Coding Theory on Non-Standard Alphabets

Random network codes in projective geometries

Marcus Greferath

Department of Mathematics and Systems Analysis
Aalto University School of Sciences
marcus.greferath@aalto.fi
May 2023

What is the connection to coding?

Definition: For a vector space ${ }_{F} V$ define a metric δ on the lattice of subspaces $\left.L_{(} V\right)$ by:
$\delta: L\left({ }_{F} V\right) \times L\left({ }_{F} V\right) \longrightarrow \mathbb{R}, \quad(X, Y) \mapsto \operatorname{dim}(X+Y)-\operatorname{dim}(X \cap Y)$

- It is not difficult to verify the metric properties (strictly positive, symmetric, triangle inequality).
- Using the dimension formula, we can rewrite

$$
\delta(X, Y)=\operatorname{dim}(X)+\operatorname{dim}(Y)-2 \operatorname{dim}(X \cap Y) .
$$

- Restricting δ to the Grassmannian $\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$ we finally see

$$
\delta(X, Y)=2 k-2 \operatorname{dim}(X \cap Y) .
$$

What is the connection to coding?

Definition: Let V be a v-dimensional vector space over the q-element field F. A subset $C \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$ is called a subspace code with parameters $(v, d ; k)_{q}$, if d is the minimum distance of C.

- If $C \subseteq\left[{ }_{k}^{V}\right]_{q}$ is a $t-(v, k, 1)_{q}$ design (q-analog of Steiner system), then two distinct blocks of C can intersect in a subspace of dimension at most $t-1$.
- This comes from the fact that the two blocks would be forced to be identical, if the intersection were t-dimensional.
- For this reason, if every $T \in\left[\begin{array}{l}V \\ t\end{array}\right]_{q}$ is contained in at most one block of C, then C becomes a $(v, 2(k-t+1) ; k)_{q}$ subspace code.

Automorphisms

Designs over sets:

- S_{v} : symmetric group
- $\sigma \in S_{V}$ is automorphism: $B^{\sigma}=B$
- Example: 4

$$
\sigma=(a d)(b c)
$$

- Set of automorphisms: automorphism group

Subspace designs:

- PGL (v, q) projective semilinear group
- $\mathrm{GL}(v, q)=\left\{M \in \mathbb{F}_{q}^{v \times v}: M\right.$ invertible $\}$
- $\sigma \in \operatorname{PGL}(v, q)$ automorphism: $B^{\sigma}=B$

Brute force approach for construction

Step 1: Build matrix

- Designs over sets: incidence matrix between t-subset T_{i} and k-subsets K_{j} :

$$
M_{t, k}=\left(m_{i, j}\right), \text { where } m_{i, j}= \begin{cases}1 & \text { if } T_{i} \subset K_{j} \\ 0 & \text { else }\end{cases}
$$

- Subspace designs: incidence matrix between t-subspaces T_{i} and k-subspaces K_{j} :

$$
M_{t, k}=\left(m_{i, j}\right), \text { where } m_{i, j}= \begin{cases}1 & \text { if } T_{i} \leq K_{j} \\ 0 & \text { else }\end{cases}
$$

$-\left|M_{t, k}\right|=\left[\begin{array}{l}V \\ t\end{array}\right]_{q} \times\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$

Brute force approach for construction

Step 2: Solve system of Diophantine linear equations

- Solve

$$
M_{t, k} \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
\lambda \\
\lambda \\
\vdots \\
\lambda
\end{array}\right]
$$

Here $x=\left[x_{1}, \ldots, x_{n}\right]^{T}$ is a binary vector.

Example

design 1

design 2

$M_{1,2}$	1	2	3	4	5	6
a	1			1	1	
b	1	1				1
c		1	1		1	
d			1	1		1
design 1	1		1			
design 2		1		1		
design 3					1	1

Designs with prescribed automorphism group

Construction of designs with prescribed automorphism group:

- choose group G acting on X, i.e. $G \leq S_{v}$
- search for t-designs $\mathcal{D}=(X, \mathcal{B})$ having G as a group of automorphisms, i.e.

$$
\text { for all } g \in G \text { and } K \in \mathcal{B} \Longrightarrow K^{g} \in \mathcal{B}
$$

- construct $\mathcal{D}=(X, \mathcal{B})$ as union of orbits of G on k-subsets.

