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PREFACE 

THE aim of the present volume is to add a substantial contribution to 
the textbook literature in the field of ordered algebraic structures. The 
fundamental notion which permeates the entire work is that of a residu-
ated mapping and this is indeed the first unified account of this topic. The 
origin of this concept has been traced by J. Schmidt [26] to M. Benado [3] 
and G.Nöbeling [22, 23]. It also appears in the work of P.Dubreil [11] 
and R. Croisot [8]. The general theory of residuated mappings seems to 
have lain dormant for approximately 20 years until the appearance of 
papers by J. C. Derderian [9] and M. F. Janowitz [16,17] ; however, during 
this time particular types of residuated mappings were employed in 
studying residuated semigroups, principally by M. L. Dubreil-Jacotin [12], 
LMolinaro [20], J.Querré [24] and T.S.Blyth [5]. 

This text has grown out of courses given by T.S.B. at the Universities 
of St. Andrews, Western Australia and Western Ontario and by M.FJ . 
at the Universities of Massachusetts, New Mexico and Western Michigan. 
In this (hopefully happy) marriage of our efforts, the choice of text mate-
rial has, quite frankly, been selfish and more or less motivated by our own 
research interests. It was never our intention to write an encyclopaedia 
on the subject (we leave that happy task to someone else!) but rather to 
produce a self-contained and unified introduction to the subject which 
may be used either as a textbook or as a reference book in this area. In 
this connection we mention that many research papers are listed in the 
bibliography without explicit reference to their contents being made in the 
text. Many of these have had to be excluded because of space limitations 
and we hope that we have offended no one by so doing. The reader will 
undoubtedly find the present text useful in supplying the unified back-
ground material necessary to read those papers. Little attempt has been 
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vin PREFACE 

made to credit results to their originators and we have tried to present the 
material in a well-marshalled and readable manner without the clutter of 
numerous references. 

The advantage of the combined efforts of a British and an American 
author is that the book is designed to satisfy a variety of courses on both 
sides of the Atlantic. For example, Chapter 1 may be used as an advanced 
under-graduate course on ordered sets and lattice theory; Chapters 1 and 
2 as a one-semester post-graduate course on lattice theory; and the whole 
text as an M.Sc. course on lattices and residuated semigroups. We have 
included a large number of illustrative examples and exercises. The exer-
cises are of varying degrees of difficulty, some serving to provide examples 
and counter-examples to supplement the text, some being designed to help 
the student gain intuition and some to extend the text material. 

We assume that the reader has most of his under-graduate training 
behind him, so that he has a good grounding in abstract algebra; for 
example, we shall feel free to assume that the reader knows what is meant 
by a ring, an ideal of a ring, etc. We shall also assume that he is familiar 
with Zorn's axiom. Some knowledge of general topology will be helpful 
for some of the examples, but not essential for understanding the book. 
Though no prior knowledge of lattice theory is expected, the reader might 
find it helpful on occasion to consult a standard elementary text on the 
subject, for there will be times when we simply will not be able to delve 
as deeply as we would like into a given branch of the subject. 

We have organized the text by dividing it into three chapters, the first 
of which contains an introduction to residuated mappings and lattice 
theory. This chapter has been specifically written with an advanced 
undergraduate course in mind and contains all of the elementary material 
which is required later. In Chapter 2 we deal with the concept of a Baer 
semigroup and employ residuated mappings to show how these semi-
groups may be used to study lattices. In so doing, we incorporate some 
of the important work of D. J.Foulis [13] and S.S.Holland, Jr. [15] on 
orthomodular lattices. Finally, in Chapter 3, we use the notion of a 
residuated mapping as a basis for a discussion of residuated semigroups. 
In particular, we show how a certain residuated semigroup plays a funda-
mental rôle in the study of homomorphic images of ordered semigroups, 
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a starting point of which is a result of A. Bigard [4]. Whenever possible, 
we have phrased our results in terms of residuated mappings; for this 
reason, even one well versed in lattice theory would find here a fresh 
approach to the subject. 

By far the majority of the results given here appear for the first time 
in book form and indeed some of them are only just seeing the lightf of 
day. Most of the material in Chapters 2 and 3 has been developed in the 
last decade; we hope that it may serve to inspire further research. 

Our grateful thanks are due to Professors E.A.Schreiner and G.D. 
Crown for their valuable criticisms of the manuscript and to Dr T. P. 
Speed for his assistance in the proof-reading. Finally we would express 
our admiration at the ease with which the printers undertook a difficult 
task. 

T.S.B.;M.F.J. 



CHAPTER 1 

FOUNDATIONS 

1. Ordered sets 

Let E be a set and let R be a binary relation between elements of E. 
Of the properties which R may enjoy, the most commonly encountered in 
mathematics are the following: R is said to be 

(a) reflexive if (Vx e E) xRx; 
(b) transitive if (xRy and }>lte) => xRz; 
(c) antisymmetric if (xRy and ;yito;) => x = y; 
(d) symmetric if xity => j i ta . 

A relation i£ which satisfies (a), (b) and (d) on 2? is called an equivalence 
relation on E, as the reader will undoubtedly be aware. Although we shall 
meet with many equivalence relations in the pages which follow, we shall 
be concerned primarily with relations which satisfy the properties (a), (b), 
(c). A relation which satisfies these three properties on E will be called an 
order relation on E or simply an ordering on E. By an ordered set we shall 
mean a set E together with an ordering on it. We shall usually denote an 
ordering by the symbol < so that the properties (a), (b), (c) become 

(a) (\/xeE)x < x; 
(b) (x < y and y < z) => x < z; 
(c) (x < y and y < x) => x = y. 

Upon occasions, however, we shall find it convenient to use a variation of 
this symbol. 

EXAMPLE 1.1. The only binary relation on a set E which is both an 
equivalence relation and an ordering on E is the relation of equality. 

EXAMPLE 1.2. The set R of real numbers is an ordered set, < having 

1 



2 RESIDUATION THEORY 

its usual meaning. For each subset A of R we shall use the notation 
A+ = {x e A; x > 0}. 

EXAMPLE 1.3. The set P(E) of all subsets of a set E is an ordered set 
under the relation £ of set inclusion. 

EXAMPLE 1.4. The set Z+ of positive integers is an ordered set under 
the definition m =̂  n o m is a factor of n. 

EXAMPLE 1.5. Let E, F be sets with F ordered. The set Map (E,F) 
of all mappings of E into F is ordered under the definition 

f<goQ/xeE) f(x)<g(x). 

EXAMPLE 1.6. If El9...9En are ordered sets, then so also is their 
n 

Cartesian product X Et under the definition 

( x 1 , . . . , x n ) < ( j 1 , . . . , j n ) o ( / = l,...,w) Xi <yt. 

More generally, if (E(X)(XeA is a family of ordered sets then X Ea is an 
<xeA 

ordered set with respect to the ordering specified in Example 1.5: 

We shall say that a set E is totally ordered (or forms a cAtfm) if it is 
ordered in such a way that for any given elements x, y e E we have 
x < y or y < x. The ordered set of Example 1.2 is totally ordered. If we 
define , Λ , \ 

x < yo(x < y and x Φ y), 
then a totally ordered set may be described as an ordered set in which any 
two distinct elements x, y satisfy either x < y or y < x. It should be 
noted, however, that the relation < as defined above is not an ordering 
for it does not satisfy (a). Also, the relations x $ y and y < x are 
equivalent only in the case of a totally ordered set and not in the general 
case of an ordered set. 

We say that two elements x, y of an ordered set E are comparable if 
x < y or y < x and denote this symbolically by writing xj/fy. If, on the 
other hand, neither x < y nor y < x holds, then we say that x, y are 
incomparable and write x \\ y. If-Eis an ordered set and F is a non-empty 
subset of E, then we shall say that F is totally unordered if ths elements of 
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F are pairwise incomparable. This is equivalent to saying that in F we 
have x < yox = y;in other words, the restriction to F of < is equality. 

EXAMPLE 1.7. Consider the set E = {a, b, c}. In the ordered set P(E) 
the subset J — {{a}, {b}9 {c}} is totally unordered as is the subset 
K={{a,b},{a,c},{b,c}}. 

Let R be a binary relation on a set E and let R* denote its converse, 
i.e. R* is given by xR*y o yRx. It is readily seen that if R is an ordering on 
E, then so also is R*. We denote the converse of < by > and the converse 
of < by > . 

Many ordered sets can be conveniently represented by means of Hasse 
diagrams. In such a diagram we represent x < y by 

/■ 

ox 

i.e. we join the point representing x to that representing y by an increasing 
line segment. In drawing Hasse diagrams we shall agree not to include any 
superfluous line segments which arise through the transitivity of <. This 
principle is illustrated in the following example. 

EXAMPLE 1.8. Let E be the set of all positive factors of 12. If we 
order E according to Example 1.2 we obtain a chain. If we order E ac-
cording to Example 1.4, the corresponding Hasse diagram is 

12 

o 
1 

Note that in the above diagram we have not joined 2 and 12 by a direct 
line segment; for 2 < 6 and 6 < 12 imply that 2 < 12 by transitivity, so 
such a line is superfluous. 
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By the dual of a Hasse diagram we mean the Hasse diagram associated 
with the converse ordering. It is clear that to obtain the dual diagram all 
we have to do is to turn the original upside down. By the dual of an 
ordered set we shall mean the same set equipped with the converse order. 
When we the need arises, we shall use the notation P* to denote the dual 
of the ordered set P. 

EXERCISES 

1.1. Prove that every finite ordered set has a Hasse diagram. 
1.2. Let E be the set of factors of 120, ordered by divisibility. Draw the Hasse dia-

gram for E. 

1.3. Draw the Hasse diagrams for all possible orderings on a set consisting of (a) 3, 
(b) 4, (c) 5 elements. 

1.4. Let (Ρχ, <i) , (P2, <2) be ordered sets. Show that the relation < defined on 
P1xP2by 

(xi, x2) < 0>i, y2) o (*i ^ 1 J>i and x2 < 2 ^2) 
is an ordering. Show also that < is a total ordering if and only if < 1 and < 2 are total 
orderings and Pi or P2 consists of a single element. 

1.5. Let (Ρχ, <i ) , (P2, <2) be ordered sets. Prove that the relation < defined on 
P i x P 2 b y 

(xi,x2)<(yuy2)~[Qithct * < ι Λ
 A ^ 

lor xi = yi and *2 ^2^2 
is an ordering. This is known as the lexicographic ordering on Px x P 2 . Show that < is 
a total ordering if and only if < i and < 2 are total orderings. 

1.6. Let Px and P2 be the ordered sets with respective Hasse diagrams 
O 

1 
o o ,/\ 0 

Draw the Hasse diagrams for Px xP2 and Ρ2χΡχ when ordered as in Examples 1.4 
and 1.5. 

1.7. Let (Pi, < i ) and (P2, <2) be disjoint ordered sets. Show that each of the 
following defines an ordering on P = Pi u P2: 

(a) x < yox <ij> or x<2y; 
(b) x < y o x < ! y, x < 2 y or χεΡχ and yeP2. 
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2. Mappings between ordered sets; residuated mappings 

Let P be an ordered set. By an {order) ideal of P we shall mean any non-
empty subset / of P satisfying the property 

(xel and y<x)=>yel. 

By a principal ideal of P we shall mean any ideal of the form 
[*->*] = {yeP;y < x}. 

We define the dual notions of an (order) filter of P to be any non-empty 
subset J having the property 

(x 6 J and y > x)=> y e «/, 
and a principal filter of P to be any filter of the form 

[>,-►] = { J G ? ; J > * } . 
If P, Q are ordered sets and/ : P -* ß is any mapping, then for each 

non-empty subset R of Q we define the pre-image ofR under f to be the 
subset of P given by 

f*-(R) = {xeP;f(x)eR}. 

Our first result shows how the above notions can be used to character-
ize an important type of mapping between ordered sets. 

THEOREM 2.1. If A, B are ordered sets andf: A-> B is any mapping, 
the following conditions are equivalent: 

(l)x<y~f(x)<f(y); 
(2) the pre-image of every principal ideal of B is either empty or is an 

ideal of A; 
(3) the pre-image of every principal filter of B is either empty or is a 

filter of A. 

Proof Note that we use the same symbol < to denote the ordering in 
both A and B; no confusion will arise since the context will always make 
it clear to which set we are referring. We shall show that (1) o (2) ; a dual 
argument will clearly yield (1) <=> (3). Suppose then that/satisfies (1) and 
let x e B be such tha t / " [<-, x] φ 0 (where we write/*" [«-, x] in place 
of/*" ([<-, x])). Then if y ef*~ [<-, x] and z < j w e have, by (1), f(z) 
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< f{y) < x so that z ef*~ [<-, x]. This shows that (1) => (2). Suppose, 
conversely, that/satisfies (2). For each y e A we have trivially/(y) < f(y) 
and so y ef" [<-,/(y)]. Since, by (2), / - [*-,/G0] is an ideal of A9 it 
follows that 

x <y=>xef<~ [<-,/G0] =>/(*) </(y). 

We shall say that/: A-* Bis isotone if and only if it satisfies any of the 
mutually equivalent conditions of Theorem 2.1. We shall make frequent 
use of the fact that if / g, h : A -» B are mappings with g < h then 
g of < h o/and, if / i s isotone,/o g <foh. There is, of course, a dual 
result which characterizes mappings which are antifone, namely: 

THEOREM 2.1*. If A, B are ordered sets andf: A-> B is any mapping, 
the following conditions are equivalent: 

(l)x<y=>f(x)>f(y); 
(2) the pre-image of every principal ideal of B is either empty or is a 

filter of A; 
(3) the pre-image of every principal filter of B is either empty or is an 

ideal of A. 

Suppose now that / : A ~> B is an isotone bijection. In general, the 
inverse map/""1 is not necessarily isotone. For example, consider the 
ordered sets A = {x, y, z] and B = {oc, β, γ} with Hasse diagrams 

v r. 
and consider the mapping/: A -► B given byf(x) = ß,f(y) = oc,f(z) = γ. 
Clearly / is an isotone bijection ; but / " * is not isotone, for β < γ and 
-*(/?) = * ! ! * = / - ' ( y ) . 

We shall say that the ordered sets A, B are {prder-)isomorphic if and 
only if there is an isotone bijection/: A-* B such that /"1 is isotone. It 
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follows from this that A, B are order-isomorphic if and only if there is a 
surjection/: A-+ B such that x < y of{x) < f(y). In a similar way, we 
say that the ordered sets A,B are dually(order-)isomorphic if and only if 
there is a bijection/: A -> B such that b o t h / a n d / " 1 are antitone, i.e. if 
and only if there is a surjection/: A -* B such that x < yof(x) >f(y). 
Ordered sets which are dually isomorphic to themselves are said to be 
self-dual. 

Consider now the following problem: given the diagram of ordered 
sets and mappings 

A ? ^ C 

B 

we wish to determine under what conditions there exists an isotone map-
ping h: B-> C such that h of > g [resp. h of < g]. Though the next 
theorem does not solve the problem, it does provide some useful infor-
mation. 

THEOREM 2.2. Let A, B, C be ordered sets with mappings f: A-+ B and 
g: A -> C. Ifh:B^ C is isotone, the following are equivalent: 

(l)hof>g; 

(2) (V* € B) r [«-,*] S g~ [<-, Kx)] ■ 

Likewise, the following are equivalent: 

O)hof<g; 

(4) (V* e B) f- [x, - ] S g~ [*(*), - ] . 

Proof (1) => (2): If/"" [<-, x] = 0 there is nothing to prove; and i 
/*" [<-, x] # 0 then for each j> e / 4" [<-, x] we have /00 ^ * so that, h 
being isotone, g(y) < (h of) (y) = h [f(y)] < h(x) whence y eg*" [«-, h(x)]. 

(2) => (1) : For each ye Awe have y e / - [+-,f(y)] £ g - [<-, Λ (f(y))] 
and so g(y) < h [f(y)] whence g < h of as required. 

The equivalence of (3) and (4) is proved similarly. 
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We shall now consider the associated problem in which all the arrows 
are reversed, namely given the diagram of ordered sets and mappings 

9 

B 

to determine under what conditions there exists a mapping h : C -> B such 
t h a t / o h < g [resp./o h > g]. Note that in this case we do not require h 
to be isotone. 

THEOREM 2.3. If A, B, C are ordered sets with mappings f: B -> A and 
g: C -» A then the following conditions are equivalent: 

(1) there exists h: C-+ Bsuch thatfoh < g; 

(2)(V*6C)/«-[«-,*(*)] # 0 . 
Likewise, the following conditions are equivalent: 

(3) there exists h: C-> Bsuch thatf oh > g; 

(4) (Vx e C ) / - [ £ ( * ) , - + ] # 0 . 

Proof Again we show that (1) <=> (2), the proof of (3) o (4) being 
similar. Suppose that (1) holds. Then from Qfxe C)f[h(x)] < g(x) it 
follows that (Vx e C) h(x) e/*" [<-, g(x)] whence (2) holds. Conversely, if 
(2) holds then we can define a mapping h: C-> B by associating with 
each xeCa chosen element h(x) ef*~ [<-, g(x)]. Clearly we have (V* e C) 
(f° h) (x) = f[Kx)i ^ g(x)> from which (1) follows. 

In what follows we shall denote by id£ the identity map on a set E. 

COROLLARY. Iff: A-* B is isotone then the following conditions are 
equivalent: 

(1) there exists h:B-* A such thatfo h < idB; 
(2) for each principal ideal [<-, x] ofB,f*~ [<-, x] is an ideal of A. 

Likewise, the following conditions are equivalent: 
(3) there exists h: B-* A such thatfo h > idB; 
(4) for each principal filter [x, -*] ofB,f*~ [x, ->] is a filter of A. 
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Proof. That (1) and (2) are equivalent follows by applying Theorem2.3, 
in the light of Theorem 2.1, to the diagram 

B id 
v« B 

\ 
A 

A similar proof establishes the equivalence of (3) and (4). 
We shall say that/ : A -> B is quasi-residuated iï it is isotone and satis-

fies either of the equivalent conditions (1), (2) of the above corollary. A 
more useful characterization of a quasi-residuated mapping is the follow-
ing: a mapping f: A-^ Bis quasi-residuated if and only if it is isotone and 
such that (Vy e B) {x eA;f(x) < y} Φ 0 . In fact this latter condition is 
equivalent to saying that (Vy e B)f^ [<-, y] Φ 0 . The result is therefore 
immediate from Theorem 2.3. 

We say that / : A -► B is dually quasi-residuated if it is isotone and 
satisfies either of the equivalent conditions (3), (4) of the above corollary. 
A particularly important type of dually quasi-residuated mapping which 
plays a prominent rôle in the theory of ordered algebraic structures is 
known as a closure mapping. By a closure mapping on an ordered set A 
we mean an isotone mapping/: A-* A such tha t / = / o / > idx. In a 
dual manner we define a dual closure mapping on A to be an isotone map-
ping/: A-+ A such that / = fof < idA [note:/is isotone in each case], 
A dual closure mappingis clearly aparticulartypeofquasi-residuatedmap-
ping. As our next result shows, these mappings also admit characteriza-
tions in terms of pre-images of principal ideals and filters. 

THEOREM 2.4. If A is an ordered set andf: A-* A is any mapping, the 
following conditions are equivalent: 

{l) fis a dual closure mapping; 
(2) <V* e A)f~ [«-, x] = r [<-,/(*)]· 

Likewise, the following conditions are equivalent: 

(3) fis a closure mapping; 
(4) (V* e A) f- [x, - ] = r [fix), - ] · 
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Proof. We prove that (1)<*>(2); the proof of ( 3 ) o ( 4 ) is similar. 
Suppose that (1) holds. It is evident that, for each xeA,xef*~ [«-, fix)] 
Ç. /"*[<-, x]. Moreover, 

y εΓ [<-, χ] =>/(y) < χ =>f(y) < fix) => y *r [<-,/(*)], 
which yields (2). Conversely, if (2) holds then we have 

(v* e A) r [<-, x] = r i+-,f(x)] = r \*-jv<m. 
Now x is an element of the second of these sets. It therefore belongs to the 
other two and so 

Q/xeA) f(x)<x and /(*) < (fof) (*), 
giving/ < idA a n d / < fof N o w / i s isotone; for 

j < x =>/ÙO < y < x => j e / - [<-, x] = / - [<r-, f(x)] =>f(y) < fix). 

We therefore deduce f r o m / < id^ t h a t / o / < / Collecting the above 
results, we see tha t / i s an isotone map which is such t h a t / = / of < id^, 
i.e. is a dual closure mapping. 

Our next result characterizes mappings of paramount importance in 
our future discussion. 

THEOREM 2.5. Letf: A-^Bbea mapping between the ordered sets A, B. 
The following conditions on fare equivalent: 

il) fis isotone and there exists an isotone mapping h: B -> A such that 
h of > idA andf oh < idB; 

i2)for each principal ideal [<-, x] of B, /*" [«-, x] is a principal ideal 
of A. 

Proof Suppose that (1) holds. Then, applying Theorem 2.2 and the 
corollary to Theorem 2.3, we have 

(VJC eB) 0cf~ [4-, x] s [<-, h(x)]. 

But if j e [ < - , h(x)], then y < h(x), and so we h a v e / ( j ) </[/*(*)] 
= if° h) ix) < idB{x) = x whence y ef*~ [<-, x]. Consequently, 

Q/xeB) 0 c / - [ < - , x] = [«-, h(x)]. 

This establishes (2). Conversely, suppose that (2) holds, i.e. that 

(yxeB)(3yeA) 0 < = / - [ - , * ] = [ « - , ^ . 
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It follows by Theorem 2.1 that / i s isotone. Moreover, the element y 
defined above is clearly unique for each x e B so we can define a mapping 
A : B -> A by setting h(x) = y. For this mapping A we have 

QfxeB) (foh)(x)=f[h(x)] <x, 

since h(x) e [«-, h(x)] = f*~ [<-, x]; and 
ÇizeA) (hof)(z) = h[f(z)]>z, 

since z ef+~ [<-,/(*)] = [<-, A (f(z))]. This establishes (1). 
We shall say that a mapping/: 4̂ -> 2? is residuateci if and only if it 

satisfies either of the equivalent conditions of Theorem 2.5; and dually 
residuated if it satisfies the dual theorem. 

Let us note that if/: A -* Bis residuated then the mapping h: B-* A 
satisfying A of > idA and / o A < idB is unique. In fact, if A, A* satisfy 
these properties, then 

h = idAoh < (Â*o/)oA = A*o(/oÂ) < A*oidB = A*, 
and in a similar way A* < A whence we have A = A*. We denote this 
unique mapping b y / + and call it the residual of/ It is clear from the 
proof of Theorem 2.5 that a mapping/: A -> B is residuated if and only 
if for each yeB the set {xeA;f(x) < y] is not empty and admits a 
greatest element. Moreover, when it exists, the residual/"1" of/is given by 

QfyeB) f+(y) = max {xeA;f(x) < y). 

Remark. Let us pause to note that when/: A -> B is residuated,/and 
its residual / + are related by the inequalities/"1" o / > idA a n d / o / + 

< idB. Until he becomes familiar with these inequalities, the reader 
should take care not to confuse them. It is also important to notice that 
if one regards//"1" as mappings between A* and 2?*, then/+ : B* -> A* is 
residuated with/as its associated residual map. 

At this point the reader may well ask just what there is about residuated 
mappings that makes then so important. As we shall soon see, the 
residuated mappings on a bounded ordered set E form a semigroup with 
a zero and an identity. What is more important, however, is that many 
important properties which E may enjoy can be characterized naturally in 
this semigroup. Residuated mappings crop up in a variety of situations. 



12 RESIDUATION THEORY 

Whilst we shall discuss this in some detail later, we mention here a few 
examples to whet the reader's appetite : 

1. There is a bijection between the binary relations on a set E and the 
residuated mappings on the power set of E. 

2. Every linear transformation fon a vector space F induces a residu-
ated mapping on the lattice of subspaces of V, namely the mapping 
M -> {f(m); m e M}. 

3. Every bounded linear opera tor /on a Hilbert space H induces a 
residuated mapping on the lattice of closed subspaces of H, namely the 
mapping M -> {/(m); m e M } 1 1 . 

4. If A is a commutative ring with an identity element then, in the 
ordered semigroup of ideals of A, multiplication by a fixed ideal is a 
residuated mapping. 

5. If X is a TVtopological space and if R is a binary relation on X 
which is continuous in the sense that 

A open => {xeX; (3y e A) xRy} open 

then R induces a residuated mapping on the lattice L(X) of closed subsets 
of X and every residuated mapping on L(X) arises in this manner. 

For the remainder of this section we shall look at some elementary 
properties of residuated mappings. 

THEOREM 2.6. If A, Bare ordered sets andf: A·^ B is residuated, then 

( l ) / ° / + ° / = / and f+ofof*=f\-
(2) the following conditions are equivalent: 

(a) /+ o / = idA; 
(b)fis injective; 
(c) / + is surjective; 
(d) if C is any set andg,h:C-+A are any mappings then 

fog =f°h=>g = h; 

(3) the following conditions are equivalent: 

(oc) for = idB; 
(ß) f is surjective ; 
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(ï)f+ w injective; 
(ô) if C is any set and g,h:B-+ C are any mappings then 

gof= h °f=>g = h. 

Proof Since / is isotone and / + o / > idA, f°f+ < idB, we have 
fof+ of > / o id4 = / a n d / o / + of < idB of = f This yields the first 
equality of (1), the second being proved similarly. To prove (2), we show 
that (a) o (c) and that (a) => (b) => (d) => (a). It is clear that (a) => (c); 
conversely, if (c) holds then for each x e A there exists y e B such that 
f+(y) = χ s o that, using (1), 

* =/+ω = σ+ °/°/+) (y) = (/+ °/) irm = (/+ °/) w, 
whence (a) holds. If now (a) holds then 

fix) =f(y)=>* =Γ [/(*)] = / + [f(y)] = y, 

so that (b) holds. If (b) holds then 

fog=foh^(VxeC) f[g(x)]=f[h(x)] 

=>(V*eC) g(x) = h(x) 

=>g = A, 

whence (d) holds. Finally, if (d) holds then from the equality fof+ of 
= / = / o id,4 we deduce that /+ of = id4 which is (a). The proof of (3) 
is dual to that of (2). 

Using the previous result we can give the following characterization of 
closure mappings modulo residuated mappings. 

THEOREM 2.7. If A is an ordered set thenf: A ^ Ais a closure mapping 
if and only if there is an ordered set B and a residuated mapping g: A-* B 
such thatf = g+ o g. 

Proof Suppose first that g : A -*· B is residuated. Then, on the one 
hand, g+ og > idA; and, on the other, by Theorem 2.6, g = g og+ og 
so that g+ og = (g+ og) o(g+ og). Thus g+ og is a closure mapping, 
for being the composition of two isotone mappings it is also isotone. 

Conversely, suppose that A is an ordered set with/: A-* A a closure 



14 RESIDUATION THEORY 

mapping. Let F be the equivalence relation associated with/, i.e. x = y(F) 
of(x) = f(y). Define the relation ^ on A\F by 

xlF^ylFof(x)<f(y). 

It is readily seen that =̂  is an ordering and, since/is isotone, the canonical 
surjection kF : A -> A\F is isotone. Now each equivalence class modulo F 
has a greatest element, the greatest element in the class of x modulo F 
being the element/(x). We can therefore define a mapping g : AjF -> A 
by setting g (x/F) = f(x). We then have 

((g o *p) (*) = *[ W*)] = s (*/f) = /(*) * *; 
l( *F o *) (*/f) = *F [/(*)] = [/(x)]/F = xlF, 

from which it follows that bF is residuated with g = fc|F and that 
/ = n; o^F. 

Remark. In the above proof we were concerned with an equivalence 
relation which was the equivalence associated with an isotone mapping. 
We shall be taking a very close look at such relations later. 

THEOREM 2.8. Let A, B9 C be ordered sets and let f:A-+B and 
g: B -+ C be residuated mappings. Then g of is residuated with (g o/) + 

Proof. Clearly g of and / + o g+ are isotone. Moreover the iso-
tonicity offg together with the relations/"1" o / > idAifof+ < idß, 
g+ o g > iàB, g o g+ < idc yields 

ί ( / + o g + ) o ( g o / ) > / + o i d B o / = = / + o / > id^; 

\(g °f) ° (/+ °g+) < g°idBog+ = g og+ < idc, 
from which we deduce, using the uniqueness of residuals, that (g o/)+ 

exists and is none other than/+ og+. 

THEOREM 2.9. If A is an ordered set andf: A->Aisa residuated map-
ping, then 

(1) (Vn,peZ+)f> = /*+-<>(/+)» = (/+)»+·; 
(2)f<idAof+ >idA; 
(3)f>idAof+ <idA. 



FOUNDATIONS 15 

Proof. (1) We use the notation/17 to d e n o t e / o / o · · · of (p factors). 
The result is in fact immediate on remarking that (f+)p is the residual of/p 

[to prove this, use Theorem 2.8 and induction] and that (f+)p+n is the 
residual of/*+n. (2) Iff < id^ then id^ <f+of<f+o id^ = / + . (3) is 
proved similarly to (2). 

THEOREM 2.10. If A is an ordered set andf: A-* A is residuated then 
the following conditions are equivalent: 

(a) fis a closure mapping; 
(b)f+ is a dual closure mapping; 
( c ) / = / + ° / ; 
(d) /+ = / o / + . 

Likewise, the following conditions are equivalent: 

(oc) fis a dual closure mapping; 

(ß)f+ is a closure mapping; 
Cy)/ = / o / + ; 
(δ)Γ =f+of 
Proof That (a) and (b) are equivalent follows from Theorem 2.9, for 

/ = / o / > idx if and only i f / + = / + o / + < id4 . To establish the 
equivalence of (a), (b), (c), (d) we shall show that (a) => (c) => (d) => (b). 
Suppose that (a) holds; then (c) follows from the inequalities 

(f+-f = f+ofof>idAof = f; 

\f = f°f+ °f> i<U o/+ of = f+ of. 
If now (c) holds then from/ = / + o/we deduce t h a t / o / + = / + 0 / 0 / + 
= / + which is (d). Finally, if (d) holds, t h e n / + o/+ = / o / + 0 / 0 / + 
= / c / + = / + a n d / + = / o / + < id^, and hence (b) holds. The equi-
valence of (oc), (β), (γ), (ô) is proved similarly. 

The final result we shall prove in this section is a simple consequence of 
what has gone before. However, we require some additional terminology 
before formulating it. 

Definition. By an ordered semigroup we shall mean a semigroup S on 
which there is defined an ordering < in such a way that for each xe S 
the translationsΛ^,ρ* given by the prescriptionsλχ(γ) — xy and Qx(y) = yx 
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are isotone [in other words, S satisfies the property that y < z => (Vx e S) 
xy < xz and yx < zx], 

EXAMPLE 2.1. ( R , + ) , (R+ 5 · ) are ordered semigroups under the 
usual ordering. 

EXAMPLE 2.2. For any set E, (P(E), n ) and (Ρ(£), u ) are ordered 
semigroups under set inclusion. 

EXAMPLE 2.3. For any ordered set E, the semigroup formed by the 
isotone mappings / : E -> E is an ordered semigroup when ordered as 
in Example 1.5. 

EXAMPLE 2.4. Let R be a commutative ring and let I(R) denote its set 
of ideals. Define a multiplication on I(R) by letting ab be the set ( = ideal) 

n 

of elements of R which can be expressed in the form £ #A> where 

ai e a and bt e b. With respect to this multiplication and set inclusion, 
I(R) forms an ordered semigroup. 

Definition. Let A, B be ordered semigroups. We say that A, B are iso-
morphic if and only if there is a semigroup homomorphism f:A-*B 
which is an order isomorphism. We say that A, B are anti-isomorphic if 
and only if there is a semigroup anti-homomorphism/: A -» B (i.e. for all 
x,ye A,f(xy) = f(y)f(x))9 which is a dual order isomorphism. 

THEOREM 2.11. If E is an ordered set then the set Res (E) of residuated 
mappings f:E -> E forms an ordered semigroup and the set of their residuals 
forms an ordered semigroup Res+ (E). Moreover, Res (E) andRes* (E) are 
an ti-isomorphic. 

Proof It is clear from Theorem 2.8 that Res (is) and Res+ (E) form 
semigroups under composition of mappings. Moreover, these semigroups 
are ordered semigroups (under the ordering defined in Example 1.5) since 
all the mappings in question are isotone. Since f < gofog+ < id£ 

og+ <f+, it then follows from Theorem 2.8 and the uniqueness of 
residuals that the mapping ( + ) : Res(iT)-* Res+ (JE) described by 
( + ) ( / ) ~f+ establishes an anti-isomorphism between Res (is) and 
Res+ CE). 

