Coding Theory on Non-Standard Alphabets

Finishing coding over finite rings

Marcus Greferath

Department of Mathematics and Systems Analysis
Aalto University School of Sciences
marcus.greferath@aalto.fi
May 2023

Code Optimality

- Let R be a finite ring and let δ be a metric on R, additively extended to a metric on R^{n}.
- Definition: For non-negative numbers d and n define

$$
A_{R, \delta}(n, d):=\max \{M \mid \exists(n, M, d) \text {-Code over } R\}
$$

- Goal: Determine $A_{R, \delta}(n, d)$ for given n and d.
- Note: Here d is (obviously) referring to the minimum distance with respect to the metric δ.
- In all what follows either $R=\mathbb{F}_{2}$ and $\delta=\delta_{H}$ the Hamming metric, or $R=\mathbb{Z}_{4}$ and $\delta=\delta_{\text {Lee }}$ the Lee metric.

An optimal binary $(10,40,4)$ code

- It was known for long that

$$
A_{\mathbb{F}_{2}, \delta_{H}}(10,4) \leq 40 .
$$

- Best [1978] came up with the construction of a binary code meeting this bound. It consists of the words

$$
0100000011,0011111101,1100101100,0001010111
$$

together with all cyclic shifts of these.

- The distance enumerator of Best's code is given by

$$
D_{H}(x, y)=x^{10}+22 x^{6} y^{4}+12 x^{4} y^{6}+5 x^{2} y^{8}
$$

An optimal binary $(10,40,4)$ code

- Best also determined the automorphism group of the code in question: it is a semidirect product of the dihedral group D_{5} and \mathbb{Z}_{2}^{5} and hence has 320 elements.
- Litsyn and Vardy [1993] showed that Best's code is unique, i.e. any binary $(10,40,4)$ code must be isometric to Best's code.
- Applying what is called Construction A to Best's $(10,40,4)$ code yields the densest sphere packing presently known in 10 dimensions.

\mathbb{Z}_{4} representation of binary codes

The Gray isometry

- Recall the Lee metric on \mathbb{Z}_{4} defined as

$$
\begin{aligned}
& \delta_{\text {Lee }}: \mathbb{Z}_{4} \times \mathbb{Z}_{4} \longrightarrow \mathbb{N}, \\
&(x, y) \mapsto \\
& \min \left\{\left|(x-y)_{4}\right|,\left|4-(x-y)_{4}\right|\right\} .
\end{aligned}
$$

- It turns out that $\left(\mathbb{Z}_{4}, \delta_{\text {Lee }}\right)$ is isometric to $\left(\mathbb{Z}_{2}^{2}, \delta_{H}\right)$ via the so-called Gray isometry:

$$
\begin{aligned}
\mathbb{Z}_{4} & \longrightarrow \mathbb{Z}_{2}^{2} \\
a+2 b & \mapsto a(0,1)+b(1,1)
\end{aligned}
$$

- Componentwise extension of this mapping to \mathbb{Z}_{4}^{n} yields an isometry between $\left(\mathbb{Z}_{4}^{n}, \delta_{\text {Lee }}\right)$ and $\left(\mathbb{Z}_{2}^{2 n}, \delta_{H}\right)$.

The pentacode

An observation by Conway and Sloane 1994

- The Code $P \subseteq \mathbb{Z}_{4}^{5}$ consisting of all words

$$
(c-d, b, c, d, b+c) \text { where } b, c, d \in\{1,3\}
$$

and all cyclic shifts of these has parameters ($5,40,4$).

- The Gray image of P is (up to equivalence) the $(10,40,4)$ code discovered by Best.
- P is invariant under the automorphisms

$$
\begin{aligned}
(a, b, c, d, e) & \mapsto(-a,-b,-c,-d,-e), \\
(a, b, c, d, e) & \mapsto(-a, 2-b, c, 2-d,-e), \\
(a, b, c, d, e) & \mapsto(b, c, d, e, a), \\
(a, b, c, d, e) & \mapsto(2+e, 2+d, 2+c, 2+b, 2+a) .
\end{aligned}
$$

