric to (Z²₂, δ_H) via the so-called Gray isometry:

Componentwise extension of this mapping to Zⁿ₄ yields an isometry between (Zⁿ₄, δ_{Lee}) and (Z²ⁿ₂, δ_H).

The pentacode

An observation by Conway and Sloane 1994

• The Code $P \subseteq \mathbb{Z}_4^5$ consisting of all words

(c-d, b, c, d, b+c) where $b, c, d \in \{1, 3\}$

and all cyclic shifts of these has parameters (5, 40, 4).

- The Gray image of P is (up to equivalence) the (10, 40, 4) code discovered by Best.
- P is invariant under the automorphisms $(a, b, c, d, e) \mapsto (-a, -b, -c, -d, -e),$ $(a, b, c, d, e) \mapsto (-a, 2 - b, c, 2 - d, -e),$ $(a, b, c, d, e) \mapsto (b, c, d, e, a),$ $(a, b, c, d, e) \mapsto (2 + e, 2 + d, 2 + c, 2 + b, 2 + a).$

Cyclic codes and group rings

► For a finite ring *R* consider the group ring

 $R[\mathbb{Z}_n] :=$ set of all *R*-valued functions on \mathbb{Z}_n

equipped with natural addition + and multiplication \star that is given by cyclic convolution

$$g \star f(i) := \sum_{j \in \mathbb{Z}_n} g(i-j)f(j).$$

A cyclic code of length *n* over *R* can then be under- stood as a subset in *R*[ℤ_n] that is closed under multi- plication by δ₁, where

$$\delta_1(i) = \begin{cases} 1 & : i = 1, \\ 0 & : \text{ otherwise.} \end{cases}$$

Discrete Fourier transform

Definition: Let S : R be a ring extension that contains a primitive *n*-th root of unity ω , and assume $n \in R^{\times}$.

▶ For $f \in S[\mathbb{Z}_n]$ define the <u>Fourier transform</u> $\hat{f} \in S[\mathbb{Z}_n]$ by

$$\hat{f}(i) := \sum_{j \in \mathbb{Z}_n} f(j) \, \omega^{-ji}.$$

In fact, the inverse transform is given by

$$\widetilde{f}(i) := \frac{1}{n} \sum_{j \in \mathbb{Z}_n} f(j) \, \omega^{ij},$$

and this means we have $\tilde{f} = f = \hat{f}$ for all $f \in S[\mathbb{Z}_n]$.

The Fourier transform of the pentacode

- We chose to analyse the pentacode, because Best's original binary code does not satisfy n ∈ ℝ₂[×].
- For this we find that the Galois ring GR(4,4) as an extension of Z₄ contains the required primitive 5-th root of unity ω.
- The minimal polynomial of ω over \mathbb{Z}_4 is given by

$$\varphi_{\omega} = x^4 + x^3 + x^2 + x + 1.$$

We computed the Fourier transform of all words of the pentacode and arrived at the following list.