The following example is instructive. 
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EXAMPLE 2.5. Consider the set E = {1, 2, 3} ordered in the usual way. 
There are ten isotone mappings from E to itself, namely : 

0o 
01 

02 

03 

04 

05 

06 

07 

08 

09 

= id£; 
1 - 2 , 
i - » i , 
1 - 1 , 
1 - 2 , 
1 - 1 , 

■ l - i , 

1 - 3 , 
1 - 2 , 
1 - 1 , 

2 - 3 , 
2 - 3 , 
2 - 2 , 
2 - 2 , 
2 - 1 , 
2 - 1 , 
2 - 3 , 
2 - 2 , 
2 - 1 , 

3 - 3 ; 
3 - 3 ; 
3 - 2 ; 
3 - 3 , 
3 - 3 , 
3 - 2 
3 - 3 . 
3 - 2 , 
3 - 1 . 

Of these isotone mappings, those which are residuated are 
oc0 = id£; oc1 = 02; oc2 = θ3; oc3 = 05; #4 = 06; oc5 = 09, 

their residuals being respectively 
ßo = id£; ßx = 05; ß2 = 02; /?3 = 04; ft. = ßi\ ßs = 07· 

The respective semigroups are given by the following Cayley tables which 
exhibit the anti-isomorphism: 

ßo 

ßl 

ßl 

ßs 

ß* 
ßs 

ßo ßi ßi ßs ß* ßs 

ßo ßi ßi ßs ß* ßs 

ßl ßl ßl ßl ßl ßs 

ßi ßi ßi ßs ßs ßs 

ßs ßs ß* ßs ß* ßs 

ß* ßs ß* ßs ßs ßs 

ßs ßs ßs ßs ßs ßs 

oc0 

* 1 

oc2 

oc3 

0C4 

<xs 

a0 

oc0 

"1 

a2 

0C3 

OC4. 

*5 

« 1 

" l 

« 1 

a2 

« 1 

ÖC2 

0C5 

0C2 (X3 OC4, 0C$ 

0C2 (X3 OC4 0C5 

0C1 0C3 (X3 0CS 

0C2 OC4 OC4 0C5 

0C5 0C3 0C5 0C5 

0CS (XA 0C5 (Xs 

ÖC5 0C5 0C5 (XS 

Remark. This example shows in particular that Res (E) u Res+ (E) 
is not in general a semigroup; for example, oc2oß4 = 0B£Res(2T) 
u Res+ (£). 
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EXERCISES 

2.1. Let E, F be sets. For any mapping/: E-+ F define the associated mappings 
Γ : P(£)-> P(F) andf- : P(F)-> P(£) as follows 

(VZG P(E)) Γ(Χ) =lyeF',(3xeX)y= f(x)}; 
(VyeP(F)) / i y ) = U e £ ; / W e y ) . 

Prove tha t /^ is residuated and that (/~*)+ = /*". 
2.2. Let N denote the set of non-negative integers, ordered in the usual way. 

Let m e N (m φ 0) and define/„ : N -* N by the prescription 
(ViieN) fm(n) = mn. 

Prove that/„ is residuated and determine/^. 
2.3. Let E be any set. For each subset A of E show that the mapping tA : P(E) 

-*· P(£) given by 
(VXeP(£)) tA{X) = A nX 

is a residuated dual closure map on P(E) and determine tA . 
2.4. Let S be a semigroup with a zero element 0. Let P0(S) be the set of all subsets 

of S which contain 0, ordered by set inclusion. For each A e P0(S) define the mappings 
K, QA · Po(S) -* P0(S) by setting λΛ(Χ) = AX = {ax; a G A, xeX} and ρΑ(Χ) = XA 
= {xa;aeAtxeX}. Prove that Λ ,̂ ρΑ are residuated and determine λΑ,ρΑ, 

2.5. With reference to Example 2.4, draw a conclusion analogous to that of 
Exercise 2.4. 

2.6. If E is an ordered set and f: E-* E is residuated, prove that the following 
conditions are equivalent: ( a ) / = / + ; (b)/° / = id£; (c)/+ ° / + = id£. 

2.7. Let 2s be an ordered set and let The the semigroup of isotone maps on E. For 
each subset S of T let <5> denote the subsemigroup generated by S; i.e., the set of all 
isotone mappings of the form/i ° f2° · · · ° f„9 where each/; e 5. Iff: E-+ Eis residu-
ated, prove that the following conditions are equivalent: 

( a ) / V / + and <{/,/+}>= {/,/+}; 
(b)/is either a closure mapping or a dual closure mapping but not both. 
2.8. Given ordered sets E, F and antitone mappings / : E-* F, g: F-+ E we say 

that the pair (/, g) establishes a Galois connection between E and F if and only if f° g 
> idF and g° f> id£. Prove that if the antitone mappings/: E-* F9 g : F-* E set up 
a Galois connection between E and F, then/is a residuated mapping from E-+ F* and 
a dually residuated mapping from E* -> F. Show that an antitone mapping / : E-+ F 
admits a Galois connection with at most one antitone mapping g: F-+ E and that, 
when such an occasion arises, 

( a ) / = / ° ^ ° / and g = g°f°g; 
(b)lyeF;y = (f°g)(y)} = Im/; 
(c) [xeE;x = (g°f){x)} = lmg; 
(d)the restriction o f / t o Im# is a dual isomorphism of Im# onto I m / whose 

inverse is the restriction of g to I m / 
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Remark. The reason for our emphasis on residuated mappings rather than Galois 
connections can be found in Theorem 2.8: two residuated mappings may be composed 
to yield a new residuated mapping; this is not the case with antitone mappings. 

2.9. Let K, M be fields with K a subfield of M. Let GK be the group consisting of all 
those automorphisms/on M which are such that (V* e K)f(x) = x. Let [K9 M] denote 
the set of subfields contained between K and M and let L(GK) be the set of subgroups of 
GK. Order [K, M] and L(GK) by set inclusion. Define/: [K, M] -> L(GK) by f(N) = GN 

and g : L(GK) -» [AT, M] by g(H) = {xe M; (VA e H) h(x) = x}. Show that the pair 
(A g) establishes a Galois connection between [K, M] and L(GK). 

2.10. Let A be an ordered set and let 1(A) be the set of ideals of A, ordered by set 
inclusion. Let/ : A -* A be quasi-residuated. Extend/to a mapping/"* : 1(A) -> 704) by 
the prescription f~*(I) = {y e A ; (3x e I) y < /(*)}. Similarly, define /*"(/) = U e A; 
f(x) 6 / } . Show tha t /^ is residuated with (/"*)+ = /«". 

2.11. Let X be a non-empty set, let E be a collection of subsets of bordered by set 
inclusion and let/ : Jf-> Zbe such that for each AeEthe set of elements of E contain-
ing/"* 04) is not empty and contains a smallest element denoted by EA. Show that iff/ 
is defined by setting £f(A) = EA for each ^ e E then Çf is residuated if and only if 
f*~(A) = {xe X;f(x) e A] contains a largest element of E. [Hint. If ξτ is residuated, 
note that for each A e E we have (Γ ° f/+) W) £ (f/ o f/) W) S ^ and | / U ) e E. If 
5 e £ and B s /*-(Λ), then ^(J?) ç ^ a n d 5 ç l / U ) . Thus |/(v4) is the largest ele-
ment of E contained in f*~(A). To obtain the converse, show that the mapping which 
sends A to the largest element of E contained in f^(A) is effective as the residual map-
ping associated with ξ/.] Remark. Note that the following are particular cases of this 
example: (a) Exercises 2.1,2.4 and 2.9; (b) Xany/L-module, .Etne set oM-submodules 
of X and / any yl-endomorphism. 

2.12. Let E be an ordered set having a smallest element 0 (i.e. 0 < x for all x e E). 
Show that an isotone mapping/: E-^ E is quasi-residuated if and only if/(0) = 0. 

2.13. Let E= {1,2,3,...,/?} under the natural order. Prove that an isotone 
mapping/: E-+ E is residuated if and only if/(l) = 1. 

/ s 
2.14. Given the diagram A —► B—> C of ordered sets and isotone mappings in 

which / a n d ^ ° / a r e residuated, show that g is quasi-residuated but not in general 
residuated. 

3. Directed sets; semilattices 

If E is any ordered set and x is any element of E, it is clear that the 
canonical injection of [<-,x] into E is an isotone mapping. If we insist 
that each such injection be quasi-residuated or residuated, this has 
important consequences as far as the structure of E is concerned. 
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THEOREM 3.1. If E is an ordered set, the following are equivalent: 

(1) for each xe E the canonical injection of [<-, x] into E is quasi-
residuated; 

(2) the set intersection of any two principal ideals of E is not empty 
(and hence is an ideal of E); 

(3) the set intersection of any two ideals of E is an ideal of E. 

Proof Let ix : [<-, x] -> E be the canonical injection of [<-, x] into E. 
By definition, ix is quasi-residuated if and only if, for each ye E, ix [<-, y] 
Φ 0 . This is equivalent to saying that for each y e E there exists ze [<- ,x ] 
such that ix(z) < y. In other words, it is equivalent to saying that [<-, x] 
n [*->y] Φ 0 · The theorem now follows. 

Definition. If E is an ordered set which satisfies any of the equivalent 
conditions of Theorem 3.1, we shall say that E is lower directed. There 
is, of course, a dual result concerning filters and if E satisfies the dual 
propositions we say that E is upper directed. In this connection, let us 
note carefully that the dual of Theorem 3.1(1) is: for each xeE the 
canonical injection j x : [x, ->] -> E is dually quasi-residuated. Likewise, 
the dual of Theorem 3.1(2) is: the intersection of any two principal filters 
of E is not empty. Likewise, condition (3) becomes : the set intersection 
of any two filters of E is a filter. 

From the result of Theorem 3.1, two questions arise: (a) What hap-
pens if we restrict each canonical injection to be residuated? (b) Under 
what conditions is the intersection of two principal ideals of E a principal 
ideal of ΕΊ As the next result shows, these problems are the same. 

THEOREM 3.2. If E is an ordered set then the following are equivalent: 

(1) for each xe E the canonical injection of[+-9 x] into E is residuated; 
(2) the set intersection of any two principal ideals of E is a principal 

ideal of E. 

Proof It is clear that (1) holds if and only if, for any given x,yeE, 
the set of elements z e [<-, x] such that z = ix(z) < y is not empty and 
admits a maximum element z* ; i.e. if and only if for any given x, y e E; 
there exists z* eE such that [<-, x] n [<-, y] = [«-, z*]. 

Definition. If an ordered set £ satisfies either of the equivalent condi-
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tions of Theorem 3.2 we shall say that E is an n-semilattice. In this case 
we shall denote by x n y the element z* such that [«-, x] n [<-, j>] 
= [<-, z*]. Note that we are using the same symbol n to mean two dif-
ferent things ; no confusion will arise since the context will always make it 
clear to which operation we are referring. We call x n y the intersection of 
x and y. There is, of course, a dual result which gives rise to the definition 
of a usemilattice in which [x, ->] n [y, -►] = [x u y, -►] and Λ: U y is 
called the tiftzYvz of x and j>. 

It is clear from the above definition that if Eis an n-semilattice then 
(x, y) -* x n y is a. law of composition on E which is commutative and 
associative; it is also idempotent in the sense that (Vx e E) x n x = x. In 
fact, semilattices are characterized by these three properties as our next 
result shows. 

THEOREM 3.3. A set E can be given the structure of a semilattice if and 
only if it can be endowed with a law of composition (x,y) -> χτ y which is 
commutative, associative and idempotent. 

Proof In view of the preceding remarks, we need prove only suffi-
ciency. This we shall do for n-semilattices; a dual proof will yield the 
result for u-semilattices. Suppose then that E is an abelian idempotent 
semigroup under the law of composition (x, y) -» x τ y. Define a relation 
RonEby xRy*>xTy = x. 

This relation JR is an ordering on E. In fact, (1) since x T x = xwe have 
xRx; (2) if xRy and yRx, then x = x τ y = y τ χ = y; (3) if xRy 
and yRz, then x = x τ y and y = y τ ζ, so that χ = χ τ ^ = χ τ ( } ; τ ζ ) 
= (* τ j ) τ ζ = Λ: Τ Ζ, whence we have jxrite. We shall therefore write < 
in place of R. If now x, y are any two elements of E9 we have χτ y 
= χτ χτ y — x τ y τ x and so x τ y < χ. Inverting the rôles of x, y we 
deduce that x τ y < y and hence xrye [<-, x] n [<-, y] which is there-
fore not empty. Now 

z e [<-, x] n [<-, y] => z < x and z < j 
=> z = z T A: and z = z τ j> 
=>Z = Z T J ; = Z T ; X ; T J > 

=> z < x T y. 
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These observations show that [<-, x] n [<-, y] has a maximum element, 
namely the element xry.lt follows that E is an n-semilattice in which 
x n y = χτ y. A dual proof using the relation x = y(S) ox τ y = y 
yields the corresponding result for u-semilattices. 

Definitions. If E is an ordered set and F is a non-empty subset of E, 
then x e E is said to be a W e r bound of F if and only if (Vy e F) x < y; 
and the greatest lower bound of F if it is a lower bound of F and such that, 
for every lower bound z of F, z < x. In particular, if jE'is an n-semilattice 
then every two-element subset {x, y] admits a greatest lower bound, 
namely the element x n y. Conversely, if E is an ordered set in which 
every two-element subset {x, y} has a greatest lower bound, z say, then 
clearly [<-, x] n [<-, y] = [«-, z] and so E is an n-semilattice with 
x n j> = z. If F is an n-semilattice then it follows from the equality 
[<-, Xj] n [«-, x2] = [<-, *i n x2] and simple induction that every 
finite subset {x 1 ? . . . , x„} of E admits a greatest lower bound; and 
g.l.b. {xl9..., x„} = xx n ··· n A'rt. There are, of course, the dual no-
tions of upper bound and least upper bound; we leave the reader to formu-
late these. 

EXAMPLE 3.1. Consider the set E = {1, 2, 3, 4, 5, 6} ordered by 
divisibility. The corresponding Hasse diagram is 

4 6 

/°\ 
o o3 . o 5 

o 
1 

It is readily seen that F i s an n-semilattice with respect to this ordering, 
with m nn = h.c.f. {m, n}. E is not an upper directed set, however, for 
[3, -►] n [5, ->] = 0 and so {3, 5} has no upper bounds in E. 

EXAMPLE 3.2. If R, S are equivalence relations on a set A, let us agree 
to write JR = S if and only if JR, S are logically equivalent, in the sense 
that xRy o xSy. Under this definition of equality it is readily verified 
that the relation < defined on the set E of equivalence relations on A by 

R < S if and only if xRy => xSy 



FOUNDATIONS 23 

is an ordering on E. Moreover, with respect to this ordering E is an n-
semilattice. Intersection in is is given by 

x s y(RnS)o(x = y(R) and x = y(S)). 

As a third example of a semilattice we consider certain implications 
between properties of a residuated mapping. If E is an ordered set and 
f:E-+Eis2i residuated mapping, then we say that/satisfies the property 
(p, n) if and only \îfp = fp+n. In this context,/? and n are integers with 
p > 0 and n > 0; we agree to write/0 = id£. 

THEOREM 3.4. Consider the sete" of all the conditions (p,n), I(injective), 
S (surjective), C (closure), DC (dual closure) which can be satisfied by a 
residuated mapping f on an ordered set E. When $ is ordered by logical 
implication it forms an n-semilattice, part of the Hasse diagram of which is 
the following (in which t is aprirne): 

(p ,n)rMp*n*) = (min {ρ,Ρ*}, hcf {η,η*} ) 

(0,1) 

Proof It is clear that (/?, n) => (/?*, n*) whenever p* > p and n* is a 
multiple of n; and that the properties of closure and dual closure each 
imply the condition (1,1). Just as clearly, any property of the form (0, ri) 
implies B which in turn implies / and S. In order to show that the 
2 BRT 
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properties in question are in general distinct, we consider the following 
four examples : 

EXAMPLE 3.3. Let p, n be integers with p > 0 and n > 0. Let Epn be a 
set consisting of (p + l)n elements labelled au, where ie[09p] and 
j e [1, n]. Endow ^ with the ordering defined by 

ocij < ockt o(i < k and j = t). 

Consider the mapping/: Epn -> Epn described by 
r*o,j+i if i = 0, j Φη\ 

«o.i if i = 0, y = n; 

*i-i../+i if Ï V O , y ^ n ; 

^ / - i . i if * Φ 0, y = n. 

/(««) 

The Hasse diagram for Epn is as follows, in which the dotted arrows 
indicate the effect of the mapping/: 

a pi a p 2 a p 3 

X I X \ 

Λ21 α 2 2 

\ 
X 

23 

\ ^ Is- i x i x, \l \l \l x 
a i 1 a i 2 a i 3 

C-J :>J::X 
\ \ X 

01 a 02 a 03 

pn 

\ 

* \ 
X 

2n 

\ 
xl x 

a i n 
I \ 

—-*-/-* — + s a, On 

It is readily seen from this diagram that/ is residuated. In fact, for each ocu, 

max {ockt; f(akt) < <xu} 
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exists and is given by 

iXi + itj-i if * Φρ> j Φ 1; 

«i+i.» « * #/>> 7 = 1 ; 
aPfB if Ϊ = / ? , J = l . 

It is also readily seen from this diagram tha t / i s such that fp — fp+n and 
is such that /* = fa+r if and only ifp < q and r is a multiple of n. More-
o v e r / i s a closure mapping only in the cases p = 0, n = 1 and p — 1, 
n = 1 ; and is injective, surjective or bijective only in the case p = 0. 

EXAMPLE 3.4. In Example 2.5 the mapping 03 is residuated and is such 
that 03 = 03 o 03 < id. Thus 03 is a dual closure mapping. Clearly 03 is 
not a closure mapping, nor is it either injective or surjective. 

EXAMPLE 3.5. Consider the mapping/ : Z+ -► Z+ described by 
(I if n = 1; 

/ (n) = 
[n — 1 otherwise. 

Clearly/is residuated; its residual is given by / + (n ) = n + 1. This map-
ping satisfies none of the properties (/?, n), is surjective but not injective. 

EXAMPLE 3.6. Taking the situation which is dual to that in Example 3.5 
we obtain a residuated mapping/+ : Z% -> Z% which is injective, not sur-
jective and satisfies none of the properties (/?, n). 

These examples establish that the conditions under consideration are 
in general all distinct and that the restriction of our ordering to the 
subset consisting of all properties of the form (/?, n) yields an ordered 
set isomorphic to N x Z+, where N is ordered in the usual way and 
Z+ is ordered by divisibility. It follows immediately that 

(/?, n) n (p*, n*) = (min {/?,/?*}, h.c.f. {n, n*}). 

We leave the rest of the details to the reader. 
It should be noted that in Examples 3.5 and 3.6 the ordered sets in 

question are infinite. This is not without purpose, for in the case of a 
finite set the notions injective, surjective and bijective are equivalent. This 
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is the only modification to the diagram of Theorem 3.4 in the case of a 
finite ordered set, as is borne out by the fact that in Examples 3.3 and 3.4 
we were dealing with finite sets. 

The diagram of Theorem 3.4 is enormously simplified in certain cir-
cumstances. In the exercises for this section we shall impose further condi-
tions on/and note the simplification which occurs. 

EXERCISES 

3.1. If / : E-* E is residuated and such tha t / 2 < /, prove that for each integer 
n > 2 the property (p, ri) is equivalent to the property (p, 1). 

3.2. Show that the mapping / : Z -► Z described by /(«) = n — 1 is residuated, 
bijective and such that/2 < /bu t satisfies none of the conditions (p, 1). Observing that 
the residuated mappings of Examples 3.4, 3.5, 3.6 all satisfy/2 < /and that if n — 1 in 
Example 3.3 this is also the case, deduce that if a residuated mapping/is such that 
f2 < / , then the diagram of Theorem 3.4 simplifies as far as the following 

I 
(p/i) 

injective surjective 
■ \ / 

bijective 

(0,1) 
3.3. Let / : E-+ E be residuated and such that / 2 < / Prove that if E satisfies the 

ascending chain condition (in that every ascending chain Χχ < x2 < -- < x„ < ... is 
finite), then the property (0,1) is equivalent to surjectivity. With the same hypothesis on 
/prove that if dually E satisfies the descending chain condition then the property (0,1) 
is equivalent to injectivity. [In the ascending chain case let / b e surjective and consider 
the set F = {xe E;f(x) < x}. Show that Fis empty. In the descending chain case let 
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/ b e injective and consider G = {f(x) e E; f[f(x)] > f(x)). Show that G is empty and 
apply Theorem 2.6(d).] 

3.4. Let f:E-* Ebt residuated and such that / < id£. Prove that the property 
(0,1) is equivalent to/being a closure mapping and that the property (1,1) is equivalent 
to /being a dual closure mapping. Determine how far the diagram of Theorem 3.4 
simplifies in this case. 

4. Lattices; complete lattices 

An ordered set which forms, with respect to its ordering, both a 
u-semilattice and an n-semi lattice will be called a lattice. Thus an 
ordered set E is a lattice if and only if each canonical injection ix : [<-, x] 
-> E is residuated and each canonical injection jx : [x, ->]-►£ is dually 
residuated. We can also characterize lattices in the following way. 

THEOREM 4.1. A set E can be given the structure of a lattice if and only 
if it can be endowed with two laws of composition (x, y) ^ x τ y and 
(x, y) -» x ± y such that 

(1) (E, T ) and (is, ± ) are abelian semigroups; 
(2) the following absorption laws hold: 

(Vx, yeE) x τ (x ± y) = x = x ± (x τ y). 

Proof Suppose that E is a lattice; then E has two laws of composition 
which satisfy (1), namely (x, y) -* x n y and (x, y) -> x uj>. To show that 
(2) holds, we note that for all x, y e E we have x < xvy and s o x n ( i u j ) 
= x; similarly, x n y < x yields x u (x n y) = x. 

Conversely, suppose that E has two laws of composition τ and ± 
satisfying (1) and (2). Using (2) twice we have 

(Vx e E) χ±χ = χ±[χτ(χ± x)] = x, 

and, similarly, x τ x = x. This, together with Theorem 3.3 and its dual, 
shows that E can be given the structure of a semilattice with respect to 
each of T, ± . In order to show that E can be made into a lattice we have 
to show that, with τ as n and l a s u for example, the orderings defined 
by them coincide; in other words, we must show that 

x T y — x is equivalent to x ± y = y. 



28 RESIDUATION THEORY 

Now using (2) and (1) we have 
(χ τ y = x => y = (x τ y) ± y = x ± y; 

[x±y = y=>x = XT(xxy) = xTy. 

It therefore follows that E is a lattice in which the ordering is given by 
x<yoxry = xox±y = y. 

It is also clear from results given previously for semilattices that an 
ordered set E is a lattice if and only if every two-element (and hence any 
finite) subset of E admits a greatest lower bound and a least upper bound. 

EXAMPLE 4.1. For any set E, (P(E), n, u , £ ) is a lattice. 
EXAMPLE 4.2. Every totally ordered set is a lattice. 
EXAMPLE 4.3. The diagram of Example 1.8 is that of a lattice. In this 

example m nn = h.c.f. {m, n} and m u n = l.c.m. {m, n}. 

EXAMPLE 4.4. Let X, Y be arbitrary subgroups of a group G. The set 
theoretic intersection I n T i s a subgroup of G. Denote by X Y Y the 
subgroup generated by Xand Y [i.e. the smallest subgroup of G to contain 
the set theoretic union XvY], With respect to the laws of composition 
(X, Y) -» X n Y, (X, Y) -> X Y Y, the set of all subgroups of G forms a 
lattice, known as the subgroup lattice of G. 

EXAMPLE 4.5. Let L9 M be lattices and let H denote the set of all 
isotone mappings from L to M. If, for each/, g e if, we define the map-
pings/ Λ g and / Y g by 

(VxeL) (fAg) (x) =f(x) n g(x) ; (fYg) (x) = / (x) n g(x)9 

then (f,g)-*f Ag and (/, g) -> / Y g are laws of composition on # and 
(H, Λ, Y) is a lattice. 

n 

EXAMPLE4.6. If Ely ...,En are lattices, then so also is X Et when 
i = l 

ordered as in Example 1.6. A similar assertion holds for arbitrary direct 
products 

Definitions. We say that a u-semilattice [resp. lattice] is u-complete if 
and only if every non-empty subset admits a least upper bound. It is clear 
that if L is u-complete then L contains a maximum element. We define the 
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notion of n-completeness in a similar way. A lattice which is both u-
complete and n-complete will be called simply complete. We say that a 
lattice is bounded if and only if it has both a maximum element and a 
minimum element. In particular, every complete lattice is bounded. By 
the notation [j χΛ we shall mean the least upper bound of the family 

oteA 

{x<x}cxeA (whenever it exists), f] xa is defined similarly. 
aeA 

It is clear that every finite lattice is complete. The lattices of Examples 
4.1 and 4.4 are complete; that of Example 4.5 is complete whenever M is; 
that of Example 4.2 is not in general complete, for if we consider the 
chain Q of rationals we see that the subset of rationale whose squares are 
less than 2 has no upper bound in Q. 

THEOREM 4.2. A \j-complete \j-semilattice is a complete lattice if and 
only if it has a minimum element. 

Proof. Clearly, if L is a complete lattice, then L has a minimum 
element, namely the greatest lower bound of all the elements in L. 

Conversely, suppose that L is a u-complete u-semilattice with mini-
mum element 0L. Let X = {ΧΛ}ΛΕΑ be a non-empty subset of L and let 
M = {mß}ßeB be the set of lower bounds of X. Clearly M Φ 0 for 
0L G M. By hypothesis, the element 

a = [J mß 
ßeB 

exists. Now by the definition of M we have 
(Vxa G X) (Vmß e M) mß < xa 

and so 
(V^«el) a = (J mß < χΛ9 

ßeB 

whence a is a lower bound of X. By its definition, a is thus the greatest 
lower bound of X. Since X was chosen arbitrarily, it follows that L is also 
an n-complete n-semilattice. 

There is, of course, a dual result to Theorem 4.2. 
For the remainder of this section we shall be concerned with closure 

mappings and their relationship with complete lattices. The results dis-
cussed culminate in an important embedding theorem· 

file:///j-complete
file:///j-semilattice
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Definition. If E is an ordered set a n d / : E -> E is a closure mapping, 
we say that xeE is f-closed if and only if f{x) = x. 

THEOREM 4.3. Let E be an ordered set and let F be any non-empty subset 
of E. The following conditions are equivalent: 

(1) there exists a closure mapping f: E -► E such that the set off-closed 
elements is F; 

(2) for each xe E the set [ x , - > ] n F admits a minimum element. 

Proof Suppose that (1) holds. Then for any xe E the set [x, ->] n F 
is not empty, for it clearly contains the element/^). Moreover, if z e [x,-*] 
n F, then x < z and/(x) < f(z) = z. Consequently [x,-+] nF admits a 
minimum element, namely/(x). Conversely, suppose that (2) holds. Let 
x^ denote the minimum element of [x, ->] n F and define a mapping 
fiE^Eby the prescription/(x) = x^. This mapping is isotone, for if 
x < y then [x, -►] 3 [y, ->] and so [x, - > ] n F 2 [y, ->] n F whence it 
follows that Χχ < y^ and f(x) < f(y). Since f(x) = χ^ > χ for each 
x e is, we also h a v e / > id£. Moreover, if y e F, then clearly y^ = y and 
s o f(y) = .y; but, in particular, f(x) = x* e F , and so it follows that 
f[f(x)] = / (* ) . T h u s / o / = / a n d s o / i s a closure mapping. 

Definition. A non-empty subset F of an ordered set E will be called a 
closure subset of F if and only if it satisfies the conditions of Theorem 4.3. 

THEOREM 4.4. If E is an ordered set and F, G are closure subsets of E 
associated with closure mappings f g on E then the following conditions are 
equivalent: 

( a ) / < ^ ; ( b ) G ç = F ; ( c ) / o g = g; (d)gof=g. 

Proof If (a) holds, then (Vx e E)f(x) < g(x). In particular, if y e G, 
then f(y) < g(y) = y. But / > id£, and so f(y) > y. It follows that 
f(y) = y a n d so yeF. This shows that (a) => (6). If now (b) holds, then 
/or each xeE we have g(x)e(7 e F and so /[g(x)] = g(x), giving 
f o g = g which is (c). If now (c) holds, then from g > ìdE we have 
g = g ° g = g o / o g > g o / o idE = g o / and from / > idE we have 
g °f> g- Thus g = g o/which is (d). Finally, if (d) holds then for each 
x e E, we have/(x) = (id£ of) (x) < (g of) (x) = g(x) and (a) follows. 
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THEOREM 4.5. Let E be an ordered set, let K(E) denote its set of closure 
subsets and let C{E) be its set of closure mappings. Then the ordered sets 
K(E), C(E) are dually isomorphic. 

Proof This follows immediately from Theorem 4.4. 
Definitions, A non-empty subset of a u-semilattice is called a Kj-sub-

semilattice if it is closed under the formation of furite unions. An n-sub-
semilattice is defined similarly. A sublattke of a lattice is a subset which is 
closed under both u and n . A sublattice M of a lattice L is said to be 
complete if it is closed under the formation of arbitrary unions and inter-
sections of nonempty subsets of M provided that the indicated unions and 
intersections exist in L. The notions of u-completeness and n-com-
pleteness are defined as one would expect. 

THEOREM4.6. Let Ebe a complete lattice. Then every closure subset of 
E is an n-complete n-subsemilattice containing the greatest element ofE, 
hence in its own right a complete lattice. 

Proof Let C be any closure subset of E, Then there exists a closure 
mapping/ : E-* E such that (Vxe C)f(x) = x, Consider any collection 
{χΛ; oc e A} of elements of C. Since/ > id£ we have 

/((]**)* 0*a- (*) 
\<xeA ] aeA 

But, on the other hand, (V/3 € A) f] χΛ < χβ and so (V/? e A)f ( f] xa\ 
^f(x„) = xß,v/hencQ *sA U " ' 

fit)*.) * Π *.· (**) 
From (*) and (**) we obtain 

\oceA / aeA 

which shows that f] χΛ e C Hence C is an n-complete n-subsemilattice 
aeA 

ofE. 1ΐπΕ is the greatest element of E, then f rom/ > id£ we deduce that 
71 E — /(πε) a n ( l hence that πΕ e C, The proof is completed by an applica-
tion of the dual of Theorem 4.2. 

THEOREM 4.7. Any ordered set E can be embedded in a complete lattice 
L, any unions and intersections which may exist in E being conserved in L, 

2a BRT 

file:///oceA
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Proof, If E does not already have a greatest element and a least ele-
ment, we begin by adjoining whichever of these bounds are missing. Thus 
with no loss of generality we may assume that £ is a bounded ordered set. 
Write P = P(E) and denote as usual by P* the dual of P. We define 
mappings g : P -> P* and h : P* -> P as follows : if y4 is a non-empty 
subset of E, let g(^4) be the set of upper bounds of A and let h(A) be the set 
of its lower bounds; moreover, let g(0) = E = h(0). We leave to the 
reader the routine verification that g e Res (Ρ,Ρ*) with h = g+. By 
Theorem 2.7, / — h ogisa, closure map on P, and so, by Theorem 4.6, the 
closure subset F associated with / i s a complete lattice. We observe that 
(Vx e £)/({*}) - [<-, x] and that x £ j> <*/({*})£/({y}). Thus 
* - > / ( W ) is a n embedding of Zsin F. Suppose now that a = f] xa exists 

in £. Then [<-, a] is the set-theoretic intersection of the family {[<-, χΛ]; 
oc e I}, thus showing that the embedding preserves any existing infima of 
subsets of E. On the other hand, if b = (J xa exists in E, note that g({b}) 

ocef 

= g ({ΧχΙ * e J}). Clearly f({b}) is an upper bound for {/({xa}); <x e /} 
and if A =f(A) is any other upper bound for this set in F then g(A) 
2 g ( { x « ; ^ e / } ) = g({b}) whence 

A =f(A) = (h og) (A) ^(hog) ({b}) =f({b}). 

We deduce that in F we have f({b}) = (J /({χα}), thus completing the 
proof of the theorem. aeI 

Remark. The complete lattice referred to in Theorem 4.7 will be 
referred to as the MacNeille completion of E. 

EXERCISES 
4.1. Let L, M be lattices and let f,ge Res (L, M), where Res (L, M) denotes the 

set of all residuated mappings from L to M. Define/ Y g as in Example 4.5. Prove that 
fYge Res(L, M).If L and Mare totally ordered, prove also that / A # e Res (L, M). 
Is the latter true in general? 

4.2. Let E9 F be ordered sets and let fe Res (E, F). If Λ: = \J χΛ exists in E, prove 
that (J /(*«) exists in Fand ÌS/(JC). *eA 

txeA 

4.3. If L is a lattice and/?, ^ e L are such that p < #, let [/?, <?] = { JC eL; /? < x < q]. 
Given any a,beL, prove that the mapping / : [a ^b,b]-+ [a, a u b] defined by 
f{x) = x vj a is residuated and determine/+. 
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4.4. Give examples of two distinct residuated mappings from a lattice to itself 
which give rise to the same closure mapping (Theorem 2.7). 

4.5. Let M be a left/L-module and let L(M) be the set of submodules of M. Prove 
that (X(M), n, +) is a complete lattice. 