Example: cyclic symmetry

	1	2	3	4	5	6
a	1			1	1	
b	1	1				1
c		1	1		1	
d			1	1		1

	$\{1,2,3,4\}$	$\{5,6\}$
a	2	1
b	2	1
c	2	1
d	2	1

	$\{1,2,3,4\}$	$\{5,6\}$
$\{a, b, c, d\}$	2	1

design 3

The method of Kramer and Mesner

Definition

- $K \subset X$ and $|K|=k: K^{G}:=\left\{K^{g} \mid g \in G\right\}$
- $T \subset X$ and $|T|=t: T^{G}:=\left\{T^{g} \mid g \in G\right\}$
- Let

$$
K_{1}^{G} \cup K_{2}^{G} \cup \ldots \cup K_{n}^{G} \subseteq\binom{X}{k}
$$

and

$$
\begin{gathered}
T_{1}^{G} \cup T_{2}^{G} \cup \ldots \cup T_{m}^{G}=\binom{X}{t} \\
M_{t, k}^{G}=\left(m_{i, j}\right) \text { where } m_{i, j}:=\left|\left\{K \in K_{j}^{G} \mid T_{i} \subset K\right\}\right|
\end{gathered}
$$

The method of Kramer and Mesner

Theorem (Kramer and Mesner, 1976)
The union of orbits corresponding to the 1 s in a $\{0,1\}$ vector which solves

$$
M_{t, k}^{G} \cdot x=\left[\begin{array}{c}
\lambda \\
\lambda \\
\vdots \\
\lambda
\end{array}\right]
$$

is a $t-(v, k, \lambda)$ design having G as an automorphism group.

Expected gain

- Brute force approach: $\left|M_{t, k}\right|=\left[\begin{array}{l}V \\ t\end{array}\right]_{q} \times\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$
- Kramer-Mesner: $\left.\left|M_{t, k}^{G}\right| \approx \frac{[k]}{|G|} \right\rvert\,$

Applications of Kramer-Mesner

mostly by Betten, Braun, Kerber, Kiermaier, Kohnert, Kurz, Laue, Vogel, Wassermann, Zwanzger at Bayreuth University

- designs over sets
- subspace designs
- large sets of designs
- subspace codes
- linear codes
- self-orthogonal codes
- LCD codes
- ring-linear codes
- two-weight codes
- arcs, blocking sets in projective geometry

Solving algorithms

t-designs with $\lambda=1$:

- maximum clique algorithms (Östergård: cliquer)
- exact cover (Knuth: dancing links)
t-designs with $\lambda>1$:
- integer programming (CPLEX, Gurobi)
- heuristic algorithms
- Logic programming
- Gröbner bases
- lattice basis reduction + exhaustive enumeration (Wassermann 1998, 2002)

Subspace designs by computer construction
($q=2, t \geq 2$)
Braun, Kerber, Laue (2005), S. Braun (2010), Braun, Etzion, Östergård, Vardy, Wassermann (2013), M. Braun (2015)

$t-(v, k, \lambda ; q)$	$\left\|M_{t, k}^{G}\right\|$	λ
$3-(8,4, \lambda ; 2)$	105×217	11,15
$2-(13,3, \lambda ; 2)$	105×30705	$1, \ldots, 2047$
$2-(11,3, \lambda ; 2)$	31×2263	245,252
$2-(10,3, \lambda ; 2)$	20×633	$15,30,45,60,75,90,105,120$
$2-(9,4, \lambda ; 2)$	11×725	$21,63,84,126,147,189,210,252,273,315$,
		$336,378,399,441,462,504,525,567,576,588$,
		$630,651,693,714,756,777,819,840,882,903$,
		$945,966,1008,1029,1071,1092,1134,1155$,
	$1197,1218,1260,1281,1323$	
$2-(9,3, \lambda ; 2)$	31×529	$21,22,42,43,63$
	28×408	$7,12,19,24,31,36,43,48,55,60$
	40×460	49
$2-(8,4, \lambda ; 2)$	15×217	$21,35,56,70,91,105,126,140,161,175$,
		$196,210,231,245,266,280,301,315$
	13×231	$7,14,49,56,63,98,105,112,147,154,161$
		$196,203,210,245,252,259,294,301,308$
$2-(8,3, \lambda ; 2)$	43×381	21
$2-(7,3, \lambda ; 2)$	21×93	$3,4,5,6,7,8,9,10,11,12,13,14,15$
$2-(6,3, \lambda ; 2)$	77×155	3,6

All beside 2-(13, 3, $\lambda ; 2)$ were found by solvediophant

Back to the (binary) Fano plane
Does a 2 - $(7,3,1 ; q)$ design exist for $q \geq 2$?
Theorem (Braun, Kiermaier, Nakić (2016))
A binary Fano plane can have four non-trivial automorphism groups: One group of order 2, two groups of order 3, one group of order 4.

Theorem (Kiermaier, Kurz, Wassermann (2016))

The order of the automorphism group of a binary q-analog of the Fano plane is at most two.

Thanks to M. Kiermaier and A. Wassermann for their material and kind assistance in composing this tutorial