The Fourier transform of the pentacode

 $(1, 3\omega^3 + \omega^2, 3\omega^3 + 3\omega^2 + 2\omega + 3, \omega^3 + \omega^2 + 2\omega + 1, \omega^3 + 3\omega^2)$ $(1, \omega^3 + 3\omega^2 + 3\omega, \omega^3 + 2\omega + 1, 2\omega^3 + 3\omega^2 + 2\omega + 3, 2\omega^2 + \omega + 1)$ $(1, 2\omega^3 + \omega^2 + 3\omega + 1, 3\omega^3 + 2\omega^2 + \omega, \omega^3 + 2\omega^2 + 3\omega + 3, 2\omega^3 + 3\omega^2 + \omega + 2)$ $(1, 3 \omega^3 + 3 \omega^2 + 3 \omega + 2, \omega^3 + 3, \omega^2 + 3, \omega + 3)$ $(1, 3 \omega^3 + \omega^2 + 3 \omega + 2, 3 \omega^3 + 2 \omega^2 + 2 \omega + 1, \omega^2 + 2 \omega + 3, 2 \omega^3 + \omega + 3)$ $(1, 2\omega^3 + \omega^2 + 3\omega + 2, 3\omega^3 + 2\omega^2 + \omega + 1, \omega^3 + 2\omega^2 + 3\omega, 2\omega^3 + 3\omega^2 + \omega + 3)$ $(1, 3\omega + 1, 3\omega^2 + 1, 3\omega^3 + 1, \omega^3 + \omega^2 + \omega + 2)$ $(1, \omega^3 + \omega^2 + 2\omega, 3\omega^3 + \omega^2 + 3, \omega^3 + 3\omega^2 + 3, 3\omega^3 + 3\omega^2 + 2\omega + 2)$ $(1, \omega^3 + \omega^2 + 2\omega + 2, 3\omega^3 + \omega^2 + 1, \omega^3 + 3\omega^2 + 1, 3\omega^3 + 3\omega^2 + 2\omega)$ $(1.2\omega^2 + 3\omega + 3.2\omega^3 + \omega^2 + 2\omega + 1, 3\omega^3 + 2\omega + 3, 3\omega^3 + \omega^2 + \omega)$ $(1, \omega^3 + \omega^2 + 3\omega, 3\omega^3 + 2\omega^2 + 3, 2\omega^3 + 3\omega^2 + 3, 2\omega^3 + 2\omega^2 + \omega + 1)$ $(1, 3\omega^2 + \omega, \omega^3 + 2\omega^2 + \omega + 1, \omega^3 + 3\omega, 2\omega^3 + 3\omega^2 + 3\omega + 3)$ $(1, 2\omega^3 + 3\omega + 1, 3\omega^2 + 2\omega + 1, \omega^3 + 2\omega^2 + 2\omega + 3, \omega^3 + 3\omega^2 + \omega + 2)$ $(1, 2\omega^3 + \omega^2 + \omega + 1, 3\omega^3 + \omega, 3\omega^3 + 2\omega^2 + 3\omega + 3, \omega^2 + 3\omega)$ $(1, 2\omega^3 + 2\omega^2 + 3\omega + 3, 2\omega^3 + \omega^2 + 1, \omega^3 + 2\omega^2 + 1, 3\omega^3 + 3\omega^2 + \omega)$ $(1, 3\omega^3 + \omega^2 + 2, 3\omega^3 + 3\omega^2 + 2\omega + 1, \omega^3 + \omega^2 + 2\omega + 3, \omega^3 + 3\omega^2 + 2)$ $(1, 2\omega^3 + 3\omega^2 + 3\omega, \omega^3 + 3\omega + 1, \omega^3 + 2\omega^2 + \omega + 2, 3\omega^2 + \omega + 1)$ $(1, \omega^2 + \omega + 3, 3\omega^3 + 3\omega + 2, \omega^3 + \omega + 3, 3\omega^2 + 3\omega + 2)$ $(1, \omega^2 + 3\omega + 3, 3\omega^3 + 2\omega^2 + 3\omega + 2, 3\omega^3 + \omega + 3, 2\omega^3 + \omega^2 + \omega)$ $(1, \omega^2 + \omega + 2, 3\omega^3 + 3\omega + 1, \omega^3 + \omega + 2, 3\omega^2 + 3\omega + 1)$