4.6. If Mi, M2 are left/l-modules and / : Mx -* M2 is a/l-homomorphism, prove 
that the induced mapping f~* : JL(MÌ) -> L(M2) is residuated and that 

(Vtf e £(ΜΧ)) [(/"*)+ o / - ] (H) = H+ Ker/; 

(Vtfe L(M2)) [Γ ° (.T )+] (*) = # n Im/ . 
4.7. Let L±, L2 be bounded lattices. Denote their minimum elements by 0 and their 

maximum elements by π. For i = 1, 2 let the mappings/ : Lt -> Lt xL2 be given by 
fi(x) = (*> G),f2(x) = (0, x) and let prt :LiXL2-+ Lt be the projections prx (x, y) = x> 
pr2 (*, J>) = y. Prove that (ι = 1, 2 ) / e Res (L,, Li xL2), prf e Res (Lx xL2,Lt). 

4.8. Let Z,, £i and L2 be bounded lattices. 
(a) Given f± e Res (L, Li) and / 2 e Res (£, L2) show that there is a unique 

/* G Res (L, Li x L2) such that the following diagram is commutative 

(b) Let g1eRes(LiiL) and g2 e Res (L2, L). Show that there is a unique 
/* e Res (Lx x L2, X) such that the following diagram is commutative 

where *Ί, i2 denote the canonical injections. 
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4.9. Let 2 denote the two element lattice and suppose that L, M are bounded 
lattices. 

(a) Given an injective element fe Res (L, M) prove that for every g e Res (L, 2) 
there is an h e Res (M, 2) such that the following diagram is commutative: 

f 
M 

(b) Dually, if fe Res (L, M) is surjective, prove that for every g e Res (2, M) there 
is an h e Res (2, L) such that the following diagram is commutative: 

M 

4.10. Let L, M, P be bounded lattices and denote the minimum (maximum) 
element of L by 0L (nL), etc. 

(a) Let fe Res (L, M), g e Res (P, L) and K = [0L,/+(0M)]. If iK denotes the ca-
nonical injection of K into L9 show that / o g is the zero mapping [i.e. sends 
every element of P to 0M] if and only if there is a unique h e Res (P, Ä") which 
makes the following diagram commutative 

g f 
- M 

(b) Let fe Res (M, L), g e Res (L, P) and C = [f(nM\ nL]. If j e Res (L, C) is 
defined by /'(*) = x vf(nM) for each xeL9 show that g° fis the zero map if 
and only if there is a unique A e Res (C, P) which makes the following diagram 
commutative 

M 
f 

- ^ L 

J 

g 

/ 

^ 

c 
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4.11. Let L, M be lattices a n d / e Res (L, M). Prove that Im fis a lattice under the 
induced ordering and that the canonical injection i of Im/into M is residuated. Prove 
further that there is a unique g e Res (L, Im/ ) making the following diagram commuta-
tive: 

L 1 — M 
\ y 

Imf 
[Hint. Show that union and intersection in Im/a re given by x V y = x KJ y and 

xAy = (fof+)(xny).] 

4.12. Consider the ordered set whose Hasse diagram is 

Embed this in a complete lattice L according to the method of Theorem 4.7 and draw 
the Hasse diagram for L. 

4.13. Let E be an infinite set and let L be the lattice formed by E, 0 , and the finite 
subsets of E. Show that L is a sublattice of P(E) which is in its own right a complete 
lattice though infinite unions in L do not coincide with those in P(E). 

4.14. Let E be a non-empty set. If R±, R2 are equivalence relations on E, show that 
the relation R± u R2 given by 

x = y (R1 u R2) o (x == X^i ) or x = y(R2)) 
is not in general an equivalence relation. If ê(E) denotes the set of equivalence rela-
tions on E, order ê{E) as in Example 3.2. Show that $(Ε) is a complete lattice in which 
intersection is given, for each family {jRa}aei of equivalence relations on E, by 

x EE y ς Π R^o(yocel)x = yÇRJ 

and union is given by the relation Π R» defined by 

W / \x = ciiiR^),..., at Ξ ö i+1(i?ai+1),..., ap == yiR^J. 
4.15. Let E be any non-empty set and let R be a binary relation on E. Write the 

converse of R as R*. Consider the mapping ξR : P(E) -» P(E) described by 
<$A e P(E)) SR(A) = [y e E; (βχ e A) xRy]. 

If ; : P{E) -► P(E) is the (antitone) mapping which sends each subset A of E to its 
complement A' in £", prove that SR is residuated with residual given by 
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Prove also that 
(a) id < | R if and only if R is reflexive; 
(b) | J < ξκ if and only if R is transitive; 
(c) | R is a closure mapping if and only if R is reflexive and transitive; 
(d) IR ° ; ° I* ° ; ^ id if and only if R is symmetric. 
Show also that the following are equivalent: 
(i) R is an equivalence relation; 

(ii) IK is a closure mapping such that ξκ ° ; ° ξκ ° ; < id; 
(iii) ξκ is a quantifier in the sense that it is isotone and such that 

(VA', Y G P(F)) | K [X n |R(7)] = IRUO n fÄ(Y). 

4.16. Let ^ , 5 be ordered sets and let fe Res (A, B). By Theorem 2.7, /+ ° / i s a 
closure mapping on 4̂ and dually/0/4 - is a closure mapping on B*. Let F denote the 
closure subset of/+ ° / a n d G that o f / ° / + . Show that the restriction of / t o Fis an 
order isomorphism of F onto G whose inverse is the restriction of/+ to G. 

4.17. Using the previous exercise, show that Res 04, B) can be put in one-one 
correspondence with the set of ordered triples (F, G, h)9 where F i s a closure subset of 
A, G is a closure subset of B*9 and h is an order isomorphism of F onto G. 

5. Morphisms 

If L, M are u-semilattices, then a mapping f:L-> M is called a 
yj-homomorphism if and only if 

(Vx, jeL) / ( X U J ) = / W U / ( J ) , 

A u-homomorphism is necessarily isotone; for if x < y, then we have 
f(y) = f(x u j ; ) = f(x) u / ( j ) and so/(x) < f(y). In a dual manner we 
define the notion of an n-homomorphism. If L, M are lattices, then we say 
that / : L -> M is a (lattice) homomorphism if it is both a u-homo-
morphism and an n-homomorphism. We say that lattices L, M are iso-
morphic if they are isomorphic as ordered sets. 

THEOREM 5.1. A necessary and sufficient condition that the lattices L, M 
be isomorphic is that there exist a bijection f:L-+ M which is either a 
u-homomorphism or an n-homomorphism. 

Proof. Suppose that L, M are isomorphic, so that there is a bijection 
f:L-> M such that x < y of(x) < f(y). Since fis surjective, each ele-
ment of M is of the form/(z) for some zeL. Now/(x) u/(>>) = f(z) is 
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equivalent to the properties 
[(a) /(*)</(*), f(y)<f(z); 
1(b) (f(x) < fit) and fiy) < fit)) =>f(z) < fit). 

Since / i s an isomorphism, these properties are equivalent to 
((oc) x < z, y < z; 
\iß) ix < t and y < t) => z < t, 

i.e. to x u y = z. Hence fix) ufiy) = fix u y), and so / i s a u-homo-
morphism. Conversely, if/ is a bijection which is a u-homomorphism 
then 

x <yoy = xuyofiy)=fixuy) = f(x)uf(y)of(x) <fiy), 
and so / i s an order-isomorphism. A similar proof holds for n-homo-
morphisms. 

COROLLARY. The lattices L9 M are isomorphic if and only is there exists 
a bijective lattice homomorphismf: L -» M. 

Definition. If L, M are u-semilattices we say that f:L-+ M is a 
complete u-homomorphism if and only if, for each non-empty family 
{x<x}<xei °f elements of L such that (J χΛ exists, (J /CO exists and 

<xel »el 

f(O x«) = U/W-
The notion of complete n-homomorphism is defined similarly. We leave 
to the reader the routine verification that every lattice isomorphism is 
both a complete u-homomorphism and a complete n-homomorphism. 

THEOREM5.2. Let L, M be u-semilattices. If f:L-+ M is any resi-
duated mapping then f is a complete quasi-residuated u-homomorphism. 
IfL is u-complete then fis residuated if and only if it is a complete quasi-
residuated u-homomorphism. 

Proof. Assume first that L, M are u-semilattices with/e Res (L, M). 
Let {Xvjocei be a family of elements of L and suppose that x = |J χΛ 

<xel 

exists. Now if (V* el)y> fix.), then (V* e I)f+iy) > f+ [fixj] > xa 

and so/+0>) > (J χΛ = x. But then;/ > f[f+iy)] > fix) and so \Jf(xa) 
»el ae l 

exists and is none other than/(x). This proves the first part of the theorem. 
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Now let L be u-complete and f:L-+ M a complete quasi-residuated 
u-homomorphism. For each yeM the set {xeL; f{x) < y} is then 
nonempty and, making use of the completeness of/, we see that if 
y* = U {xe L;f(x) < y}9 then we must have/(j*) < y. It is immediate 
that/"" [<-, y] = [<-,y*] and so/is residuated. 

It should be noted that in the case where L is not complete, a complete 
quasi-residuated u-homomorphism need not be residuated, as the next 
two examples show. 

EXAMPLE 5.1. The fields Q, R form lattices with respect to their natu-
ral order in which x u y = max {x, y}. Consider/: Q+ -» R+ given by 
setting (Vx e Q+)f(x) = x2. If x = (J Λ:Α exists in Q + , then x = (J χΛ 

»el «el 

in R + . Clearly (Va e /) x2 > xl, and if (Va el)y> xl, then we have (Va e 7) 
yjy > xaso ^/y > x = (Jxaandy ^ x2. This shows that/(x) = U/(xa)and 
so / is a complete u-homomorphism which is clearly quasi-residuated. 
However, / i s not residuated since the set {xeQ + ; f(x) < 2} has no 
maximum element. 

EXAMPLE 5.2. Let ̂ be an infinite set and Pf(E) the set of finite subsets 
of E including 0. If Pf(E) is ordered by set inclusion it clearly forms a 
lattice. For a fixed A e Pf{E) the mapping λΑ given by the prescription 
A>A(B) = B n A is then seen to be a complete quasi-residuated u-homo-
morphism which is not residuated since the set of elements Be Pf(E) 
such that B n A = 0 has no maximum element. 

If L is a lattice then Res (L) is always a u-semilattice (Exercise 4.1). 
If L is a chain then Res (L) is a lattice (Exercise 4.1). This also happens 
whenever L is a complete lattice (Exercise 5.4). On the other hand, the 
next example (due to C.Johnson) shows that Res (L) a lattice does not 
follow from the fact that L is a lattice. 

EXAMPLE 5.3. Construct a lattice L as follows: take the four element 
lattice which has the following Hasse diagram: 

π 
o 

b o ^ \ a 

O 
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and insert three copies of the field of real numbers as suggested by the 
following diagram: 

- \ 
v\ \ v 

remove-·- b o ^ \ \ \ Χ ν ^ ν \ Ν ο 3 

x \ \ 

Remove the element b and enlarge the ordering as suggested by the dotted 
lines. To be more specific, for any r e R3 let r* denote the same real 
number in Rx and for r,seR3 define r < s* if and only if r < s in the 
usual ordering of the reals. The remeining ordering is as suggested by the 
diagram. It is then easily verified that L is a lattice. Consider the mapping 
fa:L-+ L defined by , .r 
Ja J x if x < a; 

faix) = 
[a otherwise. 

This mapping is residuated;// is given by 
π if x > a: [x n a otherwise. 

Now if g e Res (L) is such that g < fa and g < idL, then for each xeR2 

we have/e(x) n idL(x) = 0 and so g(x) = 0. It follows that g+(0) > x 
for all x e R2 and so g+(0) e Rx u {π}. It follows that there exists c e R i 
such that c < g+(0). Define hc : L -> L by 

ί 0 if x < c; 
hc{x) = 

[x n a otherwise. 
It is easily verified that hc e Res (L) and that hc < fa and hc < idL. For 
x < g+(0) we have g(x) = 0 < hc(x) and for x $ g+(0) we have g(x) 
^ faix) n idLix) < x n a = hcix). It therefore follows that g < hc. Since 
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S [g+(0)l = 0 < hc [g+(0)] we even have g < hc. This then shows that 
there cannot be a greatest lower bound for {/e, idL}, and so Res (L) is not 
a lattice. 

We end this section with some terminology which will be useful for the 
exercises as well as later. We have already defined what we mean by an 
ideal of an ordered set E. If E is a u-semilattice then we shall say that a 
non-empty subset I of Eis a semilattice ideal of is if it is a u-subsemilattice 
which is also an order ideal of E. Similarly, if E is a lattice then by a 
lattice ideal we shall mean a sublattice which is an order ideal. Whenever 
no confusion can arise from the context, we shall often use simply the 
term ideal for semilattice or lattice ideal. There are, of course, dual 
definitions for filters of rvsemilattices and lattices. 

Ideals of u-semilattices with a minimum element can be characterized 
as kernels of u-homomorphisms; we defer a discussion of this until later 
(Exercise 6.6). 

EXERCISES 

5.1. Show that there are, up to lattice isomorphism, only five lattices having five 
elements, three of which are self-dual. [Draw Hasse diagrams.] Show also that there are, 
up to lattice isomorphism, only fifteen lattices having six elements, seven of which are 
self dual. 

5.2. Let E be a u-semilattice and let 1(E) be its set of ideals. Order 1(E) by set in-
clusion. Show that 1(E) is a Y-semilattice in which union is given by 

J Y K = {x e E; (3 /e / ) (3k eK)x<j uk}. 

Show further that if E has a smallest element then 1(E) is a complete lattice. If E is, in 
fact, a lattice, prove that the set of all principal ideals of E is a sublattice of 1(E) which 
is isomorphic to E. 

5.3. Let E be a u-semilattice, 1(E) its semilattice of ideals and f: E-* E a quasi-
residuated u-homomorphism. Show that if/"* is defined on 1(E) by 

r(J) = {yeE;(3xeJ)y<f(x)} 
then f~* is residuated. 

5.4. Prove that if £ is a complete lattice then so also is Res (L). 

5.5. Let G be a group. For each subset S of G let <5> be the subgroup generated by 
S. Show that the mapping/: P(G) -> L(G) described by f(S) = <5> is residuated. 

5.6. Prove that a lattice is a chain if and only if every isotone mapping of L into 
any lattice M is a homomorphism. 



FOUNDATIONS 41 
5.7. Let L be a complete lattice. Let the maximum element of L be π^ and the 

minimum element be 0L. If/: L -+ L is a closure mapping, prove that/ is residuated if 
and only if its associated closure subset is a complete sublattice of £ containing 0LinL. 

5.8. Referring back to Exercise 4.15 for notation, prove that if Is is any non-empty 
set then the following conditions concerning a mapping/: P(E) -> P(E) are equivalent : 

(a)/ is residuated; 
(b)/is a complete quasi-residuated u-homomorphism; 
(c) f=SR for some binary relation R on E. 

[Hint, φ) => (c): note that /and ξκ agree on singleton subsets, where R is given 
by x = y(R)oyef{x}.] 

5.9. Let E be a non-empty set and le t / : P(E) -> P(E) be a closure mapping with 
associated closure subset JSP. Note by Theorem 4.6 that i ? is a complete lattice. 

(a) For any mapping g : E -► is let ̂  = / ° #*. Prove that the restriction of η9 to JSf 
is residuated if and only if, for each A e J?, the set g*-(A) contains a largest 
element of «£?. 

(b) Using the notation of Exercise 4.15, let R be a binary relation on E. Let 
?7Κ = f° | R . Prove that 77̂  e Res J£? if and only if, for each A e Jâf, the set 
(/ ° £κ* ° /) (A) contains a largest element of «£?. 

(c) Prove that a mapping /* : JSf -► J5f is residuated if and only if h = ηκ for some 
binary relation Ron E satisfying the conditions in (b). 

[Hint, (a) Use Exercise 2.11. (b) Suppose that AR, the greatest element of ££ 
contained in (; ° SRt ° ;) (A), exists. Recall by Exercise 4.15 that ξR e Res [P(E)] 
with f i = ; « fRt ° /. Observe that (ξΛ ° f £) (Λ) £ Λ => foR ° « ) W) £ Λ =» ^Ä(^Ä) 
Ç ^ and that if B e Se with B ^ AR then ^R(5) Ç A. Hence rçR e Res (&) with ??* 
given by ηί(Α) = /ίΛ. For the converse, let ηκ be residuated and show that, for each 
A e «£?, ??RG4) is the largest element of J5f contained in !jJG4). (c) Consider x = y(R) 
oye (/° g+) (x) and proceed as in 5.8.] 

6. Regular equivalences on an ordered set 

Let E be an ordered set and let R be an equivalence relation on E. We 
shall say that jR is regular on E if and only if there is an ordered set F and 
an isotone mapping/: E-+F such that R is the equivalence associated 
with/in that x = y(R) of(x) = f(y). 

The above notion of regularity can be conveniently translated into a 
condition involving the ordering of E instead of the mapping / as the 
following result shows. 
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THEOREM 6.1. An equivalence relation R defined on an ordered set E is 
regular on E if and only if it satisfies the property 

(i = l , . . . , n ) at = tffCiÇn 

(i = l , . . . , n - l ) #? < ûfi + 1 >=>( /= l , . . . , n - l ) ö, Ξ ai + 1(R). 

a* < ÛJL J 

Before giving the proof of this result, we shall take a closer look at 
the property in question and give a particularly useful pictorial representa-
tion of it. 

Definition. By a closed bracelet modulo R we shall mean a diagram of 
the form 

o o o o o 
an - i a * a t a * a * 

in which the three vertical lines denote equivalence modulo R and the 
other lines are interpreted as in a Hasse diagram. In a similar way, we 
define an open bracelet modulo R to be a diagram of the form 

o o o o c 

ΛΛ/Xs—Λ/ 
In such a diagram the element x will be called the initial clasp of the open 
bracelet and the element y will be called the terminal clasp. 

Using these notions, we may re-phrase Theorem 6.1 as follows: 

THEOREM 6.1. An equivalence relation R defined on an ordered set E is 
regular on E if and only if every closed bracelet modulo R is contained in a 
single equivalence class modulo R. 
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Proof. Suppose first that JR is regular on E. Let there be a sequence of 
2n elements al9a* ,a2,a$ ,...,an9a* forming a closed bracelet modulo R, 
as above. Iff is an associated isotone mapping, then we have 

/(*i) =/(*?) <f(a2) = / K ) < ■·· <f(an) = / (ef ) </(*,) 

whence it follows that/(#i) = /(ßf) = " · =f(ctn) =/(ß*) and so the 
entire bracelet belongs to a single class modulo R. 

Conversely, suppose that JR satisfies the given property. On the 
quotient set EjR define the relation =̂  by setting 

Î
there is an open bracelet modulo R 

with initial clasp x and 

terminal clasp y. 

The relation ^ is reflexive since for each x e is we have the trivial open 
bracelet 

X X X X X 
o o o o o 

o o o o o 
X X X X X 

The relation =̂  is also transitive since two open bracelets, the terminal 
clasp of one being equivalent modulo R to the initial clasp of the other, 
may clearly be joined to form a single open bracelet. Note that these two 
properties hold irrespective of the standing hypothesis that JR satisfies the 
given property which we shall now use to show that ^ is anti-symmetric. 
Now if x/R ^ yjR and yfR =̂  x/R we have open bracelets 

3 l a 2
 a

n Y
 b

1
 b

2
 b

m X 
o o o o o o o o ΛΛ^-Ά/ ΑΆ/-Ά/ 

o o ©.. o o o o o 
x a* a * a * y b? b * b * 



44 RESIDUATION THEORY 

which we can clearly join together to form a closed bracelet, from which 
we deduce that x = y(R) and hence xjR = yIR. This then shows that =̂  
is an ordering on EjR. It is clear that x < y => xjR =̂  yjR and so the 
canonical surjection bR : E-> £/jRisisotone. Since it is such that x = y(R) 
o bR(x) = bR(y), it then follows that JR is regular on E. 

Our next result gives a very important property of the equivalence 
classes modulo a regular equivalence. 

THEOREM 6.2. If E is an ordered set and R is a regular equivalence on E 
then the equivalence classes modulo R are convex in the sense that 

x < y < z 

X ΞΞ z(R) J 
ΧΞΞ y = z(R). 

Proof. The conditions x < y < z, x = z(R) may be expressed in the 
form of a closed bracelet modulo R, namely 

y 
o 

i\. 
Z 
o 

o 
y 

\j 

trom which it follows, by the regularity of R, that x = y = z(R). 
Suppose now that E is any set and let us consider the set of equivalence 

relations on E. By Exercise 4.14 this set forms a complete lattice. For any 
family {jRa}aer of equivalence relations on E, the union of this family in 
the lattice is the relation f| i£a (refer to Exercise 4.14 for its definition). 

We call this the transitive product of the family. 
Turning our attention to the case where E is ordered and {R^aei is a 

family of regular equivalences on E9 we obtain the following result. 

THEOREM 6.3. The set of regular equivalences on an ordered set E forms 
a complete lattice which is not in general a sublattice of the complete 
lattice of all equivalence relations on E. 
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Proof. It is clear that the relation of equality on E and the universal 
equivalence πΕ on E [given by x = y(7cE) ox,yeE] both satisfy the 
bracelet property of Theorem 6.1 and are thus regular. The set of regular 
equivalences on E is therefore bounded. Now if {/?*}α6/ is any family of 
regular equivalences on E, then each i?a has the bracelet property of 
Theorem 6.1 and hence so also does f] Ra. This fact, together with the 

(xel 

dual of Theorem 4.2, shows that the set of regular equivalences on E 
forms a complete lattice with minimum element equality and maximum 
element the universal equivalence on E. Note that intersection in this 
lattice coincides with intersection in the lattice of all equivalence relations 
on E. However, unions do not coincide (so that the lattice of regular 
equivalences is not a sublattice of the lattice of all equivalence relations). 
To demonstrate this, we shall show by means of a counter-example that 
the transitive product of a family of regular equivalences is not in general 
regular. For this purpose, consider the ordered set E with Hasse diagram 

a 

b of ^oc 

o 
d 

and let F, G be the ordered sets with Hasse diagrams 
x <x 
o o 

oy oß 

o o 
z T 

respectively. The mappings/: E-* F and g: E^> G described by 

(f(a) = x=f(b); f(c) = y; f(d) = z; 

\g(a) = oc; g(c) = ß; g(b) = y = g(d) 
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are clearly isotone. The associated equivalence relations ^ , ^ given by 
P = qi^ofip) =f(q) and p Ξ q(&)og(p) = g(q) are then regular, 
the corresponding partitions of E being {{a, b}, {c}, {d}} and {{a}, {c}, 
{b, d}}. It is readily seen that the transitive product &><& partitions ΕινΑ,ο 
the classes {c}, {a, b, d} so that, modulo «^^, we have a closed bracelet 
of the form 

in which c φ a (&&). It follows by Theorem 6.1 that 1F& is not regular. 
This completes the proof. 

Our immediate aim now is to identify unions in the lattice of regular 
equivalences. Let R be any regular equivalence on E. Then the set of 
regular equivalences on E which contain R is not empty since it always 
contains the universal equivalence on E. Moreover, if {jRa}aei is a family 
of regular equivalences on E, then f] Ra is also regular on E. By the 

<xel 

regular closure R* of R we shall mean the intersection of all the regular 
equivalences on i? containing R. It is clear that the mapping/described by 
f(R) = R* is isotone and such that id <f = fof; it is thus a closure 
mapping, which explains the terminology. 

THEOREM 6.4. If E is an ordered set and R is any equivalence relation on 
E then the regular closure R* ofR is given by 

( there is a closed bracelet 

modulo R containing x, y. 

Proof. Let S denote the relation given by x = y(S) if and only if there 
is a closed bracelet modulo R containing both x, y. It is clear that R => S. 
Moreover, if Tis any regular equivalence containing jR then any bracelet 
modulo R is a bracelet modulo T. It follows by Theorem 6.1 that x = y(S) 
=> x = y(T) and hence that S => R*. We thus have the implications 



FOUNDATIONS 47 

R=> S=> JR*. To establish the result, it therefore suffices to show that S 
is regular. Now if R is regular then so also is S, for in this case R = R* 
and so we must have R = S. Suppose then that R is not regular. By the 
proof of Theorem 6.1 the relation =̂  R defined on E\R is then reflexive and 
transitive but not anti-symmetric. Now the relation S is none other than 
the equivalence relation 

x = y(S)o(xlR^RylR and ylR^RxjR), 

a closed bracelet containing x, y being considered as made up of two 
open bracelets. To show that S is regular, it is clearly sufficient to show 
that the corresponding relation =^s defined on EjS is anti-symmetric, it 
being already reflexive and transitive. Now from x/S =^sj/£ we deduce 
that there is an open bracelet modulo S with initial clasp x and terminal 
clasp y. Each "link" in this bracelet consists of a pair/?, q with/? = q(S) 
and, by the definition of 5, can be replaced by an open bracelet modulo R 
with initial clasp p and terminal clasp q. By the transitivity of = Ä̂ on 
EjR we deduce that 

xlS^sylS=>xlR^RylR. 
It follows that 

xlS^sylS=>xlR^RylR 

ylS^sxlS=>ylR^RxlR 

whence ^ s is anti-symmetric on EjS as required. 

Definition. If R, S are equivalence relations such that R => S, we say 
that R is finer than S [resp. S is coarser than R]. This terminology may be 
conveniently remembered by thinking of the corresponding equivalence 
classes as determined by the mesh of a sieve. 

THEOREM 6.5. A non-empty subset C of an ordered set E is an eqin-
valence class of at least one regular equivalence on E if and only if C is 
convex. 

Proof The necessity follows by Theorem 6.2. Suppose conversely that 
C is convex and consider the relation Rc defined on E by 

x = y (Rc) o (x = y or x,yeC). 

=> x/S = yjS, 
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It is clear that Rc is an equivalence relation on E. The equivalence classes 
modulo Rc are C itself and every single element subset {x} where x φ C. 
We shall show that JRC is regular on E whence the result will follow. 
Define the relation -< on EjRc as follows: 

(C <{y} (y$C) o ( 3 c e C ) c < y; 

\{y}<C(ytC) o(3ceC) y < c; 

{{x}<{y} (x,y<ßC)o (x < y or (3cl9c2eC) x < cl9c2 < y). 

It is clear that the relation -< is transitive. Moreover, since the equivalence 
classes modulo Rc are convex, the statements C ■< {y}, {y} < C are 
incompatible, as are the statements {x} -< {y}, {y} < {x}. It follows that 
the relation ^ defined on E/Rc by 

x\Rc < y\Rc o We < ylRc or x)Rc = y\Rc) 

is an ordering of EjRc. It follows from this that Rc is regular. 

COROLLARY. C being convex, Rc Is the finest regular equivalence on E 
admitting C as a class. 

Proof. This is immediate from the definition of Rc. 

Definition. A regular equivalence R on an ordered set E will be called 
strongly upper regular if and only if it satisfies the property 

a = a*(R)) 
=> (36* s i(Ä)) a < è*. 

a < b J 

Pictorially, this condition says that any diagram modulo R of the form 

a b 
o o 

1/ 
î* 
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can be embedded in a diagram modulo R of the form 

We shall refer to the above property as the link property. 
Let us note that when R is strongly upper regular, we can apply the 

link property repeatedly to any open bracelet 

ΛΛτ- y\ 
y 
o 

and thus reduce it to a diagram of the form 

o 

y\ 
It follows from this that if R is strongly upper regular then the ordering 
defined on E\R as in Theorem 6.1 is given by 

(Χ,ΥβΕ/Κ) X^ Yo(VxeX)(3yeY) x<y. 

THEOREM 6.6. An equivalence relation R on an ordered set E is strongly 
upper regular if and only if it satisfies the properties 

(1) R has convex classes; 
(2) R satisfies the link property. 
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Proof. The necessity of the conditions follows from what has gone 
before. To prove that the conditions are sufficient, suppose that we have 
a closed bracelet modulo R. Denote this bracelet by [at; tf *] f . Now, start-
ing with any given a5 in this bracelet, we can apply (2) repeatedly to obtain 
a chain of elements bt as in the diagram 

O b ; 

Ί-2 

j -1 

,.?.b 

<z-S\ m
ai-2 • ,?,aH v,?.aJ v,?,aJ+i 

J+2 

i + 2 . 

dJ-2 d H 

This process yields Û*_I < aj < bj-x with a*-± = bj.^R). The hypo-
thesis (1) then gives a3 Ξ af-χ = dj^^R). Since this holds for each./, it 
follows that all elements in the bracelet belong to the same class modulo 
R. It follows by Theorem 6.1 that R is regular. This, together with (2), 
then shows that R is strongly upper regular. 

Remark. It is worthy of note at this juncture that neither of the condi-
tions (1) and (2) of Theorem 6.6 is sufficient in itself to imply that R is 
regular. For example, let E be the ordered set with Hasse diagram 
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and consider the equivalence relation R on E whose partition is 
{{a, b}, {c, d}}. The classes modulo R are clearly convex, but R is not 
regular because of the following bracelet modulo R 

o 
a 

Nj o 
c 

Also, if we consider Z ordered in the natural way and the equivalence 
relation S which partitions Z into two classes, one consisting of all the 
even integers and the other consisting of all the odd integers, then S is not 
regular since, for example, we have a bracelet 

4 3 

\ 

2 1 

with 4 ψ 3(5). However, 5 satisfies the link property; for any diagram of 
the form 

2p + r 2q + r+s 

o 
2q + r 

can be embedded in the diagram 
2p+r+s 
o 

2q+r+s 
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THEOREM 6.7. If {jRft}«er is a family of equivalence relations on an 
ordered set E each of which satisfies the link property then so also does their 
transitive product Y[ jRa. 

«el 

Proof Suppose that we have a diagram 

the equivalence being modulo the transitive product f ] Ra. By the 
«el 

definition of J~{ Λα there is a sequence of elements ax,..., an and a 

sequence of suffices ocl9 ...,ocn+1 such that 
a* = aiCRai), ..., a, Ξ ai+1(iiai+1), ..., an s ΰ(^η+1). 

Since each Rai satisfies the link property, we can build the diagram 
b* 
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which, as a diagram modulo Y[ i?a, is 
»el 

It follows that Y[ R^ also satisfies the link property. 
otel 

COROLLARY. The transitive product of a family of strongly upper regu-
lar equivalences is strongly upper regular if and only if its classes are 
convex. 

Proof This follows immediately from Theorem 6.6. 

THEOREM 6.8. If E is an ordered set then the set of strongly upper regu-
lar equivalences on E forms a complete lattice which is not in general a 
sublattice of the complete lattice of regular equivalences on E. 

Proof The previous corollary shows that if unions exist then they are 
not in general transitive products. Given a family {R^aei °f strongly 
upper regular equivalences on E9 let us therefore consider the regular 
closure of the transitive product J | R0l. We know that (TliCi* ^ a s 

ftel Wl / 

convex classes (Theorem 6.2). If, therefore, we can show that it satisfies 
the link property then it will be strongly upper regular by Theorem 6.6, 
whence the strongly upper regular equivalences on E will form a u-com-
plete u-subsemilattice of the lattice of regular equivalences on E. For this 
purpose, suppose that we have a diagram of the form 

x z 

y 
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the equivalence being modulo ίγ\ RA*. By Theorem 6.4 there is a closed 

bracelet modulo Y\ Rx containing x, y and so the above diagram becomes 
<xel 

7..y\ 
o o1 ; r ys 

in which each equivalence is modulo Y[ R^. Now we have shown in the 
otel 

previous theorem that f| R^ satisfies the link property. Applying this 
(xel 

fact repeatedly to the previous diagram, we can build the following dia-
gram in which each equivalence is modulo Y[ Ra : 
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Since by definition f ] Ra => /Π &Λ* there follows from this the diagram 
ael \ael / 

in which the equivalences are modulo /J~I ΚΛ*. This then shows that 

(Π ^«)* satisfies the link property. It follows that the set of strongly 

upper regular equivalences on E forms a u-complete u-subsemilattice of 
the complete lattice of regular equivalences on E. Since this semilattice 
contains a minimum element, namely equality (which is trivially strongly 
upper regular), it follows by Theorem 4.2 that it is a complete lattice. To 
show finally that it is not in geneial a sublattice of the complete lattice of 
regular equivalences on E, it suffices to show that the intersection of two 
strongly upper regular equivalences is not in general strongly upper regular, 
For this purpose, consider the ordered sets E,F, G with respective Hasse 
diagrams 

π w 
o 

a 2 o 

a1 o^ 

^o br 

,o b, 

o x 

o 
o 

o y 

o 
z 

a 
o 

Γ 
o 

r 

The mappings/: E-*F,g:E-^G described by 
i/(*0 = w; Aa2)=f(b2)=f(b1) = x; f(ai)=y; /(0) = z; 

\g(n) = g(b2) = <x; «(«a) = g(a2) = gQn) = ß; g(0) = γ; 
3 BRT 
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are clearly isotone. The associated regular equivalences J^, Φ admit the 
following partitions of E: 

&: {{*}, {*2,*2,M> {*i}> {°}}; 

9: {{n,b2}, {αΐ9α2Μ}> {0}}, 

and it is readily seen that &, & are strongly upper regular. Now the 
equivalence & n ^ admits the following partition of E\ 

We thus have a diagram modulo ^ n 9 of the form 

a2 b2 
o o 

o 

and since there is no element x e issuch that x = b2 (^ n 0) and Û2 ^ *> 
we conclude that «^- π S? is not strongly upper regular. 