Cyclic codes and group rings

- For a finite ring R consider the group ring

$$
R\left[\mathbb{Z}_{n}\right]:=\text { set of all } R \text {-valued functions on } \mathbb{Z}_{n}
$$

equipped with natural addition + and multiplication \star that is given by cyclic convolution

$$
g \star f(i):=\sum_{j \in \mathbb{Z}_{n}} g(i-j) f(j)
$$

- A cyclic code of length n over R can then be under- stood as a subset in $R\left[\mathbb{Z}_{n}\right]$ that is closed under multi- plication by δ_{1}, where

$$
\delta_{1}(i)=\left\{\begin{array}{lll}
1 & : & i=1 \\
0 & : & \text { otherwise }
\end{array}\right.
$$

Discrete Fourier transform

Definition: Let S : R be a ring extension that contains a primitive n-th root of unity ω, and assume $n \in R^{\times}$.

- For $f \in S\left[\mathbb{Z}_{n}\right]$ define the Fourier transform $\hat{f} \in S\left[\mathbb{Z}_{n}\right]$ by

$$
\hat{f}(i):=\sum_{j \in \mathbb{Z}_{n}} f(j) \omega^{-j i} .
$$

- In fact, the inverse transform is given by

$$
\tilde{f}(i):=\frac{1}{n} \sum_{j \in \mathbb{Z}_{n}} f(j) \omega^{i j},
$$

and this means we have $\tilde{\hat{f}}=f=\hat{\tilde{f}}$ for all $f \in S\left[\mathbb{Z}_{n}\right]$.

The Fourier transform of the pentacode

- We chose to analyse the pentacode, because Best's original binary code does not satisfy $n \in \mathbb{F}_{2}^{\times}$.
- For this we find that the Galois ring $\operatorname{GR}(4,4)$ as an extension of \mathbb{Z}_{4} contains the required primitive 5 -th root of unity ω.
- The minimal polynomial of ω over \mathbb{Z}_{4} is given by

$$
\varphi_{\omega}=x^{4}+x^{3}+x^{2}+x+1
$$

- We computed the Fourier transform of all words of the pentacode and arrived at the following list.