Aalto University May 2023 10/23

The Fourier transform of the pentacode

 $(3, 3\omega^3 + 3\omega^2 + 2\omega + 2, \omega^3 + 3\omega^2 + 3, 3\omega^3 + \omega^2 + 3, \omega^3 + \omega^2 + 2\omega)$ $(3, 2\omega^3 + 3\omega^2 + 3\omega + 3, \omega^3 + 3\omega, \omega^3 + 2\omega^2 + \omega + 1, 3\omega^2 + \omega)$ $(3, 2\omega^3 + \omega^2 + \omega, 3\omega^3 + \omega + 3, 3\omega^3 + 2\omega^2 + 3\omega + 2, \omega^2 + 3\omega + 3)$ $(3, 2\omega^3 + \omega + 3, \omega^2 + 2\omega + 3, 3\omega^3 + 2\omega^2 + 2\omega + 1, 3\omega^3 + \omega^2 + 3\omega + 2)$ $(3, 2\omega^3 + 2\omega^2 + \omega + 1, 2\omega^3 + 3\omega^2 + 3, 3\omega^3 + 2\omega^2 + 3, \omega^3 + \omega^2 + 3\omega)$ $(3, 3\omega^2 + 3\omega + 1, \omega^3 + \omega + 2, 3\omega^3 + 3\omega + 1, \omega^2 + \omega + 2)$ $(3, \omega^3 + 3\omega^2, \omega^3 + \omega^2 + 2\omega + 1, 3\omega^3 + 3\omega^2 + 2\omega + 3, 3\omega^3 + \omega^2)$ $(3, 2\omega^3 + 3\omega^2 + \omega + 2, \omega^3 + 2\omega^2 + 3\omega + 3, 3\omega^3 + 2\omega^2 + \omega, 2\omega^3 + \omega^2 + 3\omega + 1)$ $(3, \omega^2 + 3\omega, 3\omega^3 + 2\omega^2 + 3\omega + 3, 3\omega^3 + \omega, 2\omega^3 + \omega^2 + \omega + 1)$ $(3, 3\omega^3 + 3\omega^2 + \omega, \omega^3 + 2\omega^2 + 1, 2\omega^3 + \omega^2 + 1, 2\omega^3 + 2\omega^2 + 3\omega + 3)$ $(3, \omega^3 + \omega^2 + \omega + 2, 3\omega^3 + 1, 3\omega^2 + 1, 3\omega + 1)$ $(3, 2\omega^3 + 3\omega^2 + \omega + 3, \omega^3 + 2\omega^2 + 3\omega, 3\omega^3 + 2\omega^2 + \omega + 1, 2\omega^3 + \omega^2 + 3\omega + 2)$ $(3, \omega + 3, \omega^2 + 3, \omega^3 + 3, 3\omega^3 + 3\omega^2 + 3\omega + 2)$ $(3, 3\omega^2 + \omega + 1, \omega^3 + 2\omega^2 + \omega + 2, \omega^3 + 3\omega + 1, 2\omega^3 + 3\omega^2 + 3\omega)$ $(3, \omega^3 + 3\omega^2 + 2, \omega^3 + \omega^2 + 2\omega + 3, 3\omega^3 + 3\omega^2 + 2\omega + 1, 3\omega^3 + \omega^2 + 2)$ $(3, 3\omega^3 + 3\omega^2 + 2\omega\omega^3 + 3\omega^2 + 1, 3\omega^3 + \omega^2 + 1, \omega^3 + \omega^2 + 2\omega + 2)$ $(3, 3\omega^3 + \omega^2 + \omega, 3\omega^3 + 2\omega + 3, 2\omega^3 + \omega^2 + 2\omega + 1, 2\omega^2 + 3\omega + 3)$ $(3, \omega^3 + 3\omega^2 + \omega + 2, \omega^3 + 2\omega^2 + 2\omega + 3, 3\omega^2 + 2\omega + 1, 2\omega^3 + 3\omega + 1)$ $(3, 2\omega^2 + \omega + 1, 2\omega^3 + 3\omega^2 + 2\omega + 3, \omega^3 + 2\omega + 1, \omega^3 + 3\omega^2 + 3\omega)$ $(3, 3 \omega^2 + 3 \omega + 2, \omega^3 + \omega + 3, 3 \omega^3 + 3 \omega + 2, \omega^2 + \omega + 3)$