Since each closure mapping on an ordered set E is isotone, it is clear 
that the associated closure equivalence is regular. We can in fact say more 
than this. 

THEOREM 6.9. An equivalence relation R on an ordered set E is a closure 
equivalence if and only if 

(1) each class modulo R has a maximum element; 
(2) R satisfies the link property. 

Proof Let / be a closure mapping on E such that the equivalence 
associated with / i s R. It is clear that for each x e E the class xjR admits 
a maximum element, namely f{x). To show that R satisfies the link 
property, we observe that since 

a < b => (Va* ΞΞ a(R)) a* < f(a) < f(b), 
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each diagram of the form 

can be embedded in one of the form 

Conversely, suppose that R satisfies properties (1), (2). For each xe E 
let the maximum element in the class of x modulo R be x* and consider 
the mapping/: E-> E described by (VJV e E)f(x) = x*. Since by defini-
t ion/^) e xjR it follows t h a t / o / = / As we have id£ < / , it remains to 
show that/is isotone. Now since R satisfies the link property, the diagram 

yields a diagram 
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and since y' < j>* by definition, we conclude that 
x < y =>/(*) = x* <y' <y* =f(y), 

showing that fis isotone as required. 
COROLLARY. Every closure equivalence is strongly upper regular. 

Proof. If R is a closure equivalence and x* denotes the maximum 
element of xjR, then clearly x/R =̂  yjRox* < y*. It follows from this 
that the classes modulo R are convex. This, together with (2) of Theo-
rem 6.9 gives the result by virtue of Theorem 6.6. 

Our next result concerns an important property of strongly upper 
regular equivalences which will be of use to us later. 

THEOREM 6.10. Let E be an ordered set and let R be a strongly upper 
regular equivalence on E. Then the following conditions concerning ae E 
are equivalent: 

(1)4R £[*-,*]; 
(2) (Vx e E) xjR n [<-, α]Φ0=> xjR ç= [<-, a]. 

Proof It is clear that (2) => (1) since a e a\R n [<-, a]. Suppose, con-
versely, that (1) holds and let x e E be such that x\R n [<-, a] Φ 0. If 
y e x/jR n [<-, a] then for each x* e xjR we have, modulo R, the diagram 

x * a 
o o 

o 
y 

Since R is strongly upper regular, there exists a* = a(R) such that x* < a*. 
It follows by (1) that x* < a and hence that xjR ç [<-, a], 

Dual to the notion of strong upper regularity, we say that a regular 
equivalence is strongly lower regular if every diagram of the form 
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can be embedded in a diagram 

There are, of course, dual results to those above concerning strongly lower 
regular equivalences. A regular equivalence which is both strongly upper 
regular and strongly lower regular will be called strongly regular. In the 
particular case where the ordered set in question is a lattice, there is a 
particularly important type of strongly regular equivalence which we shall 
now describe. 

If L is a u-semilattice, we shall say that an equivalence relation RonL 
is compatible with u if and only if it is such that 

x = y(R) => (Vz e L) z u x = z u y(R). 

When JR is compatible with u, the quotient set L\R becomes a Y-semi-
lattice under the induced law xjR Y y/R = (x u y)jR. In this case, the 
ordering <R of EjR is given by xjR <RyjR if and only if yjR = xjR 
Y y IR which is equivalent to y = x u y(R). 

THEOREM 6.11. Let Lbea u-semilattice. IfR is an equivalence relation 
on L which is compatible with u then R is strongly upper regular and the 
orderings <R and^R coincide. 

Proof. We note first that the classes modulo JR are convex; for if 
x < y < z with x = z(R), then y = x u y = zu y = z(R). Moreover, R 
satisfies the link property; for from 

x Y 
o o 

> 
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we deduce that xvy==x*vy = y, whence we have the diagram 

That R is strongly upper regular now follows by Theorem 6.6. Now let 
xjR <RyjR, so that y = x v y(R). If x* = x(R) then we have x* u y 
ΞΞ x u y = y(R). In other words, for each x* equivalent to x modulo R 
there is a j>* [= x* u y] equivalent to y modulo R such that x* < y*. It 
follows that x/i^ ^RylR. But, conversely, if we have xjR ^Ry/R, then 
by the definition of = Ä̂ there exists j * in the class of y modulo R such that 
x < y*. This gives J ^ X U J * and so yjR = J>*/JR >RxjR. It follows 
that the orderings coincide. 

Definition. Let L be a lattice. By a congruence relation on L we shall 
mean an equivalence relation on L which is compatible with both u and 
n inL. 

It is immediate from the previous results that every congruence rela-
tion on a lattice L is strongly regular on L. The converse of this is not in 
general true. For example, consider the lattice with Hasse diagram 

x o 

The equivalence relation R responsible for the partition {{0}, {x, y}, {π}} 
has convex classes and satisfies both the link property and its dual. It is 
therefore a strongly regular equivalence. However, it is not compatible 
with either u o r n ; for example, x = y(R) but x = x u x ^ x u > > = n(R). 
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EXERCISES 

6.1. Let E be an ordered set and let R be an equivalence relation on E. Define the 
relation =^Ron EjR as follows: 

xIR ^R ylR o (V** e x/R) (3>>* e y IR) x* < y*. 

Prove that =^R is an ordering on E/R if R has convex classes. Supposing that =^K 
is an ordering, let t?R be the canonical surjection of E onto E/R. If Fis any ordered 
set and g : EjR -+ Fis such that g ° 4R is isotone, prove that g is isotone. Show also that 
$R is isotone if and only if R satisfies the link property. Deduce that =^R is an ordering 
and bR is isotone if and only if R is strongly upper regular and that 4Λ is residuated if 
and only if R is a closure equivalence. 

6.2. Let F, F be ordered sets and le t / : F - * F be isotone. If Rf is the associated 
equivalence and f=g° MRf is the canonical decomposition of/, prove that g : F/i?r 
-► Im/ i s an order isomorphism if and only if 

( a ) ( * < j and /(*) = /(**)) => {By*fe F) (/(>♦) = f(y) and ** < j * ) ; 
(b) /W < f(y) => (3*·, 7* e F) (/(*) = f(x*),f(y) = /ϋ>*), ** < j * ) . 
6.3. Let (Ex, < i), (F2 , <2) be ordered sets with F 2 upper directed. Let Ex x F2 be 

ordered as in Example 1.6 and let R be the equivalence relation given by 

(x1,x2) s (yi9y2)(R)oxi = ^ . 
Prove that R is strongly upper regular on Fx x F 2 and that the ordered sets (E1, < ±) 
and ((Fi xE2)/R, <R) are isomorphic. 

6.4. Let F be an ordered set and let Δ = {Ca}a6/ be a family of disjoint convex 
subsets of F. Prove that Δ is a family of equivalence classes of at least one regular 
equivalence on F if and only if A satisfies the following class bracelet property: any dia-
gram of the form 

is contained entirely in a single Ca. [Hint: To prove necessity, use Theorem 6.1. As for 
sufficiency, consider the relation F j given by 

ΧΞ= y(EA)o(x = y or (3K e I) x, y e Ca). 

Show that EA is regular, having the Ca amongst its classes.] 
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6.5. A regular equivalence R on an ordered set E is said to be totally regular if and 
only if each diagram modulo R of the form 

can be completed to a diagram 

Prove that every totally regular equivalence R is strongly regular and that in this case 
the ordering =^Α is given by 

xIR <Ry/Ro (Vx* e x/R) (V/* 6 y/R) x* < y*. 
If {Rfiìaei is a family of totally regular equivalences on E9 prove that Ç] i?« and Π R* 

<xel ate! 

are also totally regular. If Eis a lattice, show by means of an example that a congruence 
relation on E is not in general totally regular. 

6.6. Let L, M be u-semilattices, M having a minimum element 0. For any u-epi-
morphism / : L -> M let K e r / = {xeL;f(x) = 0}. Show that Ker / i s a semilattice 
ideal of L. Prove, conversely, that if L is a u-semilattice with minimum element and 
/ is an ideal of L then the relation Rj given by 

x = y(Rj)o (3iel)x u / = y u / 
is a ^-compatible equivalence relation on L with / = Ker bRl. 

6.7. A congruence relation R on a complete lattice L is said to be complete if and 
only if 

((Va e / ) χΛ s xtfö) => U *Λ = x = Π ^«(Λ). 

Let i? be a complete congruence on the complete lattice L. Show that, for each x e L, 
the equivalence class xjR is a sublattice of L which is also complete. Denoting the 
maximum element of xjR by xR and the minimum element by xR, letfR : L -> L be 
given by the prescription/^(JC) = JCÄ. Prove that/κ is a residuated dual closure map 
with/j£ given by /*(#) = JCR. Hence show that there is a bijection between the set of 
complete congruences on L and the set of residuated dual closure maps on L. 

6.8. Let R be an equivalence relation on the ordered set E. Suppose that the rela-
tion =^R described in Exercise 6.1 is an ordering on E/R. Prove that the following 
conditions are equivalent: 
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(a) R is the equivalence relation associated with a residuated dual closure mapping 
on E; 

(b) each class modulo R is bounded; 
(c) the canonical surjection bR:E-+ EjR is both residuated and residual. 
6.9. If R is an equivalence relation on an ordered set E define the transitive 

closure of R to be the smallest transitive relation on E which contains R. If the 
relation =̂  is defined on E/R by 

x/R ^ y/R o (3x* e x/R) (3y* e y/R) x* < y*, 

prove that R is regular if and only if /c(=Q, the transitive closure of =ζ, is anti-
symmetric. Show also that if i? is strongly upper regular then =̂  and tc(=^) coincide. 

7. Complementation in lattices 

In what follows we shall have frequent occasion to consider particular 
types of lattices. For this reason we devote § 7 -► § 10 inclusively to a 
brief study of them together with properties which we shall require. In § 11 
we shall discuss lattices which arise naturally in connection with a par-
ticular type of ring and in § 12 regain contact with residuated mappings, 
establishing a profound connection between lattices and the semigroup of 
residuated mappings on a bounded ordered set. 

Unless otherwise specified, the symbol 0 will be used to denote the 
smallest element of an ordered set whereas π will be used to denote its 
greatest element (provided of course that such elements exist). An element 
b of a bounded lattice L is said to be a complement of aeL whenever 
a u b = π and a n b = 0. A lattice L is said to be complemented if each 
element of L admits at least one complement. In a lattice L with 0 an 
element b is called a semicomplement of a whenever a n b = 0; and L is 
said to be semicomplemented if each aeL (with a Φ π if π exists in L) 
admits at least one non-zero semicomplement. A lattice L with 0 is said 
to be section complemented if every interval sublattice [0, a] is comple-
mented and section semicomplemented if every interval [0, a] is semi-
complemented. A lattice L will be called relatively complemented^ whenever 
every interval [a, b] is complemented. 

We can also formulate the concept of a dual semicomplemented, a dual 
section semicomplemented or a dual section complementedlattice to denote 
the fact that the dual lattice has the corresponding property. 
3a BRT 
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The following diagram, in which the ordering is given by logical 
implication, is designed to aid the reader's intuition: 

semi-
complemented o 

section semi 
complemented ô 

section 
complemented ò 

relatively 
complemented ô 
with 0 

relatively 
complemented 
with 0 and π 

dual semi-
o complemented 

dual section semi-
ò complemented 

dual section 
ò complemented 

relatively 
ô complemented 

wi t l ·^ 

In order to see this, we begin by establishing the implications shown. 
Let L be a section complemented lattice. If a < b and x is a complement 
of a in [0, b] then x na = 0 and XKJ a = b forces x Φ 0 and so x is a 
non-zero semicomplement of a in [0, b\ Thus L is section semicomple-
mented. A similar argument shows that every complemented lattice is 
semicomplemented. The remaining implications follow from dual argu-
ments or are immediate from the definitions. 

Let us now show that each of the implications is strict. The lattice of 
all finite subsets of an infinite set is an example of a relatively comple-
mented lattice with 0 having no greatest element. The following Hasse 
diagram describes a lattice which is section complemented but not rela-
tively complemented: 
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As an example of a lattice which is section semicomplemented but not 
section complemented, and semicomplemented without being comple-
mented, we present the Hasse diagram 

Finally we present an example of a complemented lattice which is not 
section semicomplemented: 

The remaining examples required are obtained by considering the duals of 
the above lattices. 

While we are on the subject of examples and counter-examples, let us 
mention that Example 1.2 has no semicomplemented intervals, Exam-
ple 1.4 is semicomplemented but not section semicomplemented while 
Example 1.3 is a relatively complemented lattice with 0 and π. Exam-
ple 1.3, incidentally, also furnishes an example of what is known as a 
pseudo-complementedlattice; i.e. a lattice with 0 in which the semicomple-
ments of each element form a principal ideal. Thus by a pseudo-comple-
mented lattice we mean a lattice with 0 such that for each translation 
λα : x -» x n a the element λ£(0) = max {y; a n y = 0} exists. Closely 
related to this is the notion of a semilattice with 0 in which every trans-
lation is a residuated map. Such a semilattice is called a Brouwer semi-
lattice and will be discussed later. We note that any bounded chain is 
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a pseudo-complemented lattice (in fact Brouwerian) as is the last Hasse 
diagram of the preceding paragraph. 

EXAMPLE 7.1. A bounded lattice L is said to be uniquely complemented 
if every element of L admits precisely one complement. The importance 
of this type of lattice follows from the remarkable fact (see [7], [10]) 
that every lattice is a sublattice of one which is uniquely complemented. 
Given a uniquely complemented lattice L let x' denote the unique com-
plement of x for each xeL. Then if a < b we have b u ä > a\j a' = π 
and so b u a' = π. Since b Φ tf we must have V Φ a1 and so b n a' φ 0. 
Thus b n a' is a non-zero semicomplement of a in [0, b]. This establishes 
the fact that L is section semicomplemented and a dual argument shows 
that L is also dual section semicomplemented. 

Although we do not propose to develop here the theory of the lattices 
described above, it will prove convenient to establish a few useful facts. 
In connection with this, we shall agree to write a V è in a lattice with 0 to 
denote the fact that (a u x) n b = x n b for all elements x. 

THEOREM 7.1. For each non-empty subset M of a lattice L with 0 let 
Mv = {aeL; (Vm e M) a V m}. Then Mv is an ideal ofL. 

Proof. Let a V m and let b < a. Then 

(Vx e l ) (6 u x) n m = (è u x) n (a u x) n m 

= ( 6 u x ) n x n m = x n w 

and so b V m. Also, if at V m and α2 V m, then 

(VA: e L) (a ! u Û2 ^ ^) n m = (α2 u x) n m = x n m 

and so (ax u a2) V m. 

THEOREM 7.2. Let L be a dual section semicomplemented lattice with 0. 
Then for a,beL the following conditions are equivalent: 

(l)aVb; 
(2) a v y = π => b < y; 
(3) (Vx eL) x = (x u a) CI(XKJ b). 
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Proof. (1) => (2) : If a V b and CIKJ y = π, then b = nnb = (avy)nb 
= y n b and consequently b < y. 

(2) => (3): Let x e L and suppose that Λ: < (x u #) n (x u Z>). Using 
the fact that L is dual section semicomplemented we can produce an ele-
ment y such that x < y < π and y u [(x u 0) n (x u 6)] = π. Then 

j u f l = j u x u ß > j u [ ( x u ö ) n ( x u i ) ) ] = jr 

and so j u a = π. Similarly, we have y u 6 = π. By (2), j u 0 = π im-
plies b<y so y = y\jb = n, a contradiction. We conclude that (3) 
holds. 

(3) => (1) : If x = (x u à) n (x uè) then x n i = ( χ υ ΰ ) η ( χ υ Α ) η Ι ) 
= (a u x) n è. 

COROLLARY. If L is a dual section semicomplemented lattice with 0, 
//zen 

(l)aVb=>bVa; 
(2) if xaVb forali oc e I and (J xa ejasto i/zen /(J xa\ Vè. 

<xel \<xel / 

In sharp contrast to the above situation, we have: 

EXAMPLE 7.2. Consider the lattice L whose ordering is indicated by the 
following diagram : 

a o. 

Specifically, let L = R u {0, a, π] where 0 < a < π, R denotes the real 
numbers under their usual ordering and for each r e R we agree that 
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0 < r < π. For r, s e R with r > s we have 

{aKjs)r\r = nr\r — r and s n r = s < r9 

and so Û V r fails. On the other hand, r V a is easily verified. If 
(V& e / ) ra e R, and if {ra}aeI has no upper bound in R then clearly (J ra 

«el 

= π in L. Now (Va eI)rAVa whereas nV a fails. We thus have a comple-
mented lattice in which both conditions of the previous corollary fail. 

THEOREM 7.3. In a section complemented lattice with π every dual semi-
complement of an element b contains a complement ofb. 

Proof. Let # u b = π and choose x to be a complement of a n b in 
[0, a]. Then ^ < û r , x n i = J O û n i = 0 and x\jb = x\j{ar\b)Kjb 
= a u b = π. 

Definition. Two elements a, 6 of a lattice L with 0 will be called perspec-
tive, in symbols a ~ b, in case there is an element x such that avx=bvx 
while u i n x = 0 = i n i We shall say that a, b areprojective, in symbols 
a & b, when there exist finitely many elements al9a29^.9an

 s u c h that 
a ~ a± ~ a2 ~ · · · ~ or« ~ δ. 

THEOREM 7.4. Zn a bounded relatively complemented lattice the following 
conditions are equivalent: 

( l ) f lVi; 
(2) è w contained in all complements of a; 
(3) / J« ! < a and b1 < b are such that at ~ b± then ax = bx = 0. 

Proof (1) => (3) : a V b => a V b± => ax V bx. Let x be such that #! u x 
= bxv x and fl1nx = 0 = i> 1 nx , Then èx = (at u x) n b1 = Λ: Π &! 
= 0; in a similar way ax = 0. 

(3) => (2): For a given complement x o f a let y be a complement of 
x u 2> in [x? JT]. Then ^ > χ = > ; ; υ α = π and clearly y <u b = y \J XKJ b 
= π. Two applications of Theorem 7.3 will now produce elements at < a, 
b± < b such that ax and b± are each complements of y. But then αλ ~ b± 

and so by (3) we have a± = bx = 0 giving >> = π and x = x u i > J , 
(2) => (1): Let a u x = π. By Theorem 7.3, χ contains a complement;; 

of a. By (2) we then have b < y < x from which we deduce that a V b. 
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A useful characterization of both semicomplemented and section 
semicomplemented lattices may be given in terms of their associated 
filter lattices. For this purpose, we require the following notion. 

Definition. A filter M of a lattice L which is such that M Φ L and 
there is no filter F with M c F c I will be called an ultrafilter. In other 
words, an ultrafilter is a maximal proper filter. 

THEOREM 7.5. In a lattice L with Oleta r\b = 0 with b Φ 0. Then there 
exists an ultrafilter M ofL such that beM but αφΜ. 

Proof. Let y be the family of all filters F such that a φ F but b e F. 
Note that & Φ 0 since [&, -*] e ^ . Order & by set inclusion and note 
that by a simple application of Zorn's axiom & has a maximal element M. 
By the definition of M, a φ M but beM. Now if M c F in the lattice of 
filters of L then by our choice of M we cannot have F e &. It follows that 
a e F and soO = a c\beF whence F = L. This shows that M is an ultra-
filter and completes the proof. 

THEOREM 7.6. A bounded lattice L is semicomplemented if and only if 
the intersection of its ultrafilters is {n}. 

Proof. Suppose first that the intersection of the ultrafilters of L is {π}. 
Then if a < π there exists an ultrafilter M such that a φ Μ. It follows that 
in the lattice of filters of L we have [a, ->] Y M = L. In particular 
0e [a, -*] Y M and so 0 = a n x for some x e M . Since M is an ultra-
filter we must have ^ ^ 0 . This shows that L is semicomplemented. 

Suppose conversely that L is semicomplemented. If a < π then a 
admits a non-zero semicomplement x. By Theorem 7.5 there exists an 
ultrafilter M such that a φ Μ. It follows from this that the intersection of 
all the ultrafilters of L is {π}. 

THEOREM 7.7. A bounded lattice L is section semicomplemented if and 
only if every principal filter other than[0, -*] is the intersection of a family 
of ultrafilters. 

Proof. Suppose first that every principal filter other than [0, ->] is the 
intersection of a family of ultrafilters. Let a < b in L. Then clearly [b, -»] 
c [a, ->] and so there exists an ultrafilter M containing [b, -+] but not 
[a, ->]. Then [a, -*] Y M = I , whence 0 e [a, ->] Y M and so 0 = a n x 
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for some x e M. Now b,xe M with M an ultrafilter implies b ΓΛΧ Φ 0 

since b n xeM. It follows that i n i is a non-zero semicomplement 
of a in [0, b]. Thus L is section semicomplemented. 

Conversely, suppose that L is section semicomplemented. We must 
show that if a Φ 0, then [a, ->] is the intersection of a family of ultra-
filters. By Theorem 7.5 there exists an ultrafilter M such that aeM. Let 
{Fa; <%e/} denote the set of all ultrafilters containing [a, -»]. Note that 
[a, -►] ^ P) F a . Now if rf G P| Fa let us show that d > a. Suppose that 

ael <xel 

c = d n a < a and choose x to be a non-zero semicomplement of c in 
[0, a]. Then x n r f = x n u r n i / = x n c = 0 and so, by Theorem 7.5, 
we can find an ultrafilter K such that xeK but J φ Κ . Now x e ^ with 
x < a implies ae K; and by our choice of d we must then have d e K, a 
contradiction. We conclude that c = a and hence a < d. This completes 
the proof. 

EXERCISES 

7.1. Prove that in a lattice L with 0 the following conditions are equivalent: 
(a) L is section semicomplemented; 
(b) a < b => (3x e L) x n a = 0 and x r\b φ 0; 
(c) {xeL; x nb — 0} ^ { j teL;* η β = 0 } = > α < £ . 
7.2. Prove that the MacNeille completion of a lattice with 0 is semicomplemented 

(resp. section semicomplemented) if and only if the lattice itself is semicomplemented 
(resp. section semicomplemented). Deduce that the MacNeille completion of a bounded 
relatively complemented lattice is both section and dual section semicomplemented. 

[Hint. Let L denote the MacNeille completion of L. Use the fact that L is a sub-
lattice of L and that if / < J'mL, then / must have an upper bound x in L such that x 
is not an upper bound for /.] 

7.3. Prove that every pseudo-complemented lattice is bounded. Prove further that 
a pseudo-complemented lattice is complemented if and only if it is semicomplemented. 

7.4. In an arbitrary lattice L define a V b to mean that (Vx eL)(a u x) r\b = x r\b. 
Show that L has a pair of elements a, b for which aV b holds if and only if L has a 0. 

7.5. Let L be a dual section semicomplemented lattice with 0. Show that the map-
ping /-> 7V (see Theorem 7.1) induces a Galois connection in the sense of Exercise 2.8 
on the lattice of ideals of L. 

7.6. Prove that in a section semicomplemented lattice a V b is equivalent to the 
assertion that b^ < b and b± < a u x with by n x = 0 imply 6χ = 0. 

7.7. An element a of a lattice with 0 is called an atom of L whenever a φ 0 and 
there is no element x such that 0 < x < a. L is said to be atomic if every non-zero eie-
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ment contains an atom; and atomistic if every non-zero element is the union of a family 
of atoms. Prove that 

(a) a bounded atomic lattice is semicomplemented if and only if π is the union of 
its atoms; 

(b) an atomic lattice is atomistic if and only if it is section semicomplemented; 
(c) an atomic lattice is atomistic if and only if it is relatively atomic in the sense that 

x < y implies the existence of an atom a such that a < y but a $ x. 

7.8. Prove that if a is an atom of a uniquely complemented lattice, then aV a' 
{α' denoting the unique complement of a). [Hint, Show that if a u y = π then a' <y 
and apply Theorem 7.2.] 

8. Modularity in lattices 

We shall say that an ordered pair {a, b) of elements of a lattice L form 
a modular pair, in symbols M {a, b), if and only if, for all ceL, 

c<b=>cKj(anb) = (cKja)r\b. 

Dually, (a, b) is called a dual modular pair, in symbols M* (a, b), if 

c>b=>cn(a^jb) = (cr\a)ub. 

Thus M* (a, b) in L is equivalent to M (0, b) in the dual of L. We say that 
a lattice L is modular if M (a, b) holds for all a, beL. 

In the following lattice 
π 
o 

a o o c 

o 
0 

we note that M (c, #) holds but not M (a, c). This shows that the relation 
of being a modular pair is not symmetric. Since M* (a, c) is also true, we 
see that modular pairs need not be dual modular pairs. Despite this (see 
Exercise 8.1) it is true that L modular implies L* modular. 

EXAMPLE 8.1. Let G be a group and let N(G) be the set of all normal 
subgroups of G. It is readily seer, that N(G) forms a lattice with respect to 
set inclusion in which intersection is simply set-theoretic intersection and 
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union is given by 
HY K= HK= {hk; heH, keK}. 

The lattice (N(G), n, Y) is modular. In fact, in any lattice we have 
x < z =s> x u (y n z) < (x u y) n (x u z) = (x u y) n z and so all we 
need do is show that 

H^K=^H(JnK) !=>HJnK. 

For this purpose, let x e HJ n K; then we have x e HJ and x e K. Con-
sequently (3j; e H) (3z eJ)x = yz and soz = y~1xe HK ^ K2 = J£giv-
ing zeJnK and x = yz e H (J n K). A similar result holds for the 
lattice of ideals of a ring and, more generally, for the lattice of submodules 
of a module. 

EXAMPLE 8.2. The set L(V) of subspaces of a vector space V over a 
division ring D forms a complete modular lattice when ordered by set 
inclusion. This lattice is easily seen to be both atomistic and comple-
mented. The atoms are, of course, the one-dimensional subspaces and a 
complement for a subspace M may be obtained in the following manner: 
construct a basis for M and extend this to a basis for V by means of vec-
tors {jçjœf. The subspace generated by {xa}aei will then serve as a 
complement for M. 

Our first result of this section gives a very neat characterization of 
modular pairs in terms of relative complements: 

THEOREM 8.1. A pair (a, b) of elements of a lattice Lis a modular pair if 
and only ifL does not possess a sublattice of the form 

a\jx = a\jy 
o 

- / V 
ao 

\ > 
ar\b 

with y < b. 
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Proof. If M (a, b) holds and there exists a sublattice of the indicated 
form then x < y < b and so (x u a) n b = x u (0 n b) = x which gives 
j = ( x u û ) n j = ( x u û ) n i i n } ' = x n j ; = ^ a contradiction. If, 
on the other hand, M (tf, b) failed, then we could find an element c < b 
such that c KJ (a n b) < (c yj a) r\ b. Set x = C\J (a c\b) and y = 
( c u û ) n è. Note that anb<ar\y = ari(cua)nb = ar\b and so 
ar\b = any = anx. Dually, aux = aucu(anb) = auc> 
a\j y > a\j x shows that avx = avy = avc. This produces a sub-
lattice of the desired form. 

COROLLARY 1. M (A, b) holds in L if and only if it holds in [a r\b,av b], 

COROLLARY 2. A lattice L is modular if and only if it has no sublattice 
of the form 

COROLLARY 3. A lattice is modular if and only if no element admits 
distinct but comparable complements in an interval sublattice. 

Our next result is sometimes referred to as the parallelogram law: 

THEOREM 8.2. If M {a, b) andM* (è, a) both hold in a lattice L then the 
interval sublattices [a, au b] and [a n è, b] are isomorphic. 

Proof Define/: [a, a u b] -> [a n b, b] and g : [a n b, b] -* [a, a u b] 
by the prescriptions f(x) = x n b and g(x) = x u a. As can readily be 
seen,/and g are isotone and mutually inverse. 

COROLLARY. In a modular lattice with 0, a ~ b implies that the inter-
vais [0, a] and [0, b] are isomorphic. 

Proof Let au x = b \J x with anx = 0 = bnx. Then by the 
theorem [0, a] = [a n x, a] is isomorphic to [x, x u a] which in turn is 
isomorphic to [0, b]. 



74 RESIDUATION THEORY 

Let us mention that the specific isomorphism called for in the previous 
corollary is given by a1 -> (a1 u x) n b with bt -+ (b1 u x) n a acting as 
its inverse. 

In the presence of modularity several of the concepts of § 7 coincide, 
as is illustrated by the following result : 

THEOREM 8.3. Every complemented modular lattice is relatively com-

plemented. 

Proof. Let a < c < b and let a' denote a complement of a. Then by 
Theorem 8.2 the mapping x - > x n « ' i s a n isomorphism of [a, b] onto 
[0, b n a'] whose inverse is given by x -> x u a. If w is a complement of 
c n a' in L, then clearly w n £ n #' is a complement of c n Û' in the 
interval [0, b n a']. It is immediate that (wnbn a') u a is a complement 
of c in [α, ό]. 

EXERCISES 

8.1. Prove that if M (a, c) holds for all c > b in a lattice, then M* (a, 6) holds. 
Deduce that a lattice L is modular if and only if its dual L* is modular. 

8.2. Prove that every homomorphic image of a modular lattice is modular and 
that X Lt is modular if and only if each of the lattices Lt is modular. 

iel 

8.3. Prove that the lattice of ideals of a lattice L with 0 is modular if and only if L 
is itself modular. 

8.4. Prove that M (a, b),axe[a n b, a],bie[a n b, b] => Μ{αχ, b{). 

8.5. Prove that M (a, b), M(c,a u b) with c r\(a v b) < a=> M(c v a,b) and 
( c u û ) n è = a n | i , 

8.6. Let L be a modular lattice with 0. Write a Lbto denote the fact that a nb = 0. 
Prove that if a JL b and (a v b) ± c then Ä ± (6 u c). 

8.7. Prove that in any modular lattice with 0 the properties ß V b and 6 V <z are 
equivalent. 

8.8. Let £ be a bounded relatively complemented lattice. Consider the following 
assertions concerning the elements a,beL: 

(a) a ~ b in [0, a u b] ; 
(b) (3JC e Z , ) a u x = Z>ujt and a n x = b n x; 
(c) ß ~ b; 
(d) ß and b have a common complement in L. 
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Show that (a) => (b) => (c) => (d) and that in the presence of modularity (d) => (a). 
Deduce from this that L is modular if and only if it has no sublattice of the form 

Λ 
\ / ! 

o 
0 

Deduce further that L is modular if and only if (d) => (a). 
8.9. Let L be a lattice with 0. An element b is called a maximal semicomplement 

of a in case a n b = 0 and a n c Φ 0 for all o b . Prove that if L is a bounded 
semicomplemented modular lattice then every maximal semicomplement of a is in fact 
a complement οΐα. [Hint: use Exercise 8.6.] 

8.10. Using Exercise 8.9, show that for a finite modular lattice the following condi-
tions are equivalent : 

(a) L is complemented; 
(b) L is semicomplemented; 
(c) L is dual semicomplemented. 

9. Distributive lattices 

An ordered triple {a, b, c) of elements of a lattice will be called a 
distributive triple, in symbols D {a, b, c), whenever (a u b) n c = (a n c) 
v (b n c). Dually it is known as a dual distributive triple, in symbols 
Z>* {a, b, c), when (a n è) u c = (a u e) n (è u c). We shall say that a 
lattice L is distributive whenever every ordered triple of elements of L is a 
distributive triple. 

EXAMPLE 9.1. Every chain is a distributive lattice. 

EXAMPLE 9.2. The lattice of all subsets of a set is a complemented 
distributive lattice with respect to the usual set-theoretic operations of 
union and intersection. The lattice of all finite subsets of an infinite set is 
a relatively complemented distributive lattice which has no largest ele-
ment. 
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EXAMPLE 9.3. The subgroups of a group G ordered by set inclusion 
form a lattice which is distributive if and only if every finitely generated 
subgroup of G is cyclic (see [27]). 

EXAMPLE 9.4. The set Z+ of strictly positive integers forms a semi-
complemented distributive lattice when ordered according to 

m^nom is a factor of n. 

The following is a characterization of distributive lattices analogous to 
that provided for modular lattices in Corollary 3 of Theorem 8.1 : 

THEOREM 9.1. A lattice L is distributive if and only if no element ofL 
has two distinct complements in an interval sublattice. 

Proof Suppose that L is distributive and that eu x = eu y and 
c n x = c n y. Then x = x n (c u x) = x n (c u y) — (x n c) u (xny) 
= (y n c) u (y n x) = y n {c u x) = y n (c u y) = y. 

Suppose conversely that an element of L can have at most one com-
plement in any interval sublattice. By Corollary 3 to Theorem 8.1 it 
follows thatLis modular. Given elements a,b,ceL define 

Û* = (b u c) n a, b* = (c v a) n b, c* = ( a u i ) n c. 

Note that a* n c* = a r\ c, b* n c* = b n c and a* n b* = a n b. Now 
let 

i / = ( û u i ) n ( i > u c ) n ( c u a). 
We have 

û* u c* = û* u [(a u J) n c] = (0* u c) n (uf u i ) 

= {[(6 u c ) n û ] u c } n ( f l u i i ) 

= (b u c) n (a u c) n (a u b) 

= d. 