The Fourier transform of the pentacode

$$
\begin{aligned}
& \left(1,3 \omega^{3}+\omega^{2}, 3 \omega^{3}+3 \omega^{2}+2 \omega+3, \omega^{3}+\omega^{2}+2 \omega+1, \omega^{3}+3 \omega^{2}\right) \\
& \left(1, \omega^{3}+3 \omega^{2}+3 \omega, \omega^{3}+2 \omega+1,2 \omega^{3}+3 \omega^{2}+2 \omega+3,2 \omega^{2}+\omega+1\right) \\
& \left(1,2 \omega^{3}+\omega^{2}+3 \omega+1,3 \omega^{3}+2 \omega^{2}+\omega, \omega^{3}+2 \omega^{2}+3 \omega+3,2 \omega^{3}+3 \omega^{2}+\omega+2\right) \\
& \left(1,3 \omega^{3}+3 \omega^{2}+3 \omega+2, \omega^{3}+3, \omega^{2}+3, \omega+3\right) \\
& \left(1,3 \omega^{3}+\omega^{2}+3 \omega+2,3 \omega^{3}+2 \omega^{2}+2 \omega+1, \omega^{2}+2 \omega+3,2 \omega^{3}+\omega+3\right) \\
& \left(1,2 \omega^{3}+\omega^{2}+3 \omega+2,3 \omega^{3}+2 \omega^{2}+\omega+1, \omega^{3}+2 \omega^{2}+3 \omega, 2 \omega^{3}+3 \omega^{2}+\omega+3\right) \\
& \left(1,3 \omega+1,3 \omega^{2}+1,3 \omega^{3}+1, \omega^{3}+\omega^{2}+\omega+2\right) \\
& \left(1, \omega^{3}+\omega^{2}+2 \omega, 3 \omega^{3}+\omega^{2}+3, \omega^{3}+3 \omega^{2}+3,3 \omega^{3}+3 \omega^{2}+2 \omega+2\right) \\
& \left(1, \omega^{3}+\omega^{2}+2 \omega+2,3 \omega^{3}+\omega^{2}+1, \omega^{3}+3 \omega^{2}+1,3 \omega^{3}+3 \omega^{2}+2 \omega\right) \\
& \left(1,2 \omega^{2}+3 \omega+3,2 \omega^{3}+\omega^{2}+2 \omega+1,3 \omega^{3}+2 \omega+3,3 \omega^{3}+\omega^{2}+\omega\right) \\
& \left(1, \omega^{3}+\omega^{2}+3 \omega, 3 \omega^{3}+2 \omega^{2}+3,2 \omega^{3}+3 \omega^{2}+3,2 \omega^{3}+2 \omega^{2}+\omega+1\right) \\
& \left(1,3 \omega^{2}+\omega, \omega^{3}+2 \omega^{2}+\omega+1, \omega^{3}+3 \omega, 2 \omega^{3}+3 \omega^{2}+3 \omega+3\right) \\
& \left(1,2 \omega^{3}+3 \omega+1,3 \omega^{2}+2 \omega+1, \omega^{3}+2 \omega^{2}+2 \omega+3, \omega^{3}+3 \omega^{2}+\omega+2\right) \\
& \left(1,2 \omega^{3}+\omega^{2}+\omega+1,3 \omega^{3}+\omega, 3 \omega^{3}+2 \omega^{2}+3 \omega+3, \omega^{2}+3 \omega\right) \\
& \left(1,2 \omega^{3}+2 \omega^{2}+3 \omega+3,2 \omega^{3}+\omega^{2}+1, \omega^{3}+2 \omega^{2}+1,3 \omega^{3}+3 \omega^{2}+\omega\right) \\
& \left(1,3 \omega^{3}+\omega^{2}+2,3 \omega^{3}+3 \omega^{2}+2 \omega+1, \omega^{3}+\omega^{2}+2 \omega+3, \omega^{3}+3 \omega^{2}+2\right) \\
& \left(1,2 \omega^{3}+3 \omega^{2}+3 \omega, \omega^{3}+3 \omega+1, \omega^{3}+2 \omega^{2}+\omega+2,3 \omega^{2}+\omega+1\right) \\
& \left(1, \omega^{2}+\omega+3,3 \omega^{3}+3 \omega+2, \omega^{3}+\omega+3,3 \omega^{2}+3 \omega+2\right) \\
& \left(1, \omega^{2}+3 \omega+3,3 \omega^{3}+2 \omega^{2}+3 \omega+2,3 \omega^{3}+\omega+3,2 \omega^{3}+\omega^{2}+\omega\right) \\
& \left(1, \omega^{2}+\omega+2,3 \omega^{3}+3 \omega+1, \omega^{3}+\omega+2,3 \omega^{2}+3 \omega+1\right)
\end{aligned}
$$