The Fourier transform of the pentacode Results

- It is apparent that the spectrum of each word of P is not only non-zero, but solely consists of invertible elements in GR(4,4).
- An afternoon's work revealed the following fact. Let

$$\begin{array}{rcl} \hat{f} & := & (1, 3\,\omega + 1, 3\,\omega^2 + 1, 3\,\omega^3 + 1, 3\,\omega^4 + 1) \\ \hat{g} & := & (1, 3\,\omega + 2, 3\,\omega^2 + 2, 3\,\omega^3 + 2, 3\,\omega^4 + 2) \\ \hat{h} & := & (1, 2\,\omega + 3, 2\,\omega^2 + 3, 2\,\omega^3 + 3, 2\,\omega^4 + 3) \\ \hat{u} & := & (1, \omega, \omega^2, \omega^3, \omega^4) \end{array}$$

Then for each word $c \in P$ there holds

$$\hat{c} = (-1)^i \hat{f} \cdot \hat{g}^j \cdot \hat{h}^k \cdot \hat{u}^n, \quad i, j, k \in \mathbb{Z}_2, n \in \mathbb{Z}_5.$$

The algebraic structure of the pentacode Results

Transforming back we can reformulate, namely:

$$f = (2,0,1,1,1)$$

$$g = (2,3,0,0,0)$$

$$h = (3,2,0,0,0)$$

$$u = (0,1,0,0,0)$$

Then for each word $c \in P$ there holds

$$c = (-1)^i f \star g^j \star h^k \star u^n, \quad i, j, k \in \mathbb{Z}_2, n \in \mathbb{Z}_5.$$

- ► Remark: As gcd(10,2) ≠ 1, we would not have been able to apply spectral arguments directly to Best's code.
- We observe however that gcd(5,4) = 1, and this enabled the current work!

The algebraic structure of the pentacode Results, continued

► Transferring this result into the ring Z₄[x]/(x⁵ - 1) we find after rescaling:

$$f = x^{4} + x^{3} + x^{2} + 2$$

$$g = x + 2$$

$$h = 2x + 1$$

$$u = x$$

Here, $h^2 = 1$, g is of order 10 and $u = g^6$.

• Conclusion: Each word $c \in P$ is of the form

$$c = (-1)^i f h^j g^k, \quad i,j \in \mathbb{Z}_2, \ k \in \mathbb{Z}_{10}.$$

The algebraic structure of the pentacode Results, continued

Consequently, the pentacode is a coset

$$P = f U$$

where *U* is a 40 element subgroup of the group of invertible elements of $\mathbb{Z}_4[x]/(x^5-1)$.

- ► There are 155 subgroups of order 40 in the 480-element unit group of $\mathbb{Z}_4[x]/(x^5-1)$.
- Only 2 of these subgroups yield (up to equivalence) the pentacode.
- Moreover, the pentacode occurs twice among the 12 cosets of each of these two subgroups.

What can further be done?

Perspectives

Definition: Let *R* be a finite ring and let *n* be a positive integer, such that *n* ∈ *R*[×]. A strong character is a map Z_n → R[×] ∩ Z(R) such that:

$$\sum_{j\in\mathbb{Z}}\chi(ji) = \begin{cases} n : & \text{if } i = 0, \\ 0 : & \text{otherwise.} \end{cases}$$

- If this is the case we will say, *R* is target of a strong character on Z_n.
- We then obtain the Fourier transform of a word $c \in R^n$ as $\hat{c} \in R^n$ defined by :

$$\hat{c}_i := \sum_{j \in \mathbb{Z}_n} c_j \chi(ji) ext{ for } i \in \mathbb{Z}_n.$$

The discrete Fourier transform (cnt'd)

In fact, the inverse transform is given by

$$ilde{c}_i := rac{1}{n} \sum_{j \in \mathbb{Z}_n} c_j \, \chi(-ij) \, ext{ for } i \in \mathbb{Z}_n,$$

meaning that we have $\tilde{\hat{c}} = c = \hat{\tilde{c}}$.

 Remark: The Fourier transform satisfies the famous convolution theorem, which says

$$\widehat{f\star g} = \widehat{f}\cdot \widehat{g}, \quad ext{for all } f,g\in R^n.$$

Here * denotes the additive convolution which means

$$(f\star g)_i = \sum_{a+b=i} f_a g_b.$$

The discrete Fourier transform (cnt'd)

- So far, the convolution theorem relies on the character χ taking values only in the center Z(S).
- Fourier transform and convolution theorem are both important ingredients in the proof of the BCH bound.
- ► Original question: Which finite rings are target of a strong character on Z_n?
- Relaxed version: Which finite rings R have a unital extension S that is target of a strong character on Z_n?