By the symmetry of a, b, c we have û*uc* = û * u i * = è*uc* = </. 
We now note that 

c* u [a* u (b n c)] = */; 

c* n [«* u ( J n c)] = (c* n a*) u(i>nc) = ( û n c ) u ( i n c). 
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By the symmetry of a, b in the above expression, we also have 

{c* u [6* yj (a n c)] = d; 

c* n [ό* u (a n c)] = (a n c) u (ô n c). 

Applying our hypothesis we then deduce that 

a* u (b n c) = è* u (a n c) = a* u (6 n c) u b* u (# n c) 

We are able to conclude that 

c* = c * n i = c * n [ i ) * u ( f l n c)] = (a n c) u (b r\ c). 

This is precisely the statement that D (0, b, c). We thus have L distributive 
as claimed. 

COROLLARY. A lattice is distributive if and only if it has no sublattice of 
either of the following types: 

We shall also have occasion to consider the following infinite distribu-
tive laws in a lattice L: 

(ID) If (J xa exists then, for each y e L, (J (χα n y) exists and equals 
<xel <xe! 

(Ü*) nj>. 

(DID) If Π xa exists then, for each yeL,Ç]{x(X\jy) exists and equals 
ae l «e l 

(0/·) u y . 

Let us note that the law (ID) is equivalent to the assertion that for 
each y e L the translation x -> x n j> is a complete u-endomorphism, 
while (DID) is equivalent to x-> x uy being a complete n-endomorphism. 
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We shall say that L is infinitely distributive whenever both (ID) and (DID) 
are valid. Clearly each of these implies distributivity. 

Henceforth we shall agree that a complemented distributive lattice 
will be called a Boolean lattice or a Boolean algebra. 

EXAMPLE 9.4. Any chain is infinitely distributive as is any Boolean 
lattice (see (Exercise 9.5). 

EXAMPLE 9.5. Let E be an infinite set and take L to be the lattice 
formed by E together with its finite subsets, ordered by set inclusion. Then 
L is a complete distributive lattice. We claim that (ID) fails. To see this, 
l e t xe handlet C(x) = {MeL; χφΜ}. Then we have, in L, [j M = E 
and M e C(x) => M n {x} = 0 . Hence MeC(x) 

( U M)n{x} = En{x} = {x}^0 = (J (M n {x}). 
\MeC(x) J MeC(x) 

EXAMPLE 9.6. The centre of a bounded lattice. An element z of a 
bounded lattice is called central whenever there exist (necessarily bound-
ed) lattices Z a , £ 2

 an(* a n isomorphism h:L-> L±xL2 such that h(z) 
= (π±, 02) or h(z) = (0±, π2). The set of central elements of L will be called 
the centre of L and denoted by Z(L). As is readily verified, if at least one 
of a, b, c is central, then D {a, b, c) and D* (a, b, c) are both true. It is 
also clear that (0±, π2) and (πί, 02) are complements in L1 xL2 so every 
central element has a complement which is also central. Now let ζί, z2 be 
central elements with z i , z2 their respective complements. Let L1 

= [0,z1 n z2] andL2 = [0, z[ u z 2 ] . Define h: L-+ L± xL2 by the prescrip-
tion h(x) = (x n zx n z2, x n (z[ u z2)). Clearly /z is isotone. For arbitra-
ry xeL, making use of the fact that zl9 z2, z[, z2 are each central, we have 

x =̂ x n (Zi u zi) 

= (x n Zi) u (x n zi) 

= [(x n Zi) u (x n zi)] n (z2 u z2) 

= (x n Ζχ n z2) u (x n Zi n z2) u (x n zi n z2) u (x n zi n z2) 

= (x n Zi n z2 ) u [(x n Zi n z2) u (x n zi n z2)] 

u [(x n zi n z2) u (x n zi n z2)] 

= ( x n z 1 n z2) u (x n z2) u (x n zi) 

= (x n Zi n z2) u [x n (zi u z2)]. 
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It follows from this that if h(x) < h(y) then x < y. Suppose now that 
(a, b) eLt xL2 . Then a < z1c\z2 and b < z[ u z2. Now 

{a u b) n Zi n z2 = [(tf n z j u (6 n z j ] n z2 

= ( 0 0 ^ 0 Z2) ^ ( t n Z i H Z2). 

If we observe that (zi KJ z2) n Ζχ n z2 = (z[ n zt n z2) u (z2 r\z1r\ z2) 
= 0 we see that b r\z1r\z2 = 0 and so {a u b) n zx n z2 = a. In a 
similar way we have (a u i ) n (zi u z2) = 6 and hence A (OUÒ) = (a, b). 
It follows that A is an isomorphism of L onto LxxL2. Since we have 
A (zx n z2) = {z1 n z2,0) and A (zi u z2) = (0, zi u z2) this proves that 
z± n z2 and zi u z2 are both central. We conclude that Z(L) is a Boolean 
sublattice of L. 

We close this section by considering briefly the centre of a bounded 
relatively complemented lattice. Before doing so, however, we pause to 
present an extremely useful characterization of central elements. 

THEOREM 9.2. An element z of a bounded lattice L is central if and only 
if there exists an element z' such that 

(Vx e l ) x = (x n z) u (x n z') = (x u z) n (x u z'). 

Proö/. If z is central, take z' to be the unique complement of z. 
Suppose conversely that the condition holds. Let Lx = [0, z],L2 = [0,2'] 
and h{x) = (x n z, x n 2') for all j c e l . Then A : L -> Lx xL2 is isotone. 
From our hypothesis we see that h(x) < h(y) must imply x < y so the 
proof will be complete if we can show that A is surjective. Accordingly, let 
(a,b)eL1 xL2.Then<z < (a u b) nz < (#υζ ' )ηζ = (αυζ')η(ο u z ) n z 
= a c\z < a and so (a v b) n z = a. Similarly, wehave(a u b)nzf = b 
and A (a u b) = (a, b). 

THEOREM 9.3. An element z of a bounded relatively complemented lattice 
is central if and only if it has a unique complement. 

Proof Let z have a unique complement z'. Then by Theorem 7.4 we 
have z V z' and so, by Theorem 7.2, x = (x u z) n (x u z') holds for all 
x e l . The same argument applied to L* yields (Vxel )x = ( x n z j 
u (x n z'). The converse is clear. 
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THEOREM 9.4. The centre of a bounded relatively complemented lattice 
is a complete sublattice. 

Proof. Let {rjaei be a family of central elements such that z = (°) za 
exists in L. Let z' be any complement of z. Then aeI 

(Vael) 2' = {ζ' u z j n (z' u z£) = π n (z' u z«) = z' u z« 
gives z' > z'a. Suppose now that we could find an element x such that 
(\foceI)zf > x > ζ'Λ. Let y be a complement of x in [0, z']. Then 
(yocel)y ηζ'χ < y n x = 0 shows j = ( jnz a )u( jnza) = jnz Ä <zaand 
so y < z = Π z«· But n°w j < z' gives y = j n z = 0,a contradiction. 

«el 

This then shows that z' = (J z«. But this uniquely determines z' and so, 
«el 

by Theorem 9.3, z is central. To show that Z(L) is stable under the forma-
tion of unions, we apply the above argument to ΖΛ 

EXERCISES 

9.1· Prove that a lattice is distributive if and only if its dual is distributive. 
9.2. Prove that every homomorphic image as well as every sublattice of a distribu-

tive lattice is distributive. Prove further that the cartesian product of lattices is dis-
tributive if and only if each of the lattices is distributive. 

9.3. Prove that a lattice L with 0 is distributive if and only if its lattice of ideals is 
distributive and, if this is so, then the infinite distributive law (ID) holds in the ideal 
lattice. 

9.4. In a distributive lattice with 0 show that aV bis equivalent to a nb = 0. 

9.5. Prove that every dual section semicomplemented distributive lattice satisfies 
the infinite distributive law (ID). [Hint. Assume x = (J jca exists and note that, for each 

(XEI, x n y > χΛ n y. If (Va e /) x n y > w > χΛ ny, choose v such that w < v < π 
and v yj (x n y) — n. Conclude that (Va e /) v > *α and arrive at a contradiction.] 

9.6. Let Z be a lattice which is both section and dual section semicomplemented. 
Prove that an element z of L is central if and only if there is an element z' such that 

anz = 0 = anz'=>a = 0; 

ανζ = π = ανζ'=>α = π. 

9.7. Prove that an element z of a bounded lattice L is central if and only if z has a 
complement z' such that M(z, z'), M(z', z) and (VJC e L) x = (x nz) u (x n z'). 

9.8. Show that an element of a bounded distributive lattice is central if and only 
if it admits a complement. 
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9.9. Let L be a complemented lattice. Prove that an ideal IoîL has a complement 
in the ideal lattice if and only if / is principal. Deduce that the centre of a bounded 
lattice need not be a complete sublattice. [Hint. Take L to be the lattice of all subsets 
of an infinite set E. The ideal formed by the finite subsets of E has no complement in 
the ideal lattice; yet it is the union of a family of central elements.] 

9.10. Let L be a bounded lattice having the property that 
(V*eL) e{x) = f] {zeZ(L); z > x) 

exists and is central. Show that the mapping e:L-+ L described by x -* e(x) is a quan-
tifier in the sense that 

(1) e(0) = 0; (2) (VJC e L) x < *(*); (3) (Vx, y e L) e [x n *(χ)] = e(x) n *(y). 
9.11. Let L be a section semicomplemented lattice. Prove that L is distributive if 

and only if, for each a e L, the semicomplements of a form an ideal of L. [Hint. Con-
sider a semicomplement of {a n c) u (b n c) in [0, {a v b) n c\.\ Deduce that every 
pseudo-complemented, section semicomplemented lattice is Boolean. Give an example 
of a pseudo-complemented, semicomplemented lattice which is not distributive. 

10. Congruence relations 

Let JR be a congruence relation on the lattice L. We have already noted 
in § 6 that the operation x/R Y yjR = (x u y)jR turns LjR into a Y-semi-
lattice. A dual argument shows that L/R is an À -semilattice with respect 
to x/R A y/R = (x n j)/-R. Routine verification shows that 

χ/# = x/* Y (x/# A y IR) = x/# A (*/# Y y IR) 
and so by Theorem 4.1 it follows that LjR is a lattice under these laws. We 
call L/R the quotient lattice ofL with respect to R. Note that the canonical 
surjection bR : L -> L/.R is a lattice epimorphism and that R is the equi-
valence relation associated with klÄ. These results are important enough to 
warrant their formal presentation as a theorem: 

THEOREM 10.1. IfR is a congruence relation on the lattice L then LjR is 
alatticeunder the laws described by x/R Y y/R = (x u y)\Randx\R Ay IR 
= (x n y)/R and the canonical surjection bR is an epimorphism. 

We also have the following lattice-theoretic version of the "Funda-
mental Theorem of Homomorphisms" : 

THEOREM 10.2. Let L, M be lattices, let f: L-+ M be an epimorphism 
and let R be the equivalence associated withf. Then R is a congruence rela-
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tion on L and the mapping f^ : L\R -> M described byf~* (x/R) — fix) is 
an isomorphism which is also the unique mapping which makes the following 
triangle commutative: 

1„ 
L ^M 

y 

LIR 

Proof Since/is a homomorphism it is clear that R is a congruence on 
L. It is just as clear that the mapping/-* is well-defined. Since/is surjec-
tive, so also is/"*. Also, if x/R < ylR,thenylR = x/R Y y\R = (x u y)jR 
and so f(y) = f(x u y) = fix) u / ( y ) > fix). If/^(x/Ä) ^(ylR) then 
fiy) = fiy) u / ( x ) = / ( * u >>) andj,/Ä = ix u JO/Ä = */Ä Y j / t f > x/Ä, 
thus completing the proof that/-* is an isomorphism. We now merely note 
that/"* o WR = / a n d that if g o HK = / t h e n g(x/Ä) = g [H*(x)] = / (*) 
and so g = /"* . 

We shall often need to know just when an equivalence relation on a 
lattice is in fact a congruence relation. A useful set of necessary and suffi-
cient conditions is given in the next result. 

THEOREM 10.3. Let Rbea reflexive relation on the lattice L. Then R is a 
congruence relation on L if and only ifR satisfies the following three condi-
tions: 

(1) a = biR) o (Vx, y e [a n b, a u b]) x = yiR) ; 
i2)au b = aiR) ob== an biR); 
(3) a = biR), b = ciR) with a > b > c=>a= ciR). 

Proof If R is a congruence relation then (3) is clear. Let a = biR) 
and let x,y e[a n b9 a u b]. Then 

x = x niau b) = x nia n b) = a r\biR). 

Similarly, we have y = a n biR) and so x = y(R). This establishes (1). As 
for (2), we note that if au b = aiR) then b = bniaub) = bn aiR) 
and conversely. 
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Suppose now that R is a reflexive relation on L satisfying conditions 
(1), (2), (3). That R is symmetric is immediate from (1). Let a = b(R) and 
let teL. Then (a n b) KJ [t n (a u b)]e[a n b9 a\j b] and so by (1) we 
have a n b = (a n b) u [t n (a u b)]. Now take x = (av b) r\t and 
y = a r\b and note that x u j = j(lf) so that by (2) we obtain 
x = x n j(i£) and hence 

(a u i ) n ί = (Û u J) n i n (Û n i ) = Û n i n / (i?). 

Since a n t, b n t e [a n b n t, (a u b) n t]v/e see that a n t = b n t(R). 
In a similar way we have a u i = i>u i(if). We must still show transitivity. 
Let a = i(Ä) and 6 = c(R). Then avb = b(R) = > a u è u c = 6 u c(if). 
Since b v c = c(R) we can apply (3) to obtain a u i u c s c(lf). A dual 
argument produces c = a c\b n C(JR) and now (3) tells us that avbuc 
== a n b n c(R). Since a, c G [a n è n c, a u b u c] we see that a = c(R), 
thus completing the proof that R is a congruence relation on L. 

If jR happens to be an equivalence relation on L then condition (3) of 
the previous theorem is of course superfluous. 

Definition. We shall denote by Con(L) the set of congruence relations 
on a lattice L, this set being ordered in the usual way, namely 

i ^ s o (x = y (R) => x = y (S)). 

THEOREM 10.4. For any lattice L9 Con(L) forms a complete distributive 
lattice in which the infinite distributive law (ID) is valid. 

Proof. The congruence relation arising from equality is evidently the 
minimum element of Con (L) and the relation which identifies all the 
elements of L is clearly the greatest element of Con (L). If, for each oc e I, 
Ra is a congruence relation on L, then so also is the relation x = y(R) 
o(Vdx el) x = j(i?a). It is immediate that Con(L) is a complete lattice. 
We shall show that it is in fact a complete sublattice of the lattice of all 
equivalence relations on L. We have already dealt with the intersection 
operation, so we need only show that if E is the union [= transitive pro-
duct] of {i?a}aei in the lattice of equivalence relations then E = Y Ra in 

<xel 

Con(L). This will follow if we can just show that E e Con(L). Now if 
x = y(E), then there exist indices oc± 9 oc2,..., ocn and elements w0, wt,..., 
wn such that w0 = x, wn = y and Wi-± = w^R^) for i = 1, 2 , . . . , n. For 
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arbitrary teL we have w ^ u t = wt u ί(/?Λ.) for i = 1, 2 , . . . , n from 
which it follows that xu t = y u t(E). In a similar way we have x nt 
= y n t(E) and so E e Con (L) as required. 

We are now ready to verify the infinite distributive law (ID). For this 
purpose, let R = Y Ra and S e Con(L). Then (V<x e / ) R« A S < R A S 

del 

and so R A S^Y(Ra A S). Now if x s y (R A S) then there exist 

indices a l s a 2 «n
 a n d elements w0, w 1 } . . . , wn such that w0 = x, 

wn = y and (/ = 1, 2 , . . . , n) wt_± = wf(i?ai). For each /, let vt = [(x n y) 
u Wi] n (x u j ) . Then u0 = *5 *̂  = J and for i = l , 2 , . . . , n w e have 

Vi-i = l(xny) u w ^ J H ( X U J ) E [(xnj;) u wf] n (x u y ) = vt (R*.). 

Since . xn j>< i ^ ^ x u j and x n y = x u y(S), we have vt-x = v^S) 
for all i so that t^-i == t?, (i?a. Λ S). It follows that x = >> / Y (i?a Λ S)\ 
and hence that R A S = Y (R« A S). ^eI ' 

We now pause to have a close look at congruence relations on a distri-
butive lattice. In connection with this, we agree to call OjR the kernel of 
the congruence relation JR on the lattice L with 0. More generally, for an 
arbitrary lattice L, if L/R has a smallest element then this element is 
called the kernel of R. Clearly, if R has a kernel ^ then Kis an ideal of L. 

THEOREM 10.5. Let Lbe a lattice. Then 

(1) every ideal ofL is the kernel of a congruence relation on L if and 
only ifL is distributive; 

(2) for an ideal I of a distributive lattice, the smallest congruence with 
kernel I is given by 

a=b (i?/) o (3t e I) au t = bu t 

and the largest congruence with kernel I is given by 

a = b (R1) o{x; a n xel} = {x; b n xel}; 

(3) every ideal of a bounded lattice is the kernel of a unique congruence 
if and only if the lattice is Boolean. 

Proof (1) Let L be distributive and let / b e an ideal of L. Define Rr as 
in (2) above. Clearly, a = b(Ri) => (Ve e L) a u c = b KJ c(i^7). Since L is 
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distributive, if a u t = b u t for some t e I, then 
(Vc e l ) (A n c) u (i n c) = (Û u ί) π c = ( i u I) n c 

= (b n c) u (t n c) 

with t n eel shows that a n c = è n cCRj). The kernel of Rj is clearly / 
itself; and if / is the kernel of JR then cr u t = è u * with ί e /implies that 
a = flu * = b u / = 6(i?) and so Z?f =̂  /?. If L fails to be distributive, 
then by the Corollary to Theorem 9.1 it has a sublattice of one of the 
following types: 

e 
o 

° c ao ' bo ) c 

-° a 

d 

In either event, let / = [«-, a]. If/were the kernel of the congruence rela-
tion R, then e = au b = b(R) implies c = c n e = c n t = i = a(R), 
a contradiction. 

(2) We have already established that if / is an ideal of a distributive 
lattice, then Rt is the smallest congruence with kernel /. Let us now con-
sider R1. If a = b(R*), then 

(anc)nxeIoan(cnx)eIobri(cnx)e Io (b n c) n xel 

from which it follows that a n c = bn c(R*). Moreover, if (au c) n x 
= (a n x) u (e n x) e /, then c n x e /=> bn xel and s o ( i u c ) n x 
= ( i>n j i )u ( cnx )e /and conversely. This establishes a uc = bu c(R') 
and hence that R1 e Con(L). If JR is a congruence with kernel /, then 
from a = 6(.R) and a n xel we deduce that b n xel, and so we must 
have R ^ Ä1. The proof is completed on noting that the kernel ofR1 is /. 

(3) Let L be a Boolean algebra. If Λ e Con (L) has kernel /, let 
a = i(jR). Denoting by x' the complement of #, we must have a n V 
= bnb' = 0(R) and bnaf = OCR). It follows that (a n è') u (b n a')e/. 
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Now if (a n V) u ( i n a') e /, then, as can easily be seen, 

a u [(a n b') u ( i n a')] = a\j b = b u [(a nb') u (6 n a')]. 

It follows that i? is uniquely determined by its kernel. Suppose, conversely, 
that L is a bounded lattice in which every ideal is the kernel of a unique 
congruence relation. Then, by (1), L is distributive. Given a e L, define R 
by the prescription 

x = y (R) ox n a = y n a. 

Clearly, 1? e Con(L). Let / b e its kernel. Since R = Λχ and a n a = π na 
=> α = π(1£), we must have a\j t = n\j t = π for some ί e / . Then 
t = O(if) implies tna=0na=0 and hence * is a complement of c. 
This then shows that L is a Boolean algebra. 

THEOREM 10.6. Let L be a bounded distributive lattice. For a,beL let 
Rath denote the smallest congruence relation on L which identifies a and b. 
Then 

(1) x = y(Rat0)oxu a = yva; 
(2) x = y(Ra,n) o x n a = y n a; 
(3)x^y(Ra>b) 

o(xKjaKjb = y\Javb and x n a n b = y n a n b); 
(4) the centre of Con (L) is the Y-subsemilattice generated by 

{Ra,b;a,beL}; 
(5) there exists a Boolean algebra A such that Con (L) ^ Con (A). 

Proof. (1) This follows from Theorem 10.5 since, taking / = [«-, a], 
we have, on the one hand, ROt0 =̂  Rj and on the other 

x = y (Rj) => (3i < a) x u t = y u t 

=>xva = xvtua = yvtva = yua 

=>x = y(Rato)' 

(2) Apply (1) to the dual of L (whichisalsodistributive by Exercise 9.1). 
(3) Define the relation JR on L by 

x = y (R) < f > ( x u o u i = j ; u û u i and x r\a r\b = yr\anb). 
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That R e Con(L) follows from the observation that R = Ra{jbt0 A Ranb,n-
Clearly, a = b(R). Suppose that Se Con(L) with a = b(S). If x = y(R), 
then xKjavb = yKjavb, xnanb=ynanb and # = 6(5) 
imply that x \J a = y u a(S) and x n a= y n a(S). Working in the dis-
tributive lattice L/S9 this says that x/S Y ajS = y IS Y a\Sand x\S A ajS 
= y IS A alS from which it follows that x/S = y IS and so x = j(*S). We 
have thus shown that R^ S and so R = jRa>b. 

(4) Routine verification shows that Rat0 and i?a)iC are complements in 
Con(L). Since Ratb = Raub,0 A ·#αη&,π it follows by Exercise 9.8 that Ratb 

is central. Consequently, if R is the union of a finite number of congruences 
of the form Ratb then R is central. Suppose conversely that R is central. 
If R' denotes the complement of R in Con (L), thenrc = 0 {R Y R!) im-
plies the existence of a0,au ...,aneL such that aQ — 0, an = π and 
(/ = 1, 2, . . . , n) ai^1 = at modulo R or R'. Denoting by Π the greatest 

n 

element of Con(L), we thus have 77 = Y Ra. ua and consequently 
n i = l 

R = Y (R ARai !,«<)· Now for each i, either (1) e M = ^(i?) in 
i = l 

which case i? Λ Λβί_1ιβ| = Rai_uai or (2) «;_! = Ö^JR') in which case 
Ä A Λβ|.ΐΡα! reduces to equality. Thus R= Y {Äei_lifl|; af_i s a,(jR)}. 

(5) Let A denote the centre of Con(L). For each R e Con(L)MJ(R) 
denote the set of central elements contained in JR. Then J(R) is an ideal of 
A. Clearly Rx^ R2 => J(R±)^ J(R2); and if J(Rt)^ J(R2) then 
a = b(Rx) => R0tb ^ R1=> Ratb ^ R2 which gives « = b(R2) and so 
-Ri =̂  R2. Let us now show that the map R -> /(Ä) from Con(L) to the 
lattice 1(A) of ideals of A is surjective. Given any element I e 1(A), let JR 
denote the union in Con(L) of the elements of I. It is clear that I =̂  J(R). 
If i?a & 6 /(if) then <z = b(R) implies the existence of finitely many ele-
ments Ra.,bi of I such that a = b I Y ^ . b j · This shows that Ratbel 
and so 7 = J(JR). We have thus established that the map R -> J(R) is an 
isomorphism of Z (Con(L)) onto 1(A). The proof is completed by noting 
that I-+ Rj is an isomorphism of 1(A) onto Con(^f). 

COROLLARY. IfL is a finite distributive lattice then Con(L) is a Boolean 
algebra. 
4 BRT 
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We have already noted (see Exercise 9.5) that every Boolean algebra is 
infinitely distributive. We leave the reader the routine verification that the 
infinite distributive law (ID) is inherited by every sublattice in which exist-
ing unions coincide with those in the Boolean algebra. A dual assertion 
applies to (DID). Suppose now that we are given a bounded distributive 
lattice L. Consider the mapping k:L-*Z (Con(L)) given by k(a) = Ra0. 
This is evidently an isomorphism of L onto a sublattice of Z (Con(L)). If 
the embedding preserves any existing intersections then (DID) is inherited 
by L from Z (Con(L)). On the other hand, if (DID) holds in L and the 
intersection b = f) b« exists in L, let x = y ί J\^ Rbato\· Then x u t a 

aeA \<xeA J 

= y u ba for each a e A and consequently 

x u b = x u if) bA = f) (x u bj = f] (y u bj 
\<xeA J oieA aeA 

= yv (f)ba)=yvb. 
\<*eA J 

This shows that Rbt0 = J{ Rbat0 in Z (Con(L)) and so the embedding k 
aeA 

preserves existing intersections. If (ID) holds in L, let b = (J ba. Then 
aeA 

if x = y M RboifJt\ we see that (Va e A) x n ba = y n b^ and, by (ID), 
\aeA ' / 

x n b = y n b. Thus Rbn = \ Rba,n and since we are working in a 
aeA 

Boolean algebra, we have Rbt0 = Y i^a j 0 . Thus k preserves any existing 
aeA 

unions. [Here, of course, we have made use of the fact that the mapping 
x -> x' of a Boolean algebra to itself is a dual automorphism (Exer-
cise 10.5).] We summarize the situation in the next theorem. 

THEOREM 10.7. Let L be a bounded distributive lattice. The infinite 
distributive law (ID) holds in L if and only if there is an isomorphism k ofL 
onto a sublattice of a Boolean algebra such that 

(l)fc(0) = 0andk(n) = n\ 
(2) k preserves any existing unions in L. 

The law (DID) is equivalent to the existence of a k satisfying (1) and 
(2') k preserves any existing intersections in L, 
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COROLLARY. Every complete infinitely distributive lattice is isomorphic 
to a complete sublattice of a Boolean algebra. 

We shall now have a brief look at congruence relations on a complete 
lattice which is both section and dual section semicomplemented. Our 
goal is to show that the congruence relations on such a lattice form a 
Stone lattice; i.e. a pseudo-complemented distributive lattice in which the 
pseudo-complement of each element has a complement. We require some 
preliminary results. 

THEOREM 10.8. Let Rbea congruence relation on a section semicomple-
mented lattice L.Ifb is disjoint from the kernel of R (i.e. b n x = 0 for 
each x e Ker(RJ) then a V bfor each a e Ker(R). 

Proof If (a u x) n b > x n b, choose dìo be a non-zero semicomple-
ment of x n b in [0, (a u x) n b]. Then 

d=dn(bux) = dr\x = dnxnb = 0 (R) 
and so d is in the kernel of R. Since d < è we must have d = 0 and this 
contradiction shows that a V b. 

Since a central element of a lattice behaves as if it were in a distributive 
lattice, the proof of the next result may be easily deduced from the perti-
nent portions of Theorem 10.6. It will therefore be omitted. 

THEOREM 10.9. Let z be a central element of a bounded lattice L and 
denote by z' its unique complement. Then RZt0 andRZt0 are complements in 
Con(L). Furthermore, a = b(RZt0) oauz = buz. 

THEOREM 10.10. IfL is a complete lattice which is both section and dual 
section semicomplemented then Con(L) is a Stone lattice. 

Proof. (1) Let / b e the kernel of the congruence relation R, let z be the 
element \J{x;xeI} and let z* = (J {xeL; [0, x] A / = {0}}. By 
Theorem 10.8 we have ael,[0,b] A / = {0} => a V b. Two applications 
of the corollary to Theorem 7.2 will now produce the fact that z V z*. If 
(x n z) u (x n z*) < x, let y be a non-zero semicomplement of (x n z) 
u (x n z*) in [0, x]. Then y n z = 0 => [0, y] A / = {0} => y < z* and 
so we have y = y n z* = 0, a contradiction. Thus 

(Vx e L) x = (x n z) u (x n z*) = (x u z) n (x u z*). 
It follows by Theorem 9.2 that z is central with z* as its complement. 
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(2) Let a = b(R A Rz*,o)- If c is a semicomplement of a nb in 
[0, a\j b] then c = 0(R). Since û u i u z * = ( û n t ) u z* we see that 

c = c n[(a n b) Kj z*] = (c n a n ό) u (c n z*) = 0. 

Thus # = è and so R A i?z*,o reduces to equality. 
(3) Suppose now that equality is denoted by ω and that R A, S = ω. 

If Û = b (S Λ i?r,o) a n d if c is a semicomplement of Û n M n [0, Ö u 6] 
then c = 0(5), and since a u ft u z = (a n i ) u z we must have 

c = c n [(a n b) u z] = (c n a nô) u (c n z) = c n z < z. 

But c = 0(S) and i? Λ S = ω imply that [0, c] A / = {0}. By Theorem 
10.8 we deduce that x V c for all x e I and by the corollary to Theo-
rem 7.2 it follows that z V c, so c = 0. This shows that a — b and 
S A i?z»o = ω· Since i?Zf0 and Rz*t0 are complements in Con(L), we see 
that S ^ Rz*,o · This establishes that JR2*,0 is the pseudo-complement of R 
in Con(L). We conclude by Theorem 10.9 that Con(L) is a Stone lattice. 

COROLLARY. If L is a complete relatively complemented lattice then 
Con(L) is a Stone lattice. 

We close this section by considering congruence relations on a section 
complemented lattice. We shall be especially interested in their kernels and 
shall give an intrinsic characterization of them. 

THEOREM 10.11. Let Rbe a congruence relation on the section comple-
mented lattice L and let I be the kernel of R. The following conditions are 
then equivalent: 

( i ) e = i(Ji); 
(2) (3s e I) au b = (a n i> )u s; 
(3)(3tel) û u i = i u t. 

Proof (1) => (2): Let s be a complement of a n b in [0, a u b]. Then 
s = s n(av b) = s n(a n b) = OCR). 

(2) => (3) : If flui = ( û n i ) u s9 then avb = au(aub) = a 
v(anb)vs = aKJs and, similarly, a u b = b u s. 

(3) => (1): If a u ί = è u * with ί G J, then a = au t = bu t = b(R). 
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THEOREM 10.12. Let J be an ideal of the section complemented lattice L. 
The following conditions are equivalent: 

(1) / is the kernel of a congruence relation on L; 

(2) a G J, b < a u x with ar\x = bnx = 0=>bej. 

Proof (1) => (2): If J is the kernel of the congruence R and if a e J 
and b < au x, then b = b n (a u x) = b n x(R), and so if b n x = 0 
we have 6 e / . 

(2) => (1): Define the relation JR by setting 

a = b(R) o(3teJ)aut = but. 

It is clear that jR is a u-compatible equivalence relation on L. By Theo-
rem 7.3, a has a complement tt < t in [0, # u t]. For any given x e L 
choose sx to be a complement o f f l n i in [0, (au t) n x]. Then sx n a 
= sx r\ a n x = 0, s1 Kj a < ΐλ u a and tx c\ a = 0. It follows by the 
hypothesis (2) that s± e J. We have thus shown that for each xeL there 
exists Si e / such that (a u t) n x = (a n x) u st. Similarly, we can show 
that there exists s2 e J such that (b u t) n x = (b n x) u s2. It follows 
that (a n x) u st u s2 = (b n x) u st u s2 and so a n x = b n X(JR). 
Hence we have i? e Con L. The proof is completed by noting that / is 
the kernel of R. 

Suppose now that L is a relatively complemented lattice with 0. If an 
ideal J of L is stable under perspectivity, let a e / and au x > b u x with 
anx = bnx = 0. By the dual of Theorem 7.3, x has a complement 
bj^ > bin [0, a u x]. Then b1 ~ a puts ί^ and consequently è in / . This 
establishes the following: 

COROLLARY 1. An ideal J of a relatively complemented lattice with 0 
is the kernel of a congruence relation if and only if J is stable under perspec-
tivity. 

If a principal ideal [0, z] of a bounded relatively complemented lattice 
is the kernel of a congruence relation then by Theorem 10.7 we have 
2 V 2 ' for any complement z' of z. It follows that z has a unique comple-
ment and so, by Theorem 9.3, z is central. In summary: 
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COROLLARY 2. A principal ideal [0, z] of a bounded relatively comple-
mented lattice is the kernel of a congruence relation if and only if z is 
central. 

EXERCISES 

10.1. Let R be a congruence relation on the lattice L and let / : L -
homomorphism. Show that the following conditions are equivalent: 

- M b e a lattice 

(a) there exists a (necessarily unique) homomorphism g : LjR -* M such that the 
following triangle is commutative 

M 

Λ 
L/R 

(b) the congruence associated with/is coarser than R. 

10.2. Let R, S be congruence relations on the lattice L. If R =ζ S show that there 
is a unique epimorphism g : L/R -* L/S such that the following triangle is commutative 

4s 
;L/S 

L/R 

10.3. Show that if L has a zero element and / : L -> M is an isotone surjection 
then M also has a zero. 

10.4. Let L be an arbitrary lattice. Show that the set of congruences on L which 
have kernels forms a filter of Con(L). [Hint. Argue that KerCR Λ S) = Ker (R) 
A Ker (5). If JR admits a kernel and R^ S use Exercises 10.2 and 10.3 to deduce 
that S admits a kernel.] 