The Fourier transform of the pentacode

$$
\begin{aligned}
& \left(3,3 \omega^{3}+3 \omega^{2}+2 \omega+2, \omega^{3}+3 \omega^{2}+3,3 \omega^{3}+\omega^{2}+3, \omega^{3}+\omega^{2}+2 \omega\right) \\
& \left(3,2 \omega^{3}+3 \omega^{2}+3 \omega+3, \omega^{3}+3 \omega, \omega^{3}+2 \omega^{2}+\omega+1,3 \omega^{2}+\omega\right) \\
& \left(3,2 \omega^{3}+\omega^{2}+\omega, 3 \omega^{3}+\omega+3,3 \omega^{3}+2 \omega^{2}+3 \omega+2, \omega^{2}+3 \omega+3\right) \\
& \left(3,2 \omega^{3}+\omega+3, \omega^{2}+2 \omega+3,3 \omega^{3}+2 \omega^{2}+2 \omega+1,3 \omega^{3}+\omega^{2}+3 \omega+2\right) \\
& \left(3,2 \omega^{3}+2 \omega^{2}+\omega+1,2 \omega^{3}+3 \omega^{2}+3,3 \omega^{3}+2 \omega^{2}+3, \omega^{3}+\omega^{2}+3 \omega\right) \\
& \left(3,3 \omega^{2}+3 \omega+1, \omega^{3}+\omega+2,3 \omega^{3}+3 \omega+1, \omega^{2}+\omega+2\right) \\
& \left(3, \omega^{3}+3 \omega^{2}, \omega^{3}+\omega^{2}+2 \omega+1,3 \omega^{3}+3 \omega^{2}+2 \omega+3,3 \omega^{3}+\omega^{2}\right) \\
& \left(3,2 \omega^{3}+3 \omega^{2}+\omega+2, \omega^{3}+2 \omega^{2}+3 \omega+3,3 \omega^{3}+2 \omega^{2}+\omega, 2 \omega^{3}+\omega^{2}+3 \omega+1\right) \\
& \left(3, \omega^{2}+3 \omega, 3 \omega^{3}+2 \omega^{2}+3 \omega+3,3 \omega^{3}+\omega, 2 \omega^{3}+\omega^{2}+\omega+1\right) \\
& \left(3,3 \omega^{3}+3 \omega^{2}+\omega, \omega^{3}+2 \omega^{2}+1,2 \omega^{3}+\omega^{2}+1,2 \omega^{3}+2 \omega^{2}+3 \omega+3\right) \\
& \left(3, \omega^{3}+\omega^{2}+\omega+2,3 \omega^{3}+1,3 \omega^{2}+1,3 \omega+1\right) \\
& \left(3,2 \omega^{3}+3 \omega^{2}+\omega+3, \omega^{3}+2 \omega^{2}+3 \omega, 3 \omega^{3}+2 \omega^{2}+\omega+1,2 \omega^{3}+\omega^{2}+3 \omega+2\right) \\
& \left(3, \omega+3, \omega^{2}+3, \omega^{3}+3,3 \omega^{3}+3 \omega^{2}+3 \omega+2\right) \\
& \left(3,3 \omega^{2}+\omega+1, \omega^{3}+2 \omega^{2}+\omega+2, \omega^{3}+3 \omega+1,2 \omega^{3}+3 \omega^{2}+3 \omega\right) \\
& \left(3, \omega^{3}+3 \omega^{2}+2, \omega^{3}+\omega^{2}+2 \omega+3,3 \omega^{3}+3 \omega^{2}+2 \omega+1,3 \omega^{3}+\omega^{2}+2\right) \\
& \left(3,3 \omega^{3}+3 \omega^{2}+2 \omega \omega^{3}+3 \omega^{2}+1,3 \omega^{3}+\omega^{2}+1, \omega^{3}+\omega^{2}+2 \omega+2\right) \\
& \left(3,3 \omega^{3}+\omega^{2}+\omega, 3 \omega^{3}+2 \omega+3,2 \omega^{3}+\omega^{2}+2 \omega+1,2 \omega^{2}+3 \omega+3\right) \\
& \left(3, \omega^{3}+3 \omega^{2}+\omega+2, \omega^{3}+2 \omega^{2}+2 \omega+3,3 \omega^{2}+2 \omega+1,2 \omega^{3}+3 \omega+1\right) \\
& \left(3,2 \omega^{2}+\omega+1,2 \omega^{3}+3 \omega^{2}+2 \omega+3, \omega^{3}+2 \omega+1, \omega^{3}+3 \omega^{2}+3 \omega\right) \\
& \left(3,3 \omega^{2}+3 \omega+2, \omega^{3}+\omega+3,3 \omega^{3}+3 \omega+2, \omega^{2}+\omega+3\right)
\end{aligned}
$$

The Fourier transform of the pentacode

Results

- It is apparent that the spectrum of each word of P is not only non-zero, but solely consists of invertible elements in $\operatorname{GR}(4,4)$.
- An afternoon's work revealed the following fact. Let

$$
\left.\begin{array}{l}
\hat{f} \\
\hat{g}:=\left(1,3 \omega+1,3 \omega^{2}+1,3 \omega^{3}+1,3 \omega^{4}+1\right) \\
\hat{h} \\
\hat{u} \\
\hat{u}
\end{array}:=\left(1,3 \omega+2,3 \omega^{2}+2,3 \omega^{3}+2,3 \omega^{4}+2\right),\left(1,2 \omega+3,2 \omega^{2}+3,2 \omega^{3}+3,2 \omega^{4}+3\right), \omega^{2}, \omega^{3}, \omega^{4}\right) .
$$