Previous results: strong characters do exist

- Theorem (2011): Let *n* be a positive integer. Every finite ring *R* with *n* ∈ *R*[×] has a unital extension *S* that is target of a strong character on Z_n.
- **Proof:** We define $S := R[\mathbb{Z}_n]/I$, where:

$$I := \frac{1}{R[\mathbb{Z}_n]} \Big\langle \sum_{j \in \mathbb{Z}_n i} j \mid i \in \mathbb{Z}_n, i \neq 0 \Big\rangle.$$

Then for $\chi : \mathbb{Z}_n \longrightarrow S$, $i \mapsto i$, most parts of the claim are easily checked. The (crucial) fact that $S \ge R$ and particularly $S \ne \{0\}$ follows from the fact that $n \in R^{\times}$ and *I* has trivial intersection with $R_{\chi}(0)$.

Technical preparation

For all what follows, let *R* be a ring that is target of the regular character χ on \mathbb{Z}_n where $n \in \mathbb{R}^{\times}$.

▶ For $k \in \mathbb{Z}_n$ consider the word $q^{(k)} \in R^n$ defined by

$$(q^{(k)})_i := \frac{1}{n} [1 - \chi(i - k)].$$

• The only zero of this word is at i = k. For the Fourier transform of $q^{(k)}$ we have

$$(\widehat{q^{(k)}})_i = \begin{cases} 1 & \vdots & i = 0, \\ -\chi(-k) & \vdots & i = 1, \\ 0 & \vdots & \text{otherwise.} \end{cases}$$

Aalto University May 2023 20/23

Technical preparation (cnt'd)

Lemma: For a subset T of \mathbb{Z}_n with $|T| \leq \delta$, the word

$$p := \prod_{k \in T} q^{(k)}$$

has the following properties:

(i)
$$p_i = 0$$
 for all $i \in T$.
(ii) $\hat{p}_0 = 1$.
(iii) $\hat{p}_i = 0$ for all $i > \delta$.

Proof: Property (i) directly follows from the construction of *p*. In polynomial language, the word *q*^(k) is given by 1 − χ(−k)x, and the convolution becomes ordinary polynomial multiplication. This immediately yields (ii) and (iii).

Result: BCH bound for ring codes

- Theorem (2011): Let $c \in \mathbb{R}^n$ be a word with $w_H(c) \le \delta$. If \hat{c} has δ consecutive zeros, then c = 0.
- ▶ **Proof** (cf. Wicker's textbook): We apply the foregoing lemma to T = supp(c) and obtain from (i) the equality $p \cdot c = 0$, which implies $\hat{p} \star \hat{c} = 0$ by the convolution theorem. This means that $\sum_{j=0}^{n-1} \hat{p}_j \hat{c}_{i-j} = 0$ for all $i \in \mathbb{Z}_n$. Using (ii) and (iii) of the same lemma, we rewrite this as a recursion formula:

$$\widehat{c}_i = -\sum_{j=1}^{\delta} \widehat{p}_j \widehat{c}_{i-j}$$
 for all $i \in \mathbb{Z}_n$.

If \hat{c} has δ consecutive zeros, then this results in $\hat{c} = 0$ and consequently in c = 0.

Possible goals for future endeavor

- ► Instead of Z_n assume a possibly non-abelian group G to be underlying.
- ▶ Design a Fourier transform \hat{c} for words $c \in R^G$ where R is some finite ring.
- Develop a relationship between the properties of a word in c ∈ R^G and the properties of its Fourier transform ĉ ∈ S? where S is a suitable ring extension of R.
- Prove BCH-bound like theorems for codes over finite fields or rings, when G is underlying.
- This is ongoing work, but our success so far encourages continuation.