10.5. Let L be a Boolean algebra. For each x e L let *' denote the unique comple-
ment of x. Show that the mapping x -> x' is a dual automorphism on L. 

10.6. Let L be a lattice with 0. For each R e Con (L) let 
k(R) = Λ (5 e Con (L); Ker (5) = Ker (R)}. 
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Show that the map k is a residuated dual closure with k+ given by 
k+(R) = Y {Se Con (L); Ker(S) = Ker(J?)}. 

Deduce that we have defined a complete congruence on Con (L) and use this to prove 
that the set of congruence kernels of L, when ordered by set inclusion, forms acomplete 
distributive lattice in which the infinite distributive law (ID) holds. [Hint. See Exer-
cise 6.7.] 

10.7. An ideal 5 of a lattice L is called standard if the relation a = boa u b 
= (a n b) u s for some s e S is a congruence relation on L. Prove that the following 
conditions on the ideal S are equivalent: 

(1) S is a standard ideal; 
(2) (V/, Je 1(D) (I Y S) A J = (/ Λ J) Y (S A J); 
(3) (V/e/(L)) IY S= {a ^b;aeI,beS). 

[Hint. (1) => (2): if x e (I Y S) A J, then xeJ and x < a v s (ael, se S). Deduce 
that x = x n a so x = (x n a) v SÌ with sx e S. This puts x e (I A J) Y (S A J)* 

(2) => (3): note that if b < a u s with se S, then b is an element of ([<-, 0] Y S) 
A [<-,6]. Use this to deduce that ^ ( α π ^ υ ^ with s± eS.] 
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COORDINATIZING BAER 
SEMIGROUPS 

11. Baer rings 

In this section we shall examine a class of lattices which arise in con-
nection with certain rings. This example serves as a starting point for 
much of the material in the next few sections, and for this reason it is 
important that the reader consider it carefully. 

It is, of course, assumed that the reader has a basic knowledge of ring 
theory. The letters e,f g, h (with or without subscripts) will be used in 
this section to denote idempotent elements of the ring A. If M ^ A, then 
we define R(M) = {xeA; (Vra e M) mx = 0}. The set R(M) is called the 
right annihilator of M and is clearly a right ideal of A. In the case where 
M = {x} we shall generally write R(x) instead of R({x}). Left annihilators 
are defined as one would expect and denoted by L(M) orL(x), whichever is 
appropriate. For each x e A let xA = {xy; y e A} and Ax = {yx; y e A}. 
If A has an identity element 1, then x e xAandxe Ax; it is also important 
to note that R(x) = JR (Ax) and L(x) = L (xA). If the ring A has the 
property that for each xeA there exist idempotents eX9fx such that 
R(x) = exA and L(x) = Afx, then A is called a Baer ring, 

We mention that this definition differs slightly from that of Kaplansky 
[18]. Before proceeding, we present some examples. 

EXAMPLE 11.1. Any ring with an identity having no proper zero divi-
sors (in particular, any division ring) is a Baer ring. 

EXAMPLE 11.2. Let F be a vector space and let A be the ring of linear 
transformations on V. Given any te A let e project onto the kernel 
( = null space) of t and let/project onto the image of t. As can readily be 

94 
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seen, R(t) = e o A and L(t) = A o(idF — / ) . Thus A is a Baer ring. 
Similarly, so is the ring of n xn matrices over a division ring. 

EXAMPLE 11.3. Consider the ring B(H) formed by the bounded opera-
tors of the Hilbert space H. Given t e B(H), let e be the orthogonal pro-
jection on the null space of t and le t /be the projection onto the closure of 
the image of t. Clearly e,fe B(H), and we have t o s = 0 <̂> (Vx e H) 
t [s(x)] = 0 o ( V x e H) s(x) = e[s(x)] os = e o s; s o t = Oo(Vx e H) 
s [t(x)] = 0osof = Oos = so (iâH - / ) . Thus R(t) = e o B(H) and 
L{t) = B(H) o (idH — / ) and we have a Baer ring. 

EXAMPLE 11.4. A ring A is said to be a Boolean ring if every element of 
A is idempotent. Every Boolean ring with an identity is a Baer ring. 

EXAMPLE 11.5. The ring of all triangular 2 x 2 matrices ( ) over a 
division ring is a Baer ring. W c' 

EXAMPLE 11.6. The complete direct sum of any family of Baer rings is 
a Baer ring. 

In what follows, A will denote a Baer ring. Let M = &(A) denote the 
set of right annihilators of elements of A and ££ = <&(A) the correspond-
ing set of left annihilators. We also let PRI(^4), PLI (A) denote the set of 
principal right, left ideals of A with all four sets ordered by set inclusion. 

THEOREM 11.1. With the notation as introduced above: 

(1) A has a multiplicative identity element; 
(2) the mappings I : PRI (A) -> PLI (A), & : PLI (A) -> PRI (Λ) given by 

the prescriptions L (xA) = L(x), È (Ax) = R(x) set up a Galois 
connection; 

(3) L o A o L = L and £ o L o £ = R; 
(4) xAem<s>xA = (RoL) (x) and Ax e & o Ax = (£ o R) (x); 
(5) the restriction L~* of L to & is a dual isomorphism of M onto 3? 

whose inverse is R^, the restriction ofÊ to 3?; 
(6) for each idempotent e of A, e A = R(\ — e)e&(A) and Ae 

= L{\ - e)eSe(A). 

Proof (1) An idempotent generator of A = R(0) will act as a left 
identity element (for if A = e A then for each xe AWQ have the existence 
4a BRT 
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of a y G A such that x = ey whence ex = e2y = ey = x), while an 
idempotent generator of A = L(0) acts as a right identity. It is immediate 
that A has a two-sided identity element, henceforth denoted by 1. 

(2) If xA s yA, then x = yw for some w G A, so if ay — 0 we must 
have ax = ayw = 0. Thus x,4 ^ jM => L(j) c L(x). If a e L(x), then 
ax = 0 puts x e R(a). This shows that xe(R oL) (x) and so R o £ 
> idP R I U ) . A symmetric argument produces i£ antitone and £ ο β 
> idP L I U ) . This then establishes the Galois connection. 

(3) xA c (Ä o £) (*Λ) => £ (χΛ) 3 (£ o β o £) (*4) and £ (*4) 
GPLIG4) =>£ (x,4) s (£ o R) [£ (jci4)] = (£ o Ä o £)(χ4) . Thus£ o R o £ 
= £ and similarly È o £, o R = R. 

(4) If x^ = (JR o L) (x), let Λέ? = Z,(x). Then x ^ = R(e) puts x^ G m. 
lïxAeM then x̂ 4 = R(y) for some j G A and so (ß o £) (χ^) = (R o £) 
[R(y)] = (£ o £ o R) (^4j) = i?(y) = x^4. A symmetric argument shows 
that ^ x G S? o Ax = (£ o R) (χ). 

(5) By (4), r o I ^ = idÄ and Ι " ο Γ = id^. Since Ir*, Ä"* are 
each antitone, it is immediate that L~* is a dual isomorphism having R~* as 
its inverse. 

(6) For each x e A we have (1 — e) ex = ex — ex = 0 whence 
e^ c i^ (l - e). Conversely, if (1 — e) x = 0, then x — exe eA. The 
other equality is proved in a similar manner. 

Remark. Much of the above proof could have been deduced from 
Exercise 2.8. However, we gave a direct proof in order to illustrate the 
annihilator properties of Baer rings. 

THEOREM 11.2. SÛ and M form bounded dually isomorphic lattices. 

Proof. In view of Theorem 11.1(5) it suffices to prove that <£?, 0t each 
form n-semilattices with a minimum element. By the obvious left/right 
duality present, we may concentrate our efforts on 01. Let eA,fAe& and 
let gA = R(f- ef). Then, since (f- ef) (fg) = ( / - ^ / ) g = 0we have 
fgegA and so fg = gfg. It follows that fg = (fg)2, and so, by Theorem 
11.1(6), fgA e 01(A). We claim that /gi i = eA nfA. That fgA çfA is 
clear. Note that (1 — e)fg = ( / — ef) g = 0 and so fg e R (1 — e) = eA. 
If now xeeA nfA, then 

( / — ef) x = (1 — e)fx = (1 — e) x = x — ex = 0 
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and so xegA. Then x = gx, x = fx imply that x = fgx and we have 
e A nfA =fgA e M{A). Finally, we observe that OA is the smallest ele-
ment of 01(A). 

THEOREM 11.3. Let e A <^fA in M. Then 

(1) there exists an idempotent e0 such that e0A = eAande0 = e0f = fe0; 
(2) there exists an idempotentfQ such thatf0A = fAande = ef0 = f0e. 

Proof. (1) Since e A ^fA we have e =fe. Set e0 = ef. Then e0eQ = efef 
= e (fe)f = eef = ef = e0. Since ee0 = e0 and e0e = efe = ee = e we 
see that eA = e0A. Finally, e 0 / = eff= ef= e0 and / e 0 =fef= ef= e0. 

(2) Set f0 = e + / — e/. Then e/0 = Ae = e. Note also that ff0 

=fe+f-fef=e+f-ef=f0B.ndf0f=ef+f-ef=fsofA=f0A. 
To show tha t /o = / o , w e note tha t / 0 = e + (1 — e ) / a n d so 

fofo = e/o + (1 - e)ff0 = e + (1 - * ) / 0 = / 0 . 

In the case where the idempotents e,/commute, we can produce a 
very nice explicit formula for the idempotent generators of the union and 
intersection of the corresponding principal right ideals. In order to em-
phasize the fact that the intersection operation is set-theoretic whereas 
the union operation most assuredly is not, we write these as n and Y 
respectively. 

THEOREM 11.4. If ef = fe then e A nfA = efA and e A Y fA 
= {e+f-ef)A. 

Proof The fact that e A nfA = efA is clear. Noting that (e + / — ef)e 
= e + fe — efe = e and (e + / — ef)f = / , we see that e + / — e/is an 
idempotent whose principal right ideal contains both e A and/^4. If now 
g A contains both e A andfA, then, clearly, g(e + f — ef) = e + f — ef 
and the result follows. 

Making use of the above result, we are now able to show that 0t(Ä) is 
complemented. It is in fact relatively complemented, but we defer the 
proof of this to the exercises. 

THEOREM 11.5. For each idempotent ee A the ideals e A and (1 — e) A 
are complements in 0t such that both (eA, (1 — e) A) and ((1 — e) A, eA) 
form modular as well as dual modular pairs. 
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Proof. Let g A Ç e A. By Theorem 11.3 we may assume that g = eg 
= ge. Then g (I — e) = (1 — è) g = 0 and Theorem 11.4 gives ĝ 4 
Y (1 — e) A = (g + 1 — e) A. Now since e (g + 1 — e) = g 
= (g + 1 — e) e we can apply Theorem 11.4 a second time to conclude 
that gA = (gA Y (1 — e) A) n e,4. This establishes that (1 - e ) ^ n d 
= (L4 and that M ((1 - e) A, eA) holds. Similarly, M (e,4, (1 - e) A) 
holds and a dual argument on J£? produces the fact thaXAe n A(l — e) 
= AO with M (,4e, A(l - e)) and M (Λ (1 - e), ,4e) both true in J2\ The 
fact that JSP and J? are dually isomorphic then completes the proof. 

We shall now show how the centre of M(A) is related to the centre of 
the ring A. We require first the following result: 

THEOREM 11.6. IfeA <^fAand(\ - e) A <= (1 - f) A then e = / . 
Proof. eA ^ fA implies e = fe while (1 — e) A £ (1 — / ) A implies 

1 - e = (1 - / ) (1 - e) = 1 - / - e + / e which gives / = /<?. It fol-
lows that e = / . 

THEOREM 11.7. e A is in the centre of 0t if and only if e is in the centre 
of A. 

Proof. Suppose that e is in the centre of A and let fA e 0Ì. Then 
fAneA = efA and fA n (1 - e) A = (1 - e)fA. Since f = ef 
+ (1 - e)f it follows from Theorem 11.4 that fA = (fA n eA) 
Y [fA n (1 - e U ] . Also, e^ Y fA = (e +f- ef) A and (1 - e) A 
Y fA = [1— e +f— ( 1— e)f]A. Since e + f — ef commutes with 
1— e + f — (1— e ) / and their product i s /we see thaXfA = (//4 Y e^[) 
n [//f Y (1 - e) A]. It follows by Theorem 9.2 that eA is central in St. 

Suppose conversely that e A is central in M. Then (1 — e) A is its 
unique complement therein. Let xeA. Then g = e + ex (l — e) is 
idempotent with ge = e and eg = g. It follows that e A = gA. Then 
(1 — g) A is a complement of eA and so (1 — g) A = (1 — e) ,4. By 
Theorem ll .óweobtaine = g = e + ex{\ — e). It follows that ex (1 —e) 
= 0 and so ex = exe. In a similar way we have (1 — e) xe = 0 and so 
xe = exe from which it follows that ex = xe and so e is in the centre of A. 

We shall be very interested in just how the elements of a Baer ring A 
induce residuated mappings on $(Α). Basically, the situation is as follows. 
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31 by the For a fixed element x of A we can induce a mapping φχ : â 
prescription 

φχ (eA) = (R~* o L) (xe). 

Similarly, we can induce a mapping ηχ : ££ -> S£ by the prescription 

%(,4e) = (L->o * ) ( « ) . 

The mappings 9^, ^ are connected in the following way: 

φχ e Res (01) with φχ = R^ o ηχ oL~*; 

ηχ 6 Res (JSf) with ?? * = L~* o φχ o R-+. 

The following commutative diagrams illustrate the situation: 

R— L ~ 

THEOREM 11.8. For each x e A, φχ e Res(^) with φχ = R^ οηχο L~\ 
Dually, ηχ e Res(J^) with ηχ = L~* o <px o jR-\ 

Proof. (1) Let ê 4 £ /^4. Then e — fe and so if j x / = 0 we must have 
yxe = jx/i? = 0 whence L (xf) £ L (xe). Thus ê 4 ^fA=> (R~* o L) (xe) 
£ CR"* o L) (x/). This shows that the mapping φχ is both well defined and 
isotone. In a similar way we can show that ηχ is well-defined and isotone. 

(2) The mapping R~* o ^ o L - * is evidently isotone. If Ag = L(xe) 
then 

( / r oVxoL- o ψχ) (eA) = ( IT o Vx o L-) [(JT o L) (xe)] 

= (R-oVx)[L(xe)] 

= ( /T o ηχ) (Ag) 

= (R-oL-)[R(gx)] 

= R(gx) 

since g e L (xe) => e e R (gx). Thus R~* o ηχ o L~* οφχ > \à&. 
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(3) A dual argument shows that L ^ o ^ o ^ o ηχ > id^ and so we 
have L~* οφχο R-+ o ^ o L ^ > Zr\ Applying R~* to the left and using the 
fact that R"* o L " o ^ = ^ 5 we see that φχ o R~* ο ^ ο ΐ ^ < R-+ oL~* 
= id^. We conclude that φχ e Res(^) with φχ = R~* οηχο Zr\ 

COROLLARY. For each xeA,cpx (eA) = R (x - ex). 

Proof. Applying the above formula we have 

φϊ (eA) = (R-* o ηχ o L->) (eA) = ( IT o ηχ) [A (1 - e)] 

= (ror){i?[(i-e)x]} 
= R(x — ex). 

Our next result provides an explicit formula for the residuated map-
ping induced by an idempotent element of A. 

THEOREM 11.9. If e, fare idempotents in A then 

<pf(eA)=[eAY(l-f)A]nfA. 

Proof. By an argument dual to that used in the proof of Theorem 11.2, 
if Ag = L (fé) then gf = gfg and A (1 - e) n Af = Agf Clearly gf = gfg 
implies that Agf = Ag n Af. Taking right annihilators, we see that 

( i T o l ) (fé) Y (1 -f)A = eA Y (1 -f)A. 

Taking the intersection with j%A and using the fact that M ((1 — / ) A,fA) 
holds, we see that 

φ, (eA) = (JT o L) (fe) = [(IT o L) (/e) Y (1 - f) A] nfA 

= [eAY(l -f)A]nfA. 

All of this will be of considerable interest because of: 

THEOREM 11.10. The mapping described by x -> φχ is a semigroup homo-
morphism of A into Res(^). 

Proof. Given x,yeA9 let eA e M and gA = (R~* o L) (ye). Then 
L(g) = L (ye) and so 

a (x§) = 0 <=> ax e L(g) = L (ye) <=> a (xye) = 0. 



COORDINATIZING 3AER SEMIGROUPS 101 

Thus L (xg) = L (xye) and so 

<Px [<Py (eA)] = φχ (gA) = ( i T o L) (xg) = ( i T o L) (xye) = cpxy (eA). 

It follows immediately from this that x -► φχ is a homomorphism. 

We close this section by having a careful look at Example 11.2, our 
goal being to give a concrete interpretation to some of the above results. 
Let F be a (left) vector space over a division ring D, ht A = Hom(F) be 
the ring of linear transformations on Fand let L = L(V) be the lattice of 
all subspaces of V. Recall that by Example 8.2 the lattice L is atomic, 
complemented and modular. We break our discussion into several parts. 

I. L is isomorphic to 01(A). For each idempotent ( = projection) e in A 
let Me = Im (e) = {x e V; x = e(x)}. Clearly Me is a subspace of V. If 
e o A e f o A) then e = / o e and so x = e(x) =>/(*) = f[e(x)] 
= (foe) (x) = e(x) = x whence Me e Mf. This shows that the mapping 
M : 0t(Ä) -* L given by the prescription M (e o A) = Me is both well-
defined and isotone. If, on the other hand, Me £ Mf, then (Vxe F) 
Φ 0 e M e _ ' ^ = > (Vx e F) ^(Λ;) = f[e(x)] whence e = fo e and e o A 
^fo A. The proof would be complete if we could just show that M 
mapped M onto L. Accordingly let YeL and let Z be a complement 
( = supplement) of Yin L. Then each x e Vhas a unique representation in 
the form x = y + z where y e Y and z e Z. If we define e(x) to be this 
unique vector y then it is easily seen that e — e o eeA and Me = 7. 

II. We know by Exercise 2.10 that each te A induces a residuated 
mapping f* on L with residual i*\ We also have by Theorem 11.8 that t 
induces a residuated mapping <pt on 0t(A) given by the prescription 
(pt (e o A) = (i?~* o L ) ( / o e) with ç?f

+ given by φ? (e o A) = R(t — e o t). 
We claim that if g is an idempotent generator of (R^ o L) (t o e), then 
Mö = *~*(Me). Also, if A is an idempotent generator of R (t — e o *), then 
M„ = *-(Me). 

Proof. Letgproject onto t^(Me). We shall show that g oA = (i?~* oL) 
(/oe). Note that t~*(Me) is none other than Im (toe), so by Example 11.2 
we have L(t o e) = A o(id — g) and hence (R~* oL) (t o e) = R (id — g) 
= g o A. Note also that x e t^(Me) o t(x) eMeo t(x) = e [t(x)] 
o (t — e o t) (x) = 0 o x is in the kernel ( = null space) of t — e o t. 
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If A projects onto t*~(Me), then by Example 11.2 we have R(t — e o t) 
— ho A and Mh = Γ(Μβ). 

This shows that each of the following rectangles is commutative: 

i?(A) t # ( A ) *^.#(A) 

III. Suppose now that the division ring D is in fact a field. Two linear 
transformations s, t then induce the same residuated mapping on L if and 
only if there is a non-zero scalar λ e D such that s = λί. 

Proof. If s = λί with λ Φ 0, then the assertion is clear. Suppose then 
that s^ = t~*. Denoting by [x] the subspace generated by {x}, we see that 
•s~*(M) = W ^ i_>(M) = {0} a n d so s(x) = 0 o i(x) = 0. Assume that 
s(;c) ^ 0. Then s~*([x]) = t~*([x]) => s(x) = Xxt{x) for some non-zero λχ 

in i). Similarly, if s(y) φ 0, then s(y) = Λ^ (j) with Ay e Z) and Ay ^ 0. 
We must show that λχ = Xy. 

Case 1. t(x) = oct(y). In this case t (x — ay) = t(x) — oct(y) = Oand 
so s(x — ocy) = 0 whence s(x) = ocs(y). But thenA** (x) = ocXyt(y) and 
λχί(χ) = Xxoct{y) and so ocky — λχ<χ whence we have λχ = Xy. 

Case 2. t(x), t(y) linearly independent. In this case we have s(x) 
=Xxt(x), s(y) = Xyt (y) and we may certainly write s (x + y) = Xt(x + y). 
Using linearity, we then have 

is (x + y) = Xt (x + y) = Xt (x) + Xt (y); 

\s (x + y) = s(x) + s(y) = Xxt (x) + Xyt (y), 

from which we deduce that {X — λχ) t(x) + (X — Xy) t(y) = 0. The linear 
independence of t(x), t(y) then gives λχ = X = Xy. 

Combining the above arguments, we see that if there exists an x such 
that s(x) φ 0, then s = Xxt as desired, and otherwise s = t = 0. 

Remark. If the division ring D is not commutative, then an obvious 
modification of the argument given in the case 2 will still establish III for 
linear transformations s, t of rank > 1. The result fails for transforma-
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tions of rank 1. To see this, let D be a non-commutative division ring and 
consider D as a left vector space over itself. Choose an element oc not in 
the centre of D. Define t: D -> D by t(x) = xoc. Then t is evidently a 
linear transformation and t induces the same residuated map as does the 
identity map. If t = Aid then from \oc = λ\ we have oc = λ and so 
(Vx e D) ax = xoc, a contradiction. 

EXERCISES 

11.1. Show that if e is an idempotent in the Baer ring A then eAe is a Baer ring 
with 0t (eAe) isomorphic to the interval in 0t{A) from 0A to eA. [Hint. If XE eAe and 
R(x) = fA, then x(l - e) = 0=> 1 - e = / ( l - <?)=>*>/ = efe. Show that efis the 
idempotent generator of the right annihilator of x in eAe and similarly for left annihila-
tors. The mapping described by f(eAe) -> fA is then the desired lattice isomorphism.] 

11.2. Let e , /be idempotents in the Baer ring A and let Ag — L(f' — fé). Prove 
that gf = gfg and Ae nAf= Agf. 

11.3. Prove that for a Baer ring A the lattice 0t(A) is relatively complemented. 
[Hint. Use Theorem 11.5 to show that 0t is section complemented. Use it again to 
show that every interval [eA,fA] is isomorphic to one of the form [0A, g A].] 

11.4. Show that for idempotents e,fof a. Baer ring A, 

φ; (eA) = (eA cfA) Y(l-f)A. 

11.5. Prove that e A is central in 0t(A) if and only if ef = fef for all idempotents 
fe A. [Hint. If ef = fef, prove that eA r\fA — efA. Deduce that iff A is a complement 
of e A then ef=0 and so fA = (1 — e) A. Now apply Theorem 11.3 and Theorem 9.3. ] 

11.6. Prove that 01(A) is a Boolean algebra if and only if every idempotent of A 
is central. 

11.7. Prove that the centre Z of the Baer ring A is a Baer ring with 0t(Z) iso-
morphic to the centre of &(A). [Hint. If xe Z let e/1 = R(x) and 4/* = £(*). Argue 
that, for y e A, ey e L(x) and so ey = eyf. Likewise show that yf = eyf. Deduce that 
e = / a n d ey = ye so that e e Z.] 

11.8. A Baer ring A is said to be complete if the right annihilator of each subset 
of A is a principal right ideal generated by an idempotent. Prove that the following 
statements are equivalent: 

(1) 4̂ is complete; 
(2) the left annihilator of each subset is a principal left ideal generated by an idem-

potent ; 
(3) M(A) is a complete lattice. 

[Hint. Observe that fox M ^ A we have R(M) = f) R(m).] 
meM 
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12. Baer semigroups 

The crucial annihilator properties of a Baer ring are essentially proper-
ties of its multiplicative semigroup. For this reason it is natural to ask just 
how far one can go with some sort of semigroup analogue of a Baer ring. 
In the next few sections such a theory will be introduced. We begin by 
giving some definitions. 

A non-empty subset M of a semigroup S is called a right ideal of S if 
and only if xeM => (Vy e S) xyeM, a left ideal if x e M => (Vy e S) 
yxe M and an ideal in case it is both a right and a left ideal. For each 
x e S and each M ç ^ w e agree to write xM = {xy; y e M} and Mx 
= {yx ; y e M}. For each ^ e S w e define xS t o be the principal right ideal 
generated by x and likewise Sx to be the principal left ideal generated by x. 
We let PLI(S), PRI(S) denote the set of principal left, right ideals of S 
with both sets ordered by set inclusion. 

Suppose now that K is a distinguished ideal of the semigroup S. If 
M £ S, then we define the left K-annihilator of M by 

LK{M) = {yeS; Qfm eM)ymeK}. 

Similarly, the right K-annihilator of M is defined to be 

RK(M) = {yeS; (VmeM)myeK}. 

In the case where M = {x} we shall usually write LK(x) instead of LK({x}) 
and RK(x) instead of RK({x}). Clearly every left AT-annihilator is a left 
ideal and every right .K-annihilator is a right ideal of S. 

Definition. A pair <5; K} is called a Baer semigroup if S is a semi-
group and iTis an ideal of S having the property that for each x e S there 
exist idempotents e,fe S such that RK(x) = eS and LK(x) = Sf 

It is important to note that uniqueness of the idempotents is not being 
postulated. We need not have e = / a n d there could well exist idempo-
tents g, h such that e φ g,f¥" h but eS = gS and Sf = Sh. However, it 
will be very useful to note that for idempotents e,f we have yeeSoy 
= ey and y e Sfoy = yf 
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Suppose now that <£; K} is a Baer semigroup and let xeK. Then 
there exist idempotents e,/such that RK(x) = eS and LK(x) = Sf Since 
Kis an ideal it is immediate that S = eS = Sf. Thus e is a left identity and 
/ i s a right identity for S. It follows easily from this that e = / a n d is a 
two-sided identity for S; this we shall denote henceforth by 1. Note that 
lxeKoxleKoxeK. It follows that if RK(1) = gS and LK{\) = Sh, 
then K = gS = SA. It is immediate that g = A is an identity for K. Let us 
denote this by k so that we have k = k2 and K = kS = Sk. Now (Vx 6 S) 
xA: e j£=> ,x;jfc = fcxfc and likewise kxeK=> kx = fcxfc. We thus have 
(V% e S) kx — xk. This proves that Kis a principal ideal of S generated by 
an idempotent k which is centralin the sense that it commutes with every 
element of S. For this reason, we shall henceforth speak of a Baer semi-
group as being a pair <5; k} where S is a semigroup and k is a central 
idempotent of S having the property that for each xeS there exist 
idempotents e5/such that Rk(x) = e S and Lk(x) = Sf where we write 
Rk(x) instead of RkS(x) and Lk(x) instead of Lsk(x). The element k will be 
called the focus of S and the ideal kS the focal ideal. It will prove con-
venient to let Sek = &k(S) = {Lk(x); xeS} and 0tk = @k(S) = {Rk(x); 
xeS} with both sets ordered by set inclusion. The symbols e,f, g, h with 
or without subscripts or superscripts will be used exclusively in connec-
tion with Baer semigroups to denote idempotents. It will at times prove 
useful to let e' denote an idempotent generator of Rk{e) and e* an idempo-
tent generator of Lk(e). 

Before proceeding, we give some examples of Baer semigroups. 
EXAMPLE 12.1. The multiplicative semigroup of any Baer ring; more 

generally, any subsemigroup M of the multiplicative semigroup of a Baer 
ring, provided that M contains all of the idempotents. In this case we have 
a Baer semigroup with focus 0. 

EXAMPLE 12.2. Any semigroup with 0 and 1 having no proper zero 
divisors. 

EXAMPLE 12.3. Let S be a pseudo-complemented semilattice. Then 
<5; 0> forms an abelian Baer semigroup with respect to multiplication 
defined by xy = x n y. Here every element is a central idempotent and 
for each xeS v/e have R0(x) = L0(x) = x*5, where x* denotes the 
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pseudo-complement of x. This class of Baer semigroups will prove to be a 
useful source of examples and counter-examples. 

EXAMPLE 12.4. Let X be a non-empty set and let Rel(Z) denote the set 
of binary relations on X. Given S, Te Rel(X), define S o Tby the prescrip-
tion x (S o T)y o(3ze X)xTz and zSy. If Se Rel(Z) and M £ χ9 

define S(M) = {y e X; (3x e M) xSy}. We define the domain and image of 
a relation S by Dom S = S*(X) and Im S = £(Χ), where S" denotes the 
converse of £. For each subset M of X define 7M by xIMy <*> * = J e M. 
Note that IM = IMoIMe Rel(Z). Given S, Γ in Rel(X) and M g J , w e 
point out that (S o T) (M) = S [T(M)]. We leave to the reader the routine 
verification that this operation turns Rel(Z) into a semigroup whose zero 
element is the empty relation on X while we concentrate our efforts on 
showing that it is a Baer semigroup. Suppose first that S o T = 0 . If 
z e l m T then we cannot have z e Dom S and so Im T s [Dom S]', the 
complement of the domain of 5. If, on the other hand, I m J ç [Dom S]', 
it is clear that there can be no elements x, y such that x (S o T) y and so 
S o T = 0 . Let us now observe that if T = IA o Γ then Im Γ = T(X) 
= IA [T(X)] c 7^(X) = ^ while if Ι η ι Γ ς ^ then xTy => yIAy and so 
T = IAoT. It is immediate that R0(S) = IA o Rei (X) with 4 = [Dom S]'. 
Making use of the fact that T o S = 0 o S* o T* = 0, a dual argument 
produces the fact that L0(S) = Rei (X) o / B , where £ = [Dom S T 
= [Im S]'. Thus <Rel(Z); 0> is a Baer semigroup. 

We are now ready to develop some of the theory of Baer semigroups. 
Until further notice, we shall be dealing with a Baer semigroup (S; ky. The 
proof of the first result is so similar to that of Theorem 11.1 that it will be 
omitted. 

THEOREM 12.1. (1) The mappings Lk : PRICS) -> PLICS), Rk : PLI(S) 
-> PRI(S') given by Lk (xS) = Lk(x), Êk (Sx) = Rk(x) set up a Galois 
connection; 

(2)LkoRkotk = £k and RkotkoRk = Rk; 
(3) xSe@koxS = (ÈkoLk) (x) andSxe&koSx = (tk o R) (x); 
(4) Ζ,Γ, the restriction ofLk to Mk9 is a dual isomorphism ofMk onte S£k 

whose inverse is Rk \ the restriction ofRkto 3?k. 
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It is important to note that the semigroup analogue of Theorem 11.1 (6) 
is not true. A counter-example is provided by the three element chain 
S = {0, a, π] with 0 < a < π. As in Example 12.3, <5; 0> is a Baer 
semigroup. In this case we have £%0(S) = {OS, nS} and a = a2 is an 
idempotent such that aS φ 0to(S). 

THEOREM 12.2. Let eSJSe@k, Se* = Lk(e), Sf*=Lk(f) and 
gS = Rk (f*e). Then eg = (eg)2 and egS = Rk ({e # , /*}) . 

Proof. Note first that (f*e) (eg) = f*egekS implies eg e Rk (f*e) 
= gS whence eg = geg and so eg = (eg)2. If x e ^ ( { e * , / # } ) , then 
e*x ekS=> xe Rk(e*) = (R? o Lk) (e) = eS => x = ex and so / * e x 
= f*xekS puts x in i?fc ( /*e) = gS and consequently x = gx = egx. If 
conversely x = egx then e*x = e*egxefcS and / * x = f*egxekS 
whence we have xeRk({e*,/*}). 

THEOREM 12.3. $k(S) and &k(S) are bounded dually isomorphic lattices. 

Proof. kS is clearly the smallest element of both 01 k and ££k. With 
the same notation as in Theorem 12.2, it is clear that eS9fS e 0lk imply 
that egS = Rk({e*,f*}) is the set-theoretic intersection of eS and fS. 
Now egS £ eS implies that (K? o Lk) (eg) £ (R£ 0 Lfc) (e) = eS and 
similarly ( iC ° Lk) (eg) ^ / £ forces (R? o Lfe) (eg) £ egS. It follows that 
(jRr ° Lk) (eg) = egS so egS = eS nfS in âtk(S). This shows that 0tk is 
an n-semilattice with 0. A dual argument produces the fact that J^fc is an 
n-semilattice with 0 and the theorem now follows by Theorem 12.1(4). 

Remarks. (1) Note that while the intersection operation in fflk is set-
theoretic, the union operation is generally not set-theoretic. Indeed, we 
have eS YfS = Rk (Se* n 5/*). With notation as in Theorem 12.2, if 
hS = Rk (e* f), then a symmetric argument will yield fh = (/A)2 and 
fhS =fSn eS. We shall also have occasion to make use of the fact that 
egS = eS n gS and fhS = fS n hS. This follows immediately from the 
equations eg = geg,fh = hfh. 