Then for each word $c \in P$ there holds

$$
\hat{c}=(-1)^{i} \hat{f} \cdot \hat{g}^{j} \cdot \hat{h}^{k} \cdot \hat{u}^{n}, \quad i, j, k \in \mathbb{Z}_{2}, n \in \mathbb{Z}_{5}
$$

The algebraic structure of the pentacode

Results

- Transforming back we can reformulate, namely:

$$
\begin{aligned}
& f=(2,0,1,1,1) \\
& g=(2,3,0,0,0) \\
& h=(3,2,0,0,0) \\
& u=(0,1,0,0,0)
\end{aligned}
$$

Then for each word $c \in P$ there holds

$$
c=(-1)^{i} f \star g^{j} \star h^{k} \star u^{n}, \quad i, j, k \in \mathbb{Z}_{2}, n \in \mathbb{Z}_{5} .
$$

- Remark: As $\operatorname{gcd}(10,2) \neq 1$, we would not have been able to apply spectral arguments directly to Best's code.
- We observe however that $\operatorname{gcd}(5,4)=1$, and this enabled the current work!

The algebraic structure of the pentacode

Results, continued

- Transferring this result into the ring $\mathbb{Z}_{4}[x] /\left(x^{5}-1\right)$ we find after rescaling:

$$
\begin{aligned}
& f=x^{4}+x^{3}+x^{2}+2 \\
& g=x+2 \\
& h=2 x+1 \\
& u=x
\end{aligned}
$$

Here, $h^{2}=1, g$ is of order 10 and $u=g^{6}$.

- Conclusion: Each word $c \in P$ is of the form

$$
c=(-1)^{i} f h^{j} g^{k}, \quad i, j \in \mathbb{Z}_{2}, k \in \mathbb{Z}_{10}
$$

The algebraic structure of the pentacode

Results, continued

- Consequently, the pentacode is a coset

$$
P=f U
$$

where U is a 40 element subgroup of the group of invertible elements of $\mathbb{Z}_{4}[x] /\left(x^{5}-1\right)$.

- There are 155 subgroups of order 40 in the 480 -element unit group of $\mathbb{Z}_{4}[x] /\left(x^{5}-1\right)$.
- Only 2 of these subgroups yield (up to equivalence) the pentacode.
- Moreover, the pentacode occurs twice among the 12 cosets of each of these two subgroups.

What can further be done?

Perspectives

- Definition: Let R be a finite ring and let n be a positive integer, such that $n \in R^{\times}$. A strong character is a map $\mathbb{Z}_{n} \xrightarrow{\chi} R^{\times} \cap Z(R)$ such that:

$$
\sum_{j \in \mathbb{Z}} \chi(j i)=\left\{\begin{array}{lll}
n & : & \text { if } i=0 \\
0 & : & \text { otherwise }
\end{array}\right.
$$

- If this is the case we will say, R is target of a strong character on \mathbb{Z}_{n}.
- We then obtain the Fourier transform of a word $c \in R^{n}$ as $\hat{c} \in R^{n}$ defined by :

$$
\hat{c}_{i}:=\sum_{j \in \mathbb{Z}_{n}} c_{j} \chi(j i) \text { for } i \in \mathbb{Z}_{n} .
$$

The discrete Fourier transform (cnt'd)

- In fact, the inverse transform is given by

$$
\tilde{c}_{i}:=\frac{1}{n} \sum_{j \in \mathbb{Z}_{n}} c_{j} \chi(-i j) \text { for } i \in \mathbb{Z}_{n}
$$

meaning that we have $\tilde{\hat{c}}=c=\hat{\tilde{c}}$.

- Remark: The Fourier transform satisfies the famous convolution theorem, which says

$$
\widehat{f \star g}=\hat{f} \cdot \hat{g}, \quad \text { for all } f, g \in R^{n}
$$

- Here \star denotes the additive convolution which means

$$
(f \star g)_{i}=\sum_{a+b=i} f_{a} g_{b}
$$

The discrete Fourier transform (cnt'd)

- So far, the convolution theorem relies on the character χ taking values only in the center $Z(S)$.
- Fourier transform and convolution theorem are both important ingredients in the proof of the BCH bound.
- Original question: Which finite rings are target of a strong character on \mathbb{Z}_{n} ?
- Relaxed version: Which finite rings R have a unital extension S that is target of a strong character on \mathbb{Z}_{n} ?