(2) If <S; fc> is a Baer semigroup and if the law of composition O is 
defined on S by x O y = yx, then there results a new Baer semigroup 
<£* ; k} which we call the dual of (S;k}. It is obvious that there exists a 
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natural isomorphism between «^(S*) and 0tk(S) as well as between 
^fc(S*) and &k(S). Making use of this, we can dualize theorems involving 
01 k to corresponding results involving 3?k by interchanging the rôles of the 
left and right annihilators and reversing all multiplications. As an example 
of this, we may dualize the above remarks as follows: let Se, Sfe J?k, 
e'S = Rk(e),f'S = Rk(f), Sg = Lk (*/') and Sh = Lk (fe') ; then ge, Ä/are 
idempotents with 

SenSf=SgnSe = Sge = ShnSf= Shf. 

We saw in the previous section that if A is a Baer ring, then 0t(A) is 
a bounded relatively complemented lattice. We now ask what properties 
are enjoyed by the lattice of right fc-annihilators of a Baer semigroup 
<£; ky. The answer is quite startling: any bounded lattice is isomorphic to 
the lattice of right k-annihilators of some Baer semigroup <S; k}! In con-
nection with this, it will prove convenient to say that the lattice L is co-
ordinatizedby the Baer semigroup <S; fc>, or that <£; k} is a coordinatiz-
ing Baer semigroup for L, in case L is isomorphic to 0tk(S). It is at this 
point that we must return to a consideration of residuated mappings. 

Let E be a bounded ordered set. Given eeEv/e leave to the reader the 
routine verification that the mappings oce,ße: E -► E described by 

(e if x φ 0; [π if x $ e; 
ae(x) = ße(x) = 

[0 if x = 0, (0 if x < e, 

are idempotent elements of Res(iT) with associated residual maps given by 

(π if x > e: L [e if x Φ n\ 

[0 if x £ e, [π if x = ττ. 

Likewise, if j ^ is a lattice then the maps θβ,ψβ: Ε-+ E described by 

{ x if x < e; f 0 if x < e; 

e if x $ e, U u e if ^ $ e, 

are idempotent elements of Res(£) with associated residual maps given by 

[ π if x > e; ^ [x if x > e\ 
Θ:(Χ) = Ψ:(χ) = 

[x ne ii x % e, [e if x £ e. 
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For an arbitrary bounded ordered set E we have, by Theorem 2.11, 
that Res (E) is an ordered semigroup. The identity map serves as the 
multiplicative identity element and the zero map is the multiplicative zero 
element. When working with O-annihilators in a semigroup with 0, we 
shall often omit the subscripts and write R in place of JR0 , etc. Our imme-
diate goal is to decide what it means for <Res(Zs); 0> to be a Baer semi-
group. 

THEOREM 12.4. Let E be a bounded ordered set. Then in S = Res(£) 
(1) 0 οφ = 0 if and only ί/φ(π) < 0+(O); 
(2) if RUß) = < p o S with φ = φ2 then φ(π) = 0+(O). 

Proof (1) Since 0, φ are isotone 0 ο φ = 0 if and only if 0 [<ρ(π)] = 0. 
It is clear from the definition of a residuated mapping that this is equi-
valent to φ(π) < 0+(O). 

(2) If Ä(0) = ç?o5 with φ = φ2, then by (1) we have φ(π) < 0+(O). 
Now let oc = <χΘΗο) defined as above. We see that 0 o oc = 0 and so 
oc = φ o oc whence 0+(O) = oc{n) = φ [oc{n)] < <ρ(π) and hence <ρ(π) = 0+(O). 

THEOREM 12.5. Let E be a bounded ordered set. If <Res(£); 0> is a 
Baer semigroup then E is a lattice and <Res(2J); 0> coordinatizes E. 

Proof Let S = Res(E) and let L = St{S). Then by Theorem 12.3 we 
know that L is a lattice. By the result of Theorem 12.4, we can define a 
mapping / : L -» E by the prescription f^ o S) = |(π), where ξ is an 
idempotent generator of ξ o S. Note that ξ o S < ηο3=>ξ = ηοξ and 
so ξ(π) = η [ξ(π)] < η(π). If, on the other hand, ξ(π) < η(π) and if 
η o S = JR(0), then ξ(π) < η(π) = 0+(O) implies ξ e Ä(0) and so ξ o S 
< η o S. We thus h a v e / ( | o S ) < ffy o S) oξ o S < η o S. It remains 
to show that / is surjective. Accordingly, let xe E. Then ßxe S and if 
R(ßx) — ψ ° S with g? = φ2, then, by Theorem 12.4, f(cp o S) = φ(π) 
= # ( 0 ) = x 

THEOREM 12.6. For a bounded ordered set E the following conditions are 
equivalent: 

(1) E is a lattice; 
(2) Res(jE) w a 5aer semigroup with focus 0; 
(3) E con be coordinatized by a Baer semigroup. 



110 RESIDUATION THEORY 

Proof. (1) => (2) : If E is a lattice, then (Vx εΕ)θχ,ψχΕ Res(£). Given 
Θ e Res(£), recall that θ ο φ = 0 if and only if φ(π) < 0+(O). If we let 
x = θ+(0), then we see that φ(π) < x=> φ = θχ οφ; and if <p = θχ ο 99, 
then 9?(JT) = 0* [9?(π)] < Ö (̂JT) = x. It follows immediately from this that 
<K(0) = e, o Res (is). A dual argument in the semigroup Res + (E) will show 
that R(6+) = y)y o Res+ (£) with j> = θ(π). It follows from this that, in 
Res(£),Z.(0) = Res(£)o V y . 

(2) => (3): immediate from Theorem 12.5. 
(3) => (1): immediate from Theorem 12.3. 

Although the coordinatization of a lattice by a Baer semigroup is 
highly non-unique, we shall show that Res(L) is "universal" in the sense 
that if <5; fc> is a Baer semigroup which coordinatizes L then Res(L) 
contains a homomorphic image of <£; fc> which is itself a Baer semigroup 
which coordinatizes L. The next few results serve to establish this. In 
order to simplify notation, we agree to identify L with 0tk(S) when <S; k} 
coordinatizes L. 

Let <5; k} be a Baer semigroup and let L = &k(S). As we shall see, 
for each x e S, we can define mappings yx\L^>L and ηχ : Ĵ fc(*S) -> < f̂c(S) 
by the prescriptions 

99X (oS) = (ΛΓ o Lk) (xe) (eS e L) ; 

ηχ (Sf) = (L: O Rk) (fx) (Sfe £Pk{S)). 

As in § 11, the mappings φχ, ηχ are related in the following way: 

THEOREM 12.7. For each x e S, φχ e Res(L) with φχ = R^ o ηχ ο Lk 

and ηχ e Res(J5f) with ηχ = Σ^ °φχ° R?. 

Proof. Let e S £ fs in L. Then e = fe, so if yxfe kS we must have 
yxe = yxfe e kS and Lk (xe) 2 Lk (xf). It follows from this that the 
mapping φχ is both well-defined and isotone. The remainder of the proof 
follows almost identically that of Theorem 11.8 and we leave it to the 
reader. 

COROLLARY. For each xeS, 9^ e Res(L) with φχ (eS) = Rk (e*x) 
where eS e L and Se* = Lk(e). 
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Proof, φϊ (eS) = (R? oVxoL?) (eS) = (R? οηχ) [Lk(e)] = (R? οηχ) 
( Ä # ) = ΛΓ [&Γ o Rk) (e*x)] = Rk (e*x). 

If S, T are semigroups a n d / : S -» Tis a homomorphism, then when-
ever Thas a 0 we define the kernel off to be the set/*~(0). Evidently, the 
kernel o f / i s an ideal of 5. 

THEOREM 12.8. With notation as in Theorem 12.7, the mapping x -> ψχ 

is a semigroup homomorphism from S to Res(L) with kernel kS. Further-
more, S = {φχ; xeS} is a Beter semigroup with focus 0 which coordina-
tizes L. 

Proof (1) Let eSeL, x,ye S and gS = (R^ oLk) (ye). Then Lk(g) 
= (L? oRko Lk) (ye) = Lk (ye) and so 

axg ekSoax e Lk(g) = Lk (ye) o a (xye) e kS. 

Thus Lk (xg) = Lk (xye) and so 

H>x[ <Py(eS)] = <px [(Rk o Lk) (ye)] = <px(gSl) = (R? O Lk) (xg) 

= (Rk oLk) (xye) = (pxy(eS). 

We deduce from this that φχ o <py = φχγ and so x -» φχ is indeed a semi-
group homomorphism. 

(2) We shall now show that kS is the kernel of x -> <px. Note first that 
if Λ* G kS then Lk(x) = S and so (R^ o Lfc) (x) = £5. Since φΛ (eS) 
Ç çix (1*5) = (RZ ° f̂c) (*1) = (^Γ ° f̂c) (*) = kS, it is immediate that 
φχ is the zero mapping on L. If, conversely, ^ = 0, then q>x(lS) 
= (RZ o Lk) (xl) = (i?r ° Lk) (x) = kS puts x e kS. 

(3) Finally, let us show that <5; 0> is a Baer semigroup which co-
ordinatizes L. Let φχΕ S with eS = Rk(x) in <5; k}. Then <??* o ç>y = 0 
=> .̂xy = 0 => xy e kS => j> = ey => <py = φ6 o çpy in S. If, on the other 
hand, rpy = φβ°φν, thence ° (py = φχ ° (pe ° <py = <pxey — 0 since xey e kS. 
Hence in S we have R(cpx) = <pe o S. A similar argument applies for left 
annihilators and so <5; 0> is a Baer semigroup. To show that it co-
ordinatizes L, it suffices to show that the mapping eS -» <pe o 5 is an iso-
morphism of L onto J?(5). If eS £ fSinL, then e = / e and so ^e = q>f οφβ 

whence φβ o 5 Ç ^ o S. If now φβ o S ^ φ/ o S, then φβ = ψ/ ° ψβ and so 

(*f o Lk) (e) = <pe (IS) = (ç>, o ^ ) (15) s ç>, (15) =. (AT - ^ ) ( / ) . 
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Since eS,fS e L we deduce that eS = (Rk o Lk) (e) ç (1Ç* °£fc) ( /) = fS. 
Since we have already shown that for φχ e S, R(<px) = φβ ° S where 
eS = Rk(x) in <£; fc>, the mapping eS -> ç?e o S is indeed surjective. We 
conclude that it is an isomorphism. 

By Theorem 12.6, every bounded lattice may be coordinatized by a 
Baer semigroup, while by Theorem 11.5 the lattice of right annihilators 
of elements of a Baer ring is complemented (indeed relatively complement-
ed). It is natural to ask just what there is about a Baer ring that forces this 
difference. Our next result provides the answer: for an idempotent e of a 
Baer ring A, eAe 01(A) and Ae e SP(A) ; this need not hold in a Baer semi-
group. 

THEOREM 12.9. Let <S; k} be a Baer semigroup, letfS e 9tk(S) and let 
Sfe ^k(S). Iff S = Rk(f) then fS andf'S are complements in 3tk(S) with 
M (f'SJS) and M* (fS,fS) both true. Furthermore, for all eS e Mk(S), 

cpf(eS) = (eSYf'S)nfS. 

Proof (1) Let eS s / S so that e = fe. Setting Se* = Lk(e) we see 
that e*fe = e*e e kS implies e*f = e*fe*. It follows that e*f = (e*f)2 

and Se* nSf= Se* f If hS = Rk (e*f), then by Theorem 12.2 we have 
fh = (fh)2 and fhS = fS n hS = eS nfS [see the remarks following 
Theorem 12.3]. Hence 

eS = eS nfS = hS nfS = Rk (e*f) nfS = [Rk (Se* n Sf)] nfS 

= (eS Yf'S) nfS. 

Setting e = 0 we obta in / '£ nfS = OS and M (f'S,fS) follows. 
(2) Setting Sf* = Lk(f), a dual argument on &k(S) will yield the fact 

that Sf* nSf= SO with M (Sf*, Sf). Making use of the fact that Rk is 
a dual isomorphism of 3?k onto 0tk such that Rk (Sf*) =fS and 
1Ç (Sf) =f'S, it is immediate t h a t / S Yf'S = IS with M* (fS,f'S). 

(3) Recall that ^ ( r f ) = (R? oLk) (fe). Let Sg = Lk (fe), Sf* = Lk(f) 
and Se* = Lk(e). Then by the remarks following Theorem 12.3 we have 
gf = gfg = (gf)2 and Se* n Sf = Sg n Sf = Sgf Kowf*feekS im-
pl ies/* e Sg and so Sf* £ Sg and g'S = Rk(g) <= fS. Using M (fSJS) 
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we conclude that 

g'S = (g'S Yf'S) nfS = K (Sg n Sf) nfS = R? (Se* n Sf) nfS 

= (eS Yf'S) nfS. 

Our next item of business is to investigate the various possible focal 
ideals of a Baer semigroup. In connection with this, the next result will be 
used often enough to warrant its presentation as a theorem. 

THEOREM 12.10. Let e be an idempotent element of the Baer semigroup 
<£;&>. If Rk(xe) =fS then ef = fef Dually, if Lk(ex) = Sg then 
ge = geg. 

Proof (xe) (ef) = xefe kS => efe Rk (xe) =fS=>ef = fef 

THEOREM 12.11. If(S;j} and <S; k} are Baer semigroups then so also 
is <S;jk}. 

Proof For x e S let Rj(x) = eS and Rk (xe) = fS. Then by Theo-
rem 12.10 we have ef = fef and so e / i s idempotent. If y = efy then 
y — ey and xy = xey ejS since xe ejS. But now xy = xefy e kS since 
fyeRk (xe). Hence xy ejkS. If xy ejkS, then xy ejS and xy e kS. Now 
xy ejS implies y = ey and then xy = xey e kS implies y = fy and so 
y = efy. Hence we have RJk(x) = efS with ef = (ef)2. A dual argument 
applies for left annihilators. 

We now present the semigroup analogue of Exercise 11.1. 

THEOREM 12.12. Let e be an idempotent element of the Baer semigroup 
<5; ky. Then (eSe; ek} is a Baer semigroup with 0tek (eSe) isomorphic to 
the set of fixed points of the residuated map φβ induced on 0tk(S) by e. 

Proof. (1) Let T = eSe, let xeT and let Rk(x) = fS. Note that for 

xy e ekT=> xy e kS => y = fy=> y = efey; 

y = efey => xy = xefey = xfey e kS => xy e ekT. 

Since xefe = xfe e ekT, it is immediate that, in T, 

Rek(x) = efeT with efe = (efe)2. 
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Dually, if Lk(x) — 5g, then Lek(x) = Tege with ege — (ege)2. Thus 
(T\ ek} is a Baer semigroup. 

(2) L e t / T e ^ e f c ( r ) a n d h S = (R? oLk)(f) mS. ThenLfc(/) = Lk(h) 
and so 

xh ekSo xfe kS o xefe kS o xeh e kS. 

Thus Lk(h) = Z,fc(é?A)andç>e(AS) = (^Γ °At) OA) = (^Γ °Lk)(h) = AS. 
Thus AS is a fixed point of φβ. IffT ^ g!Tthen/ = g/implies Lfc(g) c Lfc(/) 
and so CRT o Lfc) (/) £ (Rk o Lk) (g). If, conversely,/Γ, gTe ΛΛ(Γ) with 
(R: OLfc)(/) s ( iC oLk) (g) then Lk(g) s Lfc(/) in S and so, for j e l , 
ygeekT=>yfekS=>yfekT. Thus, in Γ, Lek(g) ^ Lek(f) and so 
/ T = (1£ o Lek) (f) e (1C o Lefc) (g) = gr . 

(3) The proof would be complete if we could show that the mapping 
described by /T-> (Kj? oLk) (f) is onto the set of fixed points of q>e. For 
this purpose, let <pe (fS) = (Kj? o Lk) (ef) = fS. Then ef S / S implies 
ef = fef and Lk (ef) = Lk(f). Let Sf* = L*(/). Then / V = / * / e / e fcS 
implies/*e = f*ef*. We claim that in Γ we have Rek (ef*e) = efeT. To 
see this, note that for y eT, 

ef*ey e ekT=> ef*y e ekT=>f*ef*y = f* ey = f*y e kS 

=>yeRk(f*)=fS 

=>y =fy = <?/<?y. 

Since (ef^e) (efe) = e(f*e) (fe) = ef^ef ^fee ekT, we sQQthat efe = (efe)2 

and Rek (ef*e) = έ?/έ?Γ, so e / e l e ^ 0 0 - Now for y e S, 

yfe kS => yefe kS => j>e/e G fcS; 

yefe ekS=> yefefe kS => yeef = yefe kS => yfe kS. 

Hence 
/ S = (R: oLk) (fS) = (RT oLk) (efe). 

We close this section by presenting two final examples of Baer semi-
groups. 
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EXAMPLE 12.5. Let F be a left vector space over a division ring D. By a 
semilinear transformation of V we shall mean a pair (V, s") where 

(1) s' is an automorphism of D; 
(2)s": V-+ V; 
(3) (Vx, j e F) s" (x + y) = s"(x) + ^ (y) ; 
(4) (VA e D) (Vx e V) s" (λχ) = s'ß) s"(x). 

If s = (V, s") and * = (tf, t") are semilinear transformations on V, we 
define their product by st = (s' o t', s" o *"). Note that fc = (id, 0) is a 
central idempotent element for this law. Note also that every linear trans-
formation s may be identified naturally with the semilinear transforma-
tion (id, s); and that if t = (t\ t") is any semilinear transformation then 
for any subspace M of V both t"~*(M) and i"*~(M) are subspaces. By an 
argument similar to that given in Example 11.3, we can show that the set 
of semilinear transformations of V forms with respect to the focus k a 
Baer semigroup which coordinatizes the lattice of all subspaces of V. 

As a preliminary to the next example, we consider a 7\-topological 
space (Z, &~). The reader will no doubt recall that a TVtopological space 
is one in which every singleton subset is closed. It is easy to show that the 
set L(X) of closed subsets of X, when ordered by set inclusion, forms a 
complete atomistic distributive lattice; furthermore, the union and inter-
section operations in L(X) are both set-theoretic [for finite subsets of 
L{X)]. Given A ç Zlet us agree to write A~ for the closure of A. If R is a 
binary relation on X we can define a mapping ηκ : L(X) -> L(X) by the 
prescription ηκ{Μ) = [f Ä(M)] ", where ξκ{Μ) is defined as in Exercise 4.15. 
By Exercise 5.9, ηκ is residuated if and only if, for each A e L(X), the set 
Ö ° £Ä« ° /) (4) contains a largest closed subset of X. By the Tx axiom, this 
clearly forces (; o £Rt o ;) (A) to be closed. We thus have 

ηκ residuated o {A closed => (; o £Rt o /) (A) closed} 

o {B open => (i o ÇRt) (B) closed} 

o {B open => R*(B) open}. 

This suggests that relations R having the property that B open => R*(B) 
open might be of some interest and leads us to : 
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EXAMPLE 12.6. Let (X, ^") be a topological space. We shall call a rela-
tion Ron X continuous if it satisfies the property B open => R\B) open. 
Let CR(Z) denote the set of all continuous relations on X. With respect to 
the law of composition introduced in Example 12.4, CR (X) clearly forms 
a semigroup whose zero element is the empty relation 0 . For an arbitrary 
subset A of X, it will prove convenient to denote the closure mapping 
A -> A" by writing Cl (A) for A~. Then, with notation as in Example 12.4 
we see that for S, Te CR (X), 

SoT=0olmT^i (Dom S) o Cl (Im T) s ; (Dom S) 

o Dom S s (i o Cl) (Im T). 

Note that for A open, 7Λ is continuous and 

Dom S ^ Ao (xSy => x e A) o S = S o IA. 

Thus with A = (to Cl) (Im T) we have 5 o T = 0 o S = S o IA and so 
L0(T)=CR(X)oIA. 

Before examining the right 0-annihilator of T it will prove convenient 
to introduce another class of continuous relations. If B is open, define JB 

by 
either x φ B and x = y 

or xeB and y$B. 

Note that Dom JB = Xand Im / ß = t(B). If M is open and M ^ B then 
JB(M) — 0 ; and if there is an element yeMn i(B), then xJBy for all 
x e B and yJBy. It follows that JB(M) = [M n ;(5)] u B = M u B which 
is open. [Note that the operations here are set-theoretic union and inter-
section.] This shows that JBE CR(Z). Themost important fact that we 
shall require about JB is that 

S = JBoSolmS^i(B). (*) 

To see this, we first assume that Im S £ ι(Β). Then xSy =>y$B=>yJBy 
=> x (JB o S) y, and if x (JB o S) y, then for some z e l w e must have xSz 
and zJBy. But xSz implies z φ B and then zJBy forces z = y and so xSy. 
Hence if Im S e ;(£), then S = JBoS.On the other hand, if S = JB o S, 

xJByo 
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then 

Im S = S(X) = (JB o S) (X) = JB [S(X)i £ JB{X) = Im JB = i(5). 

Since Im JB = *(!?), it is immediate that JB = JB ° JB. 

Let us now return to our continuous relation T. We know that Γ ο ^ 
= 0 if and only if Im S £ t (Dom T). Set i? = Dom Γ, which is open 
since T is continuous. Then by (*) we have 

To S = 0olmS ç:i(B)oS = JB o S 

and so R0(T) = / B o CR (X). We have thus shown that <CR (X); 0> is a 
Baer semigroup. 

Our final goal is to show that <CR (X); 0> coordinatizes L(X), the 
lattice of closed subsets of X. We define/: ffl® -> L(Z)by the prescription 
f(JB o CR (X)) = i(B) and note that, by (*), 

JB oCR(Z) s J 4 o C R ( I ) o J B = JAoJBoi(B) £ ,(Λ). 

We would therefore be done if we could show that / mapped &0 onto 
L(X). Now if M e L ( Z ) and B = ;(Af), then / B e C R ( I ) with ii0(/B) 
= JB o CR (X) and / ( / „ o CR (JQ) = i(B) = M. This completes the 
proof. 

EXERCISES 

12.1. Let E be a bounded ordered set. Show that the right O-annihilator of every 
element of Res (E) is a principal order ideal of Res (£"). [Hint, use Theorem 12.4(1).] 

12.2. Let E be a bounded ordered set. Show that the mapping of Res (E) to E 
given by φ -> 9?(π) is residuated with JC -» <χχ the associated residual map. 

12.3. Call a Baer semigroup (S; k) complete if the right &-annihilator of every 
subset of S is a principal right ideal generated by an idempotent. Show that if (S; k) 
is complete then the left Â:-annihilator of every subset of S is a principal left ideal 
generated by an idempotent. [Hint. Use the fact that L,7 = LU ° R£ ° L£ and 
Rk = Rk ° Lk ° Rk Λ Show further that the following three conditions are equi-
valent : 

(1) E is a complete lattice; 
(2) <Res (£); 0> is a complete Baer semigroup; 
(3) E can be coordinatized by a complete Baer semigroup. 
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[Hint, It is useful to observe that for a subset M of a, Baer semigroup S, x e Rk(M) 
o{MmeM) xeRk(m).] 

12.4. Let (S; /c> be a Baer semigroup. Define a relation R on S by setting xRy 
o (x = y or x, y e kS). Show that R is an equivalence relation on S which is com-
patible with multiplication. Show also that S/R has a zero element and that (S/R; 0> 
is a Baer semigroup whose lattice of right O-annihilators is isomorphic to &k(S). 

12.5. Let e,fbQ idempotent elements of the semigroup S and suppose that ef — fe. 
Show that if (eSe;j) and (fSf; k > are each Baer semigroups then so also is (efSef;jk). 
[Hint. Use Theorems 12.11 and 12.12.] 

12.6. Let (X, ^7~) be a 7i-topological space. With notation as in the remark preced-
ing Example 12.6, show that the mapping R -» ηκ is a semigroup homomorphism of 
CR (X) onto Res [L(X)]. [Hint. To show that the mapping is a homomorphism, it may 
be more convenient to work with the associated residual maps. To show that the 
mapping is onto, let φ e Res [L(X)] and define R by xRyoy eçT({x}). Argue that 
for A open, R\A) = (; ° φ+ ° i) (A) and so R is continuous. Finally, use the fact that ηκ 

and φ agree on the atoms of L(X) to deduce that they are equal.] 

12.7. Let <5; k > be a Baer semigroup with L = @k(S). Then the set Jöf = ( R£{M) ; 
M Ç S} is a complete lattice when ordered by set inclusion. Show that «£? is isomorphic 
toX the MacNeille completion of L. [Hint. Given MeSÛ define<p(M) = {(R^ e Lk) (x); 
xeM}. Then (p:3?-*L is the desired isomorphism with φ-1 given by φ-1(7) 
= {JC e S; (Rk ° Lk) (x) e J) for all J e L. The key item in proving this is the observa-
tion that, for x, y e S, 

yxekS<xpy°(px = Οοφχ(π) < (pf(0)o(RZ ° Lk) (x) ç Rk(y). 

Hence y eLk(M)o Rk(y) is an upper bound for φ(Μ)Λ 

13. Range-closed residuated mappings 

We turn now to the study of an extremely important class of residu-
ated mappings, the consideration of which will be intimately related to the 
notions of modularity in a lattice. Let P, Q be ordered sets. A mapping 
fe Res (P, Q) will be called range-closed if Im/is an (order) ideal of Q. 
Dually, we say that / is dually range-closed if Im/ + is a filter of P. 
Finally, we shall say that/is weakly regular if it is both range-closed and 
dually range-closed. 

We begin with a characterization of range-closed residuated mappings 
between bounded ordered sets, the unbounded case being left for consid-
eration in the exercises. 
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THEOREM 13.1. Let P, Q be bounded ordered sets. Forfè Res (P, Q) the 
following conditions are equivalent: 

(1) fis range-closed; 
(2) the restriction off to [/+(0), π] is a surjection onto [0,/(π)]; 
(3) (V# eQ) q η / ( π ) exists and equals (fof+) (q); 
(4) the restriction off+ to [0,/(π)] is injective. 

Proof (1) => (2) : Let / be range-closed. Then if q < f(n) we have 
q =f(p)forsomepePmdsoq=f(p) = (fof+of)(p)=f[(f+of)(p)] 
With ( / + o / ) ( ; , )>/+(()) . 

(2)=> (3): Clearly ( / o / + ) (q) < q and ( / o / + ) (q) <f(n). Suppose 
that q1 < q and q1 < f(n), then q1 = f(p±) for some p1eP and 

i i = Λ/>ι) = ( / ° / + o / ) ( Λ ) = ( / o / + ) [/(/;,)] < {fon (q) 

since/Q^) = q± < q. 
(3) =» (4) : Suppose that ql9q2< f(p) a n d / ^ ) = f+(q2). Then 

?i = i i π / ( π ) = ( / o / + ) fo) = ( / o / + ) (q2) = q2 nf(n) = q2. 

(4) => (1): Let q < f(n). Then f+(q) = / + [ ( / o / + ) (<?)] implies that 
Q = ( / ° / + ) (tf) a n d so g e Im/ . 

The dual of the previous result is as follows: 

THEOREM 13.1*. Lei P, g èe bounded ordered sets. Forfè Res (P, Q) 
the following conditions are equivalent: 

(l)fis dually range-closed; 
(2) the restriction off+ to [0,/(π)] is a surjection onto [f+(0)9n]; 
(3) (V/7 eP)p u / + ( 0 ) exött anrf e^uaZs (/+ of) (p); 
(4) the restriction off to [f+(0),n] is injective. 

Before proceeding, we give our usual consideration to a few examples. 

EXAMPLE 13.1. If L is a bounded lattice then for each eeL the map-
ping 6e is range-closed while y)e is dually range-closed (see the definitions 
immediately preceding Theorem 12.4). Thus in Res (E) we see that the 
right annihilator of each element is a principal right ideal generated by a 
range-closed idempotent, while its left annihilator is a principal left ideal 
generated by a dually range-closed idempotent. 
5 BRT 
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EXAMPLE 13.2. Let a, b denote fixed elements of a lattice L with αφ b. 
Define/: [a n b,b]-* [a, a u b] by the prescription f(x) = x u a. Then 
/ i s residuated w i t h / + : [a, a v b] -* [a r\ b, b] given by f+(y) = y n b. 
To see this, one merely notes that 

(Vx e [a nb, b]) (f+ of) (x) = (x u a) n b > x; 

Qtye[a,avb]) (fof+)(y) = (ynb)va<y. 

Note now that if M* (a, b) holds then for each y e [a, a u b] we have 
( / o / + ) (y) = j and so / i s range-closed. Conversely, if / i s range-closed, 
then for y e [a, a u b] we have ( / o / + ) (y) = j> n/(ft) = j ; and so 
y = {y r\b)yj a. Then if w > a we have w n (a KJ b) e [a, a KJ b] and 
w n ( ö u i i ) = [ w n ( û u i > ) n i ] u û = ( w n i ) u f l , thus showing that 
M* (è, a) holds. Dually, we can show tha t / i s dually range-closed if and 
only if M (a, b). 

EXAMPLE 13.3. Let V be a left vector space over a division ring D. Let 
s = (s', s") be a semilinear transformation of V. As in Exercise 2.11, the 
induced map s"~* : L(V) -> L{V) is residuated with residual given by s"*\ 
We leave to the reader the routine verification that 

(>"<- o j " - ) (M) = M + s"«-(0) and (A""* O S"-) (M) = M n S"-*(K) 

for each subspace M of F This shows that s"~* is weakly regular. 

EXAMPLE 13.4. Let F be as in the preceding example but suppose now 
that there is a closure m a p / o n L{V) such that every subspace of dimen-
sion at most one is closed. Let L be the lattice formed by the "closed" 
subspaces of V; i.e. those subspaces M such that/(M) = M. Suppose that 
the semilinear transformation s = (s', s") is continuous in the sense that M 
closed implies s"*~(M) closed. By Exercise 5.9(a) the mapping | s : L -* L 
defined by £S(M) = ( /o s"^) (M) is residuated. We claim that ξ8 is range-
closed if and only if the image of s [in other words s"~*(V)] is closed. 
[Remark. It is essentially from this example that the terminology "range-
closed" originated.] To see this, assume first that s"^(V) is closed. Then 
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for M e L, 

(f, o £s
+) (M) = ( / ο Γ o *"-) (M) = /[Af n s"-(K)] = M n s"-(F) 

= M n ( f o O ( K ) 

= M n £ s ( F ) , 

and so the mapping £s is range-closed. Assume next that s"^{V) is not 
closed. Choose x such that XE£S(V) but ;t£,s""*(K). Then there is no 
element y such that s"(y) = x and so if M is the subspace generated by x 
we cannot have SS(N) = M for any NeL. This shows that ξ8 is not range 
closed. 

Returning now to the development of the theory of these mappings, 
we have as an immediate consequence of Theorems 13.1 and 13.1* the 
following: 

THEOREM 13.2. Let P9 Q be bounded ordered sets. If f is a weakly 
regular element of Res (P, Q) then the restriction off to [/+(0), π] is an 
isomorphism onto [0, f(n)]; furthermore, ^/peP)p u / + ( 0 ) exists and 
(V# e Q) q r\f(n) exists. 

Remark. The converse of the above theorem is also true. Suppose that 
x e P, y e Q are such that (V/? e P) (V# e Q) both p u x and q ny exist. 
Suppose further t h a t / : [χ,π] -► [0,y] is an isomorphism. Define map-
pings g: P -> Q,h: Q-+ P by the prescriptions g(p) = f{x u /?), h{q) 
= / " 1 (y n #). Note now that 

(VpeP) (A og) (/?) = h [f(x up)] = {f-1 of) (xup) 

= x u p > x; 

(V? e Q) (g o A) (,) = g [f'1 Q, n ?)] = ( / o / " 1 ) ( j n g) 

= ynq < y. 

It follows that g is a weakly regular element of Res (P, Q) with h = g+. 

Let us now turn our attention to idempotent range-closed residuated 
maps. 
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THEOREM 13.3. Let P be a bounded lattice and let fe Res (P) be a 
range-closed idempotent. Then f+(0) r\f(n) = 0 and M (f+(0),f(n)) holds. 

Proof. We note that for x < f(n) we have/(x) = x and so 

x =/(*) = (/°/+ of) (x) = (/o/+ or on (x) > (for) [x u/+(o)] 
= [x u/+(0)] nf(n) > x. 

Thusx < f(n) implies x = [x u/+(0)] nf(n). Withx = 0 this establishes 
0 =/ + (0) nf(n) and consequently M (/+(0),/(π)). 

Remark. If Pis a bounded ordered set and/e Res(P) has the property 
that/(jr) is an atom then/is clearly range-closed. This observation suffices 
to yield examples showing that for a range-closed idempotent map / in 
Res(P) none of the following conditions need hold: 

Μ(/(π),/+(0)); Μ*(/(π),/+(0)); M*(/+(0),/(^)). 

For example, consider the lattice L described by the following Hasse dia-
gram 

π 

C of 

a l 
od 

.ob 

O 

o 
Define/, g : L -* L by setting 

ίθ if x < d; 
/ (*) = 

(0 if x < b; 
g(x) = 

[a otherwise, [a otherwise. 