Previous results: strong characters do exist

- Theorem (2011): Let n be a positive integer. Every finite ring R with $n \in R^{\times}$has a unital extension S that is target of a strong character on \mathbb{Z}_{n}.
- Proof: We define $S:=R\left[\mathbb{Z}_{n}\right] / I$, where:

$$
I:={ }_{R\left[\mathbb{Z}_{n}\right]}\left\langle\sum_{j \in \mathbb{Z}_{n} i} j \mid i \in \mathbb{Z}_{n}, i \neq 0\right\rangle .
$$

Then for $\chi: \mathbb{Z}_{n} \longrightarrow S, i \mapsto i$, most parts of the claim are easily checked. The (crucial) fact that $S \geq R$ and particularly $S \neq\{0\}$ follows from the fact that $n \in R^{\times}$and I has trivial intersection with $R \chi(0)$.

Technical preparation

- For all what follows, let R be a ring that is target of the regular character χ on \mathbb{Z}_{n} where $n \in R^{\times}$.
- For $k \in \mathbb{Z}_{n}$ consider the word $q^{(k)} \in R^{n}$ defined by

$$
\left(q^{(k)}\right)_{i}:=\frac{1}{n}[1-\chi(i-k)]
$$

- The only zero of this word is at $i=k$. For the Fourier transform of $q^{(k)}$ we have

$$
\left(\widehat{q^{(k)}}\right)_{i}=\left\{\begin{array}{cll}
1 & : & i=0 \\
-\chi(-k) & : & i=1 \\
0 & : & \text { otherwise }
\end{array}\right.
$$

Technical preparation (cnt’d)

- Lemma: For a subset T of \mathbb{Z}_{n} with $|T| \leq \delta$, the word

$$
p:=\prod_{k \in T} q^{(k)}
$$

has the following properties:
(i) $p_{i}=0$ for all $i \in T$.
(ii) $\hat{p}_{0}=1$.
(iii) $\widehat{p}_{i}=0$ for all $i>\delta$.

- Proof: Property (i) directly follows from the construction of p. In polynomial language, the word $\widehat{q^{(k)}}$ is given by $1-\chi(-k) x$, and the convolution becomes ordinary polynomial multiplication. This immediately yields (ii) and (iii).

Result: BCH bound for ring codes

- Theorem (2011): Let $c \in R^{n}$ be a word with $w_{H}(c) \leq \delta$. If \widehat{c} has δ consecutive zeros, then $c=0$.
- Proof (cf. Wicker's textbook): We apply the foregoing lemma to $T=\operatorname{supp}(c)$ and obtain from (i) the equality $p \cdot c=0$, which implies $\widehat{p} \star \widehat{c}=0$ by the convolution theorem. This means that $\sum_{j=0}^{n-1} \widehat{p}_{j} \widehat{c}_{i-j}=0$ for all $i \in \mathbb{Z}_{n}$. Using (ii) and (iii) of the same lemma, we rewrite this as a recursion formula:

$$
\widehat{c}_{i}=-\sum_{j=1}^{\delta} \widehat{p}_{j} \widehat{c}_{i-j} \quad \text { for all } i \in \mathbb{Z}_{n}
$$

If \widehat{c} has δ consecutive zeros, then this results in $\widehat{c}=0$ and consequently in $c=0$.

Possible goals for future endeavor

- Instead of \mathbb{Z}_{n} assume a possibly non-abelian group G to be underlying.
- Design a Fourier transform \hat{c} for words $c \in R^{G}$ where R is some finite ring.
- Develop a relationship between the properties of a word in $c \in R^{G}$ and the properties of its Fourier transform $\hat{c} \in S$? where S is a suitable ring extension of R.
- Prove BCH-bound like theorems for codes over finite fields or rings, when G is underlying.
- This is ongoing work, but our success so far encourages continuation.