Then/, g are range-closed idempotents in Res (L) with/(rc) = g(n) = a, 
/+(0) = d and g+(0) = b. Note, however, that M (a, d), M* (a, b) and 
M* (b, a) all fail to hold. For the weakly regular case, the following theo-
rem provides a more gratifying result. 
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THEOREM 13.4. Let L be a bounded lattice and let /eRes(L). The 
following are necessary and sufficient conditions that f be a weakly regular 
idempotent: 

(l)/+(0) andf{n) are complements in L; 
(2) M (Γ(0),/(π)) and M* (/(π),/+(0)) hold; 
(3) Q/xeL)f(x) = [x u /+(0)] η/(π) . 
Proof Suppose first that a, b eL are such that aub = π and a n i = 0 

with M (a, è) and M* (6, Ö) both true. Define / and g by setting/(x) 
= (XKJ a) c\b and g(x) = (xn i>)uc , Then by M* (ô, Ö) we have 
(g °f) (χ) = g [ ( x u f l ) n i ] = [(x u a) n b] u a = (* U a) n (6 u a) 

= x v a > a 

and by M (a, b) we have 
{fog) (x) = f[(x n b)\j a] = [(x n b) v a] n b = (x n b) u (a n b) 

= x n b < x. 

It foliows that/e Res (L) with g = / + . Also, by Theorems 13.1 and 13.1*, 
/ i s weakly regular. Since x < b implies that x = /(*), we see tha t / i s 
idempotent. 

Suppose now that /e Res(L) is a weakly regular idempotent. Then, by 
Theorem 13.3, /+(0) η/(π) = 0 with Μ(/+(0),/(π)). By the dual of 
Theorem 13.3 we also have f(n) u / + (0 ) = π andM* (/(π),/+(0)). Note 
finally that 

(VxeL) f(x) = (for of)(x) = ( /o/+ e/* o/)(x) 
= ( /o/+ ) [xu/+ (0)] 

= N f ( 0 ) ] n / W . 
Here we have invoked Theorems 13.1 and 13.1*. 

We shall now introduce a strengthened version of the range-closed 
notion. We shall say that /e Res (P, Q) is totally range-closed if and only 
if the image under/of every principal ideal of P is a principal ideal of Q. 
Similarly, we say that fe Res (P, Q) is dually totally range-closed if the 
image under / + of every principal filter of Q is a principal filter of P. 
Finally, we shall say that /e Res (P, Q) is strongly range-closedwhenever 
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it is both totally and dually totally range-closed. Once again we consider 
the bounded case, leaving the unbounded case to the exercises. 

THEOREM 13.5. Let L be a bounded lattice and let fe Res(L). The 
following conditions are then equivalent: 

(1) fis totally range-closed; 
(2) g range-closed =>f°g range-closed; 
(3) for each xeL there exists a range-closed idempotent gx e Res(L) 

such that gjjt) = x andf o gx is range-closed; 
(4) for each xeL there exists a range-closed element gx eRes(L) such 

that gx(n) = x andf o gx is range-closed; 
(5) (V*, y e L)f[f+(x) ny) = x nf(y). 

Proof (1) => (2): Let g e Res(L) be range-closed and let x = g(n). 
T h e n / - [0, x] = [0,/(*)] = [0, (fo g) (π)]. Now if y <(fog) (n) = f(x) 
then we must have y = f(w) for some w < x. Since g is range-closed, 
w < x = g(n) implies that w — g(v) for some v e L. Hence y = (fo g) (v) 
and s o / o g is range-closed. 

(2) => (3): Takegj. = θχ (defined immediately before Theorem 12.4). 
(3) =>(4): Clear. 
(4) => (5) : Let gy e Res (L) be range-closed with gy(n) = y. Making use 

of Theorem 13.1, we may then write 

f[f+(x) ny]= f[f+(x) n gy(n)] = (fogyo g? of*) (x) 

= [(fog,)o(fog,y](x) 

= xn(fogy)(n) 

= xnf(y). 

(5) =̂> (1): If x < f(y), then x = x nf(y) = f[f+(x) n y]. Hence we 
have/-* [0, y] = [0,f(y)] and s o / i s totally range-closed. 

Combining Theorem 13.5 and its dual, we deduce: 

THEOREM 13.6. A residuated mappingfon a bounded lattice Lis strongly 
range-closed if and only if it satisfies the following two conditions: 

(1) (Vx, yeL) f[f+(x) n y] = x nf(y); 
(2) (V*, yeL)f+ If M vy] = x u / + ( j ) . 
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It is worth mentioning that by Theorem 13.6 all the mappings men-
tioned in Example 13.3 are strongly range-closed. This fact could of 
course be verified directly. Here is another example of some interest. 

EXAMPLE 13.5. Let A be a commutative ring with identity and let 1(A) 
be the set of ideals of A ordered by set inclusion. Then 1(A) forms a 
complete lattice whose intersection operation is set-theoretic and whose 
union operation is given by 

a Y b = a + b = {a + b; aea, beb}. 

For each a e 1(A) define a map / a : 1(A) -► 1(A) by setting fjb) = a · b = 
n 

the set of all finite sums of the form £ atbt, where at e a and bt e b for 
i = l 

each i. It is readily verified tha t / a is residuated w i t h / a given by /*(b) 
= {xeA; (V<z e a) xa e b}. Suppose now that a is a principal ideal. We 
claim tha t / a is strongly range-closed. Suppose in fact that a = Ax. We 
note first that / a [/*(b) n c] is always contained in b n / a (c ) ; we show the 

n 

converse inclusion. Let y eh n / a (c) . Then yeb and y = £ atct with 
i = l 

at e a and cx e c for each /. Now at e a = / lx implies that af = xrff for 
n n t n \ 

some df G A Hence y = £ 0^· = ]Γ Χ Ο ^ = I £ c ^ I x. Since yeb 
n i = l i = l \ i = l / n 

it follows that ]T ^Cf G / * (b). Now clearly cf G c implies that £ diCi e e. 
i = 1 « i = 1 

We have thus shown that £ ^Cf Ε / ^ 0>) n c whence it follows that 

J> = ( Σ ^c,· ) * e / a [/^(b) n c] as desired. This shows that / a is totally 

range-closed. Likewise, we note that the se t /* [/a(b) + c] always contains 
b + f*(c). Let us now establish the reverse inclusion when a = Ax. Let 
yef* [fa(b) + c]. Then clearly there exist beb and cec such that yx 
= bx + c. It follows that (7 — b) x = c and soy — b ef*(c) and conse-
quently y e b + /* (c) as desired. This shows that / a is strongly range-
closed. 

We shall now tie all of this in more closely with notions of modularity. 
The key item is provided by the next result. 
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THEOREM 13.7. Let L be a bounded lattice and let f g e Res (L). Then 

(1) if g is dually range-closed we have 
g o/range-closed=> M* (f(n), g+(0)); 

(2) iff is range closed and g is weakly regular we have 
g of range-closed <£> M* (f(n), g+(0)). 

Proof (1) Let a > g+(0). Then a = g+(b) for some beL and so 

a n [f(n) u g+(0)] = an(g+ og of) (π) 

= g+(b)n(g+ ogof)(n) 

= g+[bn (g of) (π)] 

= [g+o(gof)o(gofy](b) 

= (g+ °g°f°f+ °g+)(b) 

= (g+ °g°f°f+)(a) 

= (g+ °g) [<*nf(n)] 

= [anf(n)]ug+(0). 

(2) Suppose now tha t / i s range-closed and that g is weakly regular. In 
view of (1), we need only show that M * (/(π), g+(0)) implies that g of is 
range-closed. For this purpose, let x e L be arbitrary; then 

x n (g of) (π) = [xn(g of) (π)] η g(n) 

= (g°g+) [xri(gof)(n)] 

= g [g+(x) n (g+ o g of) (π)] 

= ^fe+Wn[/Wug+(0)]} 
= g{[g+(x)nf(n)]vg+(0)} 

= g[g+(x)nf(n)] 

= ( g o / o f o ^ ) ( x ) 

= [ f e ° / ) o f c o / ) + ] ( x ) . 
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Working in L*, the dual of L, and regarding f+,g+ as elements of 
Res (L*), we have that g+ dually range-closed and g+ of+ range-closed 
imply that M*(f+(0),g(n)) holds in ΖΛ Translating this assertion into 
one involving/, g and L we see that g range-closed a n d / o g dually range-
closed imply that M (/+(0), g(n)) holds in L. Thus the dual of the above 
result reads : 

THEOREM 13.7*. Let L be a bounded lattice and letf g e Res (L). Then 

(1) if g is range-closed we have 
fog dually range-closed => M (/+(0), g(n)); 

(2) if fis dually range-closed and g is weakly regular we have 
fog dually range-closed o M ( / + (0), g(n)). 

Making use of Theorem 13.5 and its dual, we have: 

COROLLARY 1. Let g be a weakly regular residuated mapping on the 
bounded lattice L. Then 

(1) g is totally range-closed o (Vtf e L) M* (a, g+(0)); 
(2) g is dually totally range-closed o (Vè eL) M (b, g(n)). 

COROLLARY 2. Every weakly regular residuated mapping on a bounded 
modular lattice is strongly range-closed. 

We now consider these ideas in an arbitrary Baer semigroup <S; fc>. 
We shall say that an element y e S is range-closed, dually range-closed, 
etc., if and only if the associated residuated map φν e Res (β^) has the 
indicated property. Thus, to say that y e S is range-closed is equivalent to 

Q/eS e 3tk) (φ, o φϊ) {eS) = eS n ( i C ° Lk) (y). 

To say that y e S is dually range-closed is equivalent to 

QteS e mk) (φϊ o 9y) (eS) = eS Y Rk(y). 

The second of these says that 

(Rk o ηγ o L? o <py) (eS) = e S Y Rk(y). 

Taking left />annihilators and letting Se* = Lk(e), we obtain 

fa, ° Vy) (Se*) = (ην o L: O cpy o B£) (Se*) = Se* n (L? o Rk) (y). 
5a BRT 
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Thus y is dually range-closed if and only if the mapping ην is a range-
closed element of Res (J?k). 

We agree to call the Baer semigroup <S; k} range-closed, etc., if and 
only if every element of S has the property in question. 

THEOREM 13.8. Let (S; k} be a Baer semigroup and let T = Res (£%k). 
If y S e 0tk{ß) then y is range-closed. If e = e2 e S then e is range-closed if 
and only ifcpe o T e 0t{T). 

Proof Let yS = Rk(x). Then if #S £ (Äf oLk)(y) = (R? oL* oRk)(x) 
= Rk(x) = y S we have g = yw for some we S.lfhS = (R^ o Lk) (w) it 
follows that 

gS = (ΛΓ o £*) to = (JC ° Lfc) (yw) = (J?f o L J (yA) = ?>, (AS) 

and so y is range-closed. To prove the second assertion, we need only note 
that for φ a range-closed idempotent in T, φ = θφα8) °φ and θφίι8) 

= Ψ ο θφ(ί8) so(poT= θφ(15) o T e Λ(Γ). 
To show that a range-closed idempotent need not have the property 

that eS e &k(S), we consider a three-element chain S = {0, e, π] made 
into a Baer semigroup as in Example 12.3. In this case, every element is 
idempotent. Moreover, &(S) = {OS, nS} and φ6 — φη is range-closed. 
However, eS φ 0t{S). 

We can now combine all of the above results to provide as follows a 
representation theorem for complemented modular lattices. 

THEOREM 13.9. For a bounded lattice L the following conditions are 
equivalent: 

(1) L is a complemented modular lattice; 
(2) L can be coordinatized by a weakly regular Baer semigroup; 
(3) L can be coordinatized by a range-closed Baer semigroup; 
(4) L can be coordinatized by a dually range-closed Baer semigroup. 

Proof (1) => (2): If L is a complemented modular lattice then the 
strongly range-closed residuated mappings on L form a Baer semigroup 
which coordinatizes L and which is clearly weakly regular. We leave the 
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proof of this fact as an exercise for the reader (see Exercise 13.6, together 
with the hint provided). 

(2) => (3): clear. 
(3) => (1): Let <5; k} be a range-closed Baer semigroup which co-

ordinatizes L. If eS,fSe0tk and Se* = Lk(e)9 then by the dual of 
Theorem 13.8 we see that e* is dually range-closed. By hypothesis, e*f 
is range-closed, so by Theorem 13.7 we have M*(q>f(lS), φ*# (05)). 
Noting that/S = <pf (IS) and eS = Rk(e*) = <pU (OS) we conclude that 
@k(S) is modular. The fact that it is also complemented comes from the 
observation that e* is weakly regular. By Theorem 13.4, Se* has a 
complement in J^fc. Since e S = Rk(e*), it follows that eS has a comple-
ment in âik. 

(2) => (4): clear. 
(4) => (1): Note that the argument used in the proof of (3) => (1) can 

be dualized to show that if <S; k} is a dually range-closed Baer semi-
group then JSPfc is a complemented modular lattice. Now use the fact that 
0tk, ££k are dually isomorphic to show that 0tk is also a complemented 
modular lattice. 

To conclude the present section, we shall have a close look at mappings 
/with the property that, for n = 1, 2, 3 , . . . , fn is weakly regular (where 
as usual fn — fofo ··· of denotes the composition of/ with itself n 
times). Our goal will be to generalize results about the ascent and descent 
of a linear transformation on a vector space. We refer the interested 
reader to [28], pp. 271-285, for a discussion of these concepts and their 
application to the solution of Fredholm integral equations. 

Let /be a residuated mapping on a bounded lattice L. If we define 
f° = id and, for n = 0, 1, 2 , . . . , let kn = fn(n) then we obtain the chain 

π = k° > k1 > k2 > ··· >kn> kn+l > · · · . 

Similarly, letting (/+)° = id and k„ = (f+)n (0), we obtain the dual chain 

U =
 KQ 5i rCi ;S ^ 2 — * * * — *^n — *̂ w + 1 ~ 

If, for some non-negative integer n, we have kn = fen+1, then we have 
necessarily kn = fcn+1 = fcB+2 = · · · . If such an n exists, we can define an 
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integer μ by 
μ = min{n; kn = kll+1}. 

This integer μ is clearly such that (Vn < μ)&" > kn+1 and (V/z > μ) 
kn = kn+1. If such an integer μ exists, we shall call {kn; n > 0} a ifresz 
tower with associated ifo'esz index μ. The absence of such an integer will be 
denoted symbolically by writing μ = oo. In the dual situation, we consi-
der the existence of an integer 

v = min {n;kn = kn+1} 

which we call the Riesz index associated with the dual Riesz tower 
{kn;n > 0}. The absence of such an integer will be denoted symbolically 
by writing ?> = oo. 

If we now suppose that each power off is weakly regular we have the 
following information concerning the associated Riesz indices: 

THEOREM 13.10. Let L be a bounded lattice and letfe Res (L) be such 
that, for n = 1, 2, 3 , . . . , fn is weakly regular. Then 

(1) k1 u k1 = πομ e {0, 1}; 
(2)ik1nik1 = 0 o v e { 0 , 1}; 
(3)μ = 0=>re{0 , oo}; 
(4)v = 0=>/*e{0, oo}; 
( 5 ) μ ε {0,1}=* r e {Ο,Ι,οο}; 
(6)ve{0, l}=>/*e{0, 1, oo}. 

Proof By virtue of the duality present it suffices to prove assertions 
(1), (3) and (5). 

(1) Let k1Kjk1= n. Then k1 =f(pz) = fik1 u kt) = Rk1) \jf(kx) 
= Rk1) u 0 —fik1) = fe2 and consequently μ e {0, 1}. Conversely, if 

μ e {0, 1} then k1 = k2 and so π = π u kx = ( / + o / ) (OT) =/+(fe1) 
= /+(A:2) = ( / + o / ) ( f c 1 ) = Ä:1ufc1. 

(3) We shall show that if μ = Oandr ?= oo,thenr = 0. Now if r Φ oo 
then v is finite and kv = kv+1. If r > 0 this may be written f+(kv_x) 
= f+(kv) and gives ky_1 =πη kv.x = Rn) nkv^± = (fof+) (k^J 
= (f°f+) (K) = /(*0 n fcv = ifev. It follows that v = 0. 
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(5) Let us note first that for i > 0 and j > 1 we have 

/ ( f c l n ^ ) = fcl+1n^_1. (*) 

In fact, since each power o f / i s weakly regular, 

/ ( * ' n *,) = [ / o ( / 0 o ( /0 + ] (* y ) = [/ ί + 1 o(/ '+i)+](A:,.!) 

= jfc, + 1 n f c / _ 1 

To establish (5), we have to show that if μ e {0,1} and v Φ oo then fcx = k2. 
Now if n > 1 and fc„ = kn+1 thenf+(kn^l) = f+(kn) and so 

Consequently, for n > 1, 

^τι-ι = ^«- ι u (A: n &„_!) 

= À:„_1u(À:1nÀ:,I) [by(**)J 

= A:„_! u /q u (fc1 n &„) 

= fc„_1u(/+o/)(A:1nA:n) 

= fc„_1u/+(^2nÂ:„_1) [by(*)] 

= *„_! u / + (&1 nfcB_!) 

= Α:„_1υ(/+ of)(k°nk„) p>y(*)] 

= / : „_ ! u ^ u (fc° n /:„) 

= /:„_! u /:„ [A;0 = π] 

= kn. 

A repeated application of this argument produces k1 = k2 and so 
* e { 0 , l } . 

COROLLARY 1. For each positive integer n, 

(lw) kn u kn = πομ e [0, n]; 
(2n)kn nkn = Oove[0,n]; 
(5n) μβ[0,η]=>νΕ [0, n] u {oo}; 
(6n) r 6 [0, n] => μ e [0, n] u {oo}. 
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Proof Consider the mapping F = / " . By hypothesis, Fm is weakly 
regular for m = 1, 2, 3 , . . . Define Km = jr7"^) and # m = (JFm)+ (0) for 
m = 1, 2, 3 , . . . , and as usual set X° = π and ΑΌ = 0. Note now that 
K1 = X2 if and only if A;" = k2n which is in turn equivalent to kn = kn+1. 
The corollary then follows by applying the theorem to the mapping F. 

COROLLARY 2. Ifboth μ andv are finite then for n > 0 the followingfour 
conditions are equivalent: 

(a)kn = ka+l; (b)kn = kn+1; (c) kn u kn = π; (d)knnkn = 0. 

Proof This follows immediately from Corollary 1. 

THEOREM 13.11. Let L be a bounded lattice and letfe Res (L) be such 
that each power of fis weakly regular. If the Riesz indices μ, ν associated 
with fare both finite, then μ = v; moreover, writing μ = v = [f] we then 
have kin n kin = 0 and kin u kin = π. 

Proof If both μ and v are finite, then by Corollary 2 of Theorem 13.10 
we have μ < max {1,?} and v < max {Ι,μ}. By virtue of Theorem 13.10 
the conditions μ = 0 and v = 0 are equivalent. We conclude that μ = v. 
Writing [/] for their common value and applying Corollary 2(c), (d) we 
deduce that kln and kin are complements. 

EXAMPLE 13.6. The following particular case of the above results is 
often given under the name of Fitting's lemma: if M is an Artinian and 
Noetherian left /l-module and if / is an endomorphism on M, then for 
some positive integer n we have the decomposition M = lmfn ® Ker/r t. 

EXERCISES 

13.1. Let P, Q be ordered sets which are not necessarily bounded and let 
fe Res (P, β ) . Let / be the ideal in Q generated by I m / [i.e. the smallest ideal of Q 
containing Im/] . Show that / is range-closed if and only if the restriction of/+ to / is 
injective. 

13.2. Let L be a lattice which is not necessarily bounded and let fe Res (L). 
Show that / i s totally range-closed if and only if (V#, yeL) f[f+(pc) n y] — x nf(y). 
[Hint. Use the fact that if x nf(y) = f(d) with a < y, then f(a) <f[f+(x) n j ] 
< f[f+(x) n (/+ of) (y)] = f(a) to deduce that/[/+(*) ny] = x nf(y\] 
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13.3. In Example 13.4 show that if s — 0 ' , s") is a continuous semilinear trans-
formation, then fs is totally range-closed if and only if (VMe L) M closed => s"~*(M) 
closed. [Hint. If the condition is satisfied then s"~* coincides with f s on X. Use the fact 
that s"~* is totally range-closed.] 

13.4. Let G be a group and let / b e an endomorphism on G. If L denotes the lattice 
of subgroups of G, recall that the mapping Çf:L~* L defined by £f(H) = f~*(H) is 
residuated with | / =/**". Show that 1/ is weakly regular. 

13.5. Consider the Baer semigroup (Rei (X), 0) of Example 12.4. For each 
R e Rei (X) identify R with the subset {(x, y); xRy]. Show that in this way: 

(1) R is range-closed if and only if there exist Rl9R2e Rei (X) such that (a) R 
= Ri u R2 ; (b) i?i is a function whose domain is a subset of X; (c) Im i? 
= Im R±; (d) Dom Rx n Dom JR2 = 0 . 

(2) R is dually range-closed if and only if R* is range-closed. 
(3) R is weakly regular if and only if R is a bijection whose domain and image are 

subsets of X. 
(4) R is totally range-closed if and only if R is a function whose domain is a subset 

o fX 
13.6. Prove that if L is a complemented modular lattice, then the strongly range-

closed residuated maps on L form a Baer semigroup which coordinatizes L. [Hint. If 
a, b are complements in L, show that the mapping fa%h : L -> L described by setting 
fa,b(x) — (χ u a ) n ^ is a strongly range-closed idempotent. Show that in the semi-
group T formed by the strongly range-closed residuated maps R(g) — fQtb ° T and 
Ug) = Γ · /c,d, where ò = £+(0) and c = g(n).\ 

13.7. Let L, M be bounded lattices. 
(1) Prove that if / , g e Res (L, M) are such that / Y g is range-closed, then 

(YxeM) x n [f{n) u g(n)] = [* η/(π)] u [Λ: η^(π)]. 
(2) Let / G Res (L, M) be weakly regular. Show that if L is distributive then fis a 

lattice homomorphism. 
(3) Let fe Res (L) be range-closed. Prove that if / is a lattice homomorphism 

then fis totally range-closed. 

13.8. With notation as in Example 12.4, let (A", 3~) be a ^-topological space and 
let R be a continuous relation. Recall that the mapping ηκ defined on the lattice of 
closed subsets of X by r\K{A) = Cl [ξR(A)] is residuated. Prove that the following are 
equivalent : 

(1) R is totally range-closed; 
(2) R is a "closed" function in that R is a function and R(A) is closed for all closed 

subsets A. 

13.9. Let F be the vector space formed by all infinite sequences {x„} of real num-
bers with respect to the laws {x„} + {yn} = {x„ + yn}> a[xn} = \axn). L e t / b e the 
"shift operator" defined by 

/ ( { * ! , X 2 , * 3 , ...}) = {Ο,^,λ'2, . . . } . 



134 RESIDUATION THEORY 

Observe that fe Horn (V, V) and let/"* be the induced residuated map on L(V). Show 
that for/"* we have μ = oo and v = 0. 

13.10. Let L be a bounded modular lattice in which 0 and π are the only elements 
with complements. Suppose further that L has no infinite properly increasing or de-
creasing chains of elements. Show that if fe Res (L) is weakly regular then either fis 
an automorphism o r / i s nilpotent (in that/" = 0 for some n). 

13.11. Let S be a semigroup with 0 and let P0(S) denote the set of all subsets of S 
which contain 0, ordered by set inclusion. For each xeS let X = {0,x}.Define 
ρχ : P0(S) -> P0(S) by setting QX(A) = AX — {ax; a e A} and recall that by Exercise 2.4 
each mapping ρχ is residuated. 

(1) Show that ρχ is range-closed. 
(2) Show that ρχ is dually range-closed if and only if x satisfies the "generalized 

cancellation law" 
yx = zx => yx = 0 or y = z. 

13.12. Let 5 be a semigroup with 0 in which the cancellation laws 

yx = zx with x φ 0 => y = z 

xy — xz with x Φ 0 => y — z 

are both valid. Suppose further that S has no infinite properly decreasing chains of 
right or left ideals. Show that 5 \{0} is a group. [Hint. With notation as in Exer-
cise 13.11 let x φ 0 and consider ρχ. By the cancellation laws one can apply Exer-
cise 13.11 to deduce that (ρχ)

η is weakly regular for all n. The chain condition forces // 
to be finite and the cancellation laws force v = 0. Hence, by Theorem 13.11, μ = 0. 
It follows that SX = X and similarly XS = X. These two facts can now be used to 
show that *S\{0} is a group.] 

13.13. Let A be a ring with an identity having no infinite properly decreasing 
chains of left ideals (left Artinian). Recall that an element x e A is said to be a right 
zero divisor if yx = 0 for some y Φ 0. Prove that if x is not a right zero divisor then x 
admits a left inverse. [Hint. If x is not a right zero divisor then the cancellation law 
yx — zx => y = z is valid. Show from this that (ρχ)

η is weakly regular for each n and 
proceed as in Exercise 13.12 to deduce that AX = A whence 1 = yx for some y e A.] 
If, furthermore, A has no infinite properly decreasing chains of right ideals (right 
Artinian), prove that the following conditions are equivalent : (a) x is not a left zero 
divisor; (b) Λ: is not a right zero divisor; (c) x has a left inverse; (d) x has a right in-
verse; (e) x has a two-sided inverse. 

13.14. Let A be a commutative Baer ring having no infinite properly decreasing 
chain of ideals. Prove that A is regular. [Hint. The chain condition is inherited by every 
subring of the form e A, where e = e2. Let x e A and let e A = RL (x). Then, working 
in e A, R(ex) = {0}. Hence, by Exercise 13.13, ex has an inverse ey in e A and so 
(ey) (ex) = e. It is immediate that x = ex = (eyex) x = x (eye) x.] 
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14. Strongly regular Baer semigroups 

Although we do not propose to enter into a lengthy discourse on the 
subject, a few brief comments about projective geometry will serve to 
motivate the material in this section. 

There are two basic approaches to projective geometry which we shall 
call the "combinatorial approach" and the "algebraic approach". In the 
combinatorial approach one deals with a set Ω of objects called points 
together with a collection of distinguished subsets of Ω called lines such 
that the following three axioms hold: 

(PG1) Ifp, q are distinct points then there is a unique line pu q 
containing both p and q. 

(PG2) If a line I intersects two sides of a triangle (other than at 
their intersection) then it also intersects the third side. 

(PG3) Every line contains at least three points. 

The properties of the geometry are then developed directly from the above 
axioms. In the algebraic approach one considers a (left) vector space V 
over a division ring D. The points of the geometry are taken to be the one-
dimensional subspaces of Fand the lines the two-dimensional subspaces. 
The properties of the resulting geometry are now developed by considering 
various algebraic equations in the underlying vector space. 

The problem then arises as to the connection between the two ap-
proaches. The passage from the algebraic approach to the combinatorial 
one is trivial. One merely verifies that the algebraically defined points and 
lines satisfy the axioms (PGl), (PG2) and (PG3). However, the passage 
from the combinatorial approach to the algebraic approach is highly non-
trivial. It involves the introduction of "coordinates" into the geometry so 
that the points and lines become defined by algebraic equations among 
the coordinates. Such a process is known as coordinatization (and hence 
our usage of this term in connection with Baer semigroups). Basically 
what one wants is a left vector space V over a division ring D which 
defines the given geometry algebraically. 

Now just what has all this got to do with lattice theory? Let G be a 
projective geometry (defined combinatorially). A collection M of points 
of G is called a variety ifp, q e M implies p u q e M. If the varieties of G 
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are ordered by set inclusion, then there results an irreducible comple-
mented modular lattice with chain conditions {irreducible in the sense that 
the only elements having unique complements are 0 and n9 which by 
virtue of Theorems 8.3 and 9.3 is equivalent to saying that the centre of 
the lattice is {0, π} ; chain conditions in the sense that there are no infinite 
properly ascending or descending chains of elements). Conversely, any 
such lattice L gives rise in a natural way to a projective geometry; one 
takes the points to be the atoms of L (which exist because of the descend-
ing chain condition) and the lines to be those sets of the form {r; r is a 
point and r < p u q, wherep, q are distinct atoms of L}. Hence the com-
binatorial approach to projective geometry may be regarded as equi-
valent to the study of irreducible complemented modular lattices satisfy-
ing the chain conditions. From the lattice-theoretic point of view, a 
coordinatization theorem for projective geometry becomes: if L is an 
irreducible complemented modular lattice with chain conditions containing 
at least one chain of length 4 then there exists a division ring D (unique up 
to isomorphism) and a left vector space V over D such that L is isomorphic 
to the lattice of all subspaces of V. 

About 1935, John von Neumann (motivated in part by considerations 
involving the foundations of quantum mechanics) generalized the notion 
of projective geometry by removing the chain conditions and considering 
a complete irreducible complemented modular lattice with certain 
"continuity axioms". Such a lattice was called a continuous geometry. A 
precise definition of this type of geometry must be regarded as beyond the 
scope of this book and the interested reader is referred to [21]. At any 
rate, von Neumann sought a coordinatization theorem for continuous 
geometries. He began by reformulating the coordinatization theorem for 
projective geometries and considering, instead of the vector space V, its 
associated ring of linear transformations. Viewed in this context, the 
theorem becomes the following, in which a regular ring is a ring A in which 
(Vx G A) (3y eA)x = xyx: if L is an irreducible complemented modular 
lattice with chain conditions containing at least one chain of length 4 then 
there exists a regular ring A (unique up to isomorphism) such that L is 
isomorphic to the lattice of principal right ideals of A. After literally hun-
dreds of pages of inspired work, von Neumann was able to prove a 



COORDINATIZING BAER SEMIGROUPS 137 

coordinatization theorem for continuous geometries which (when it works) 
establishes an isomorphism between the given lattice and the lattice of 
principal right ideals of a (unique) regular ring. 

Our goal in this section is to show that for an arbitrary complemented 
modular lattice we must be willing to sacrifice both the uniqueness part of 
von Neumann's theorem and the notion of a ring, but are nonetheless 
able to produce a Baer semigroup coordinatization which is regular in the 
above sense. 

We begin by considering a regular ring A. Let xeA and choose y e A 
such that x = xyx. Setting e = xy and / = yx we observe that e = e2, 
f = f2,xA = eA = R(l - e)2indAx = Af=L(l - / ) . It follows that 
A is a Baer ring in which (Vx eA)xAe 0t(A) and Ax e J?(A). This is the 
sort ofthing which we wish to generalize to the case of a Baer semigroup. 

Definition. Let<S;fc> be aBaer semigroup. We shall sayihatxeSisright 
regular if xS e 3tk(S), left regular if Sx e &k(S) and strongly regular if it is 
both right and left regular. The Baer semigroup <5; fc> will be called right, 
left or strongly regular if every element of S has the property in question. 

Let us note that if x is right regular then there must exist an idempotent 
e such that xS = eS. Then x = ex and e = xy for some y e S, so that 
x = ex = xyx. Thus right regularity implies regularity in the von Neu-
mann sense. In the case of a Baer ring, these two notions of regularity 
coincide. However, if one computes Res (L) in the case where L is a three-
element chain then the result is the following Baer semigroup which is 
regular in the sense of von Neumann but which is neither left nor right 
regular (see also Exercise 14.4): 
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1 

a 

b 

c 

d 

0 

0 

0 

0 

0 

0 

0 

1 

0 
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c 
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c 
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a 
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c 
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0 

d 

0 

b 

0 

d 

[For example, aS = {0, a, b} φ @Q(S).] 
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Our goal will be to prove that a bounded ordered set E is a comple-
mented modular lattice if and only if it can be coordinatized by a strongly 
regular Baer semigroup. Note first that Theorem 13.8 may now be re-
stated as follows : 

THEOREM 14.1. Let <S; k} be a Baer semigroup. Every right regular 
element of S is range-closed. An idempotent e is range-closed if and only if 
the induced residuated map φβ is right regular. 

It follows from this that every right regular Baer semigroup <*S; k} is 
range-closed and so, by Theorem 13.9, Mk(S) is a complemented modular 
lattice. Thus, in order to prove our conjecture, it will suffice to prove that 
the strongly range-closed residuated maps on a complemented modular 
lattice form a strongly regular Baer semigroup (see Exercise 13.6). 

For the moment, let us consider a more general question. Let E be an 
ordered set and l e t / e Res (E). When does there exist g e Res (E) such that 
/ = / o g o/? First of all, the next theorem shows that we had best be able 
fo find g such t h a t / = / o g of and g = gofog. 

THEOREM 14.2. Let x be an element of the semigroup S. The following 
conditions are then equivalent: 

(1) (3y e S) x = xyx; 
(2) (3w e S) x = xwx and w = wxw; 
(3) there exist idempotents e,fe S such that eS = xS and Sf = Sx. 

Proof. (1) => (2): Suppose that x = xyx and let w = yxy. Then we 
have xwx = x (yxy) x = (xyx) yx = xyx = x while wxw = (yxy) x (yxy) 

= y (xyx) (yxy) = yx (yxy) = y (xyx) y = yxy = w. 
(2) => (3) : Let x = xwx and w = wxw. Setting e = xw and / = wx, 

we have e = e2 a n d / = f2. Also x = xwx = ex puts x in e S while e = xw 
puts e in xS. We conclude that xS = eS. A similar argument shows that 
Sx = Sf 

(3) => (1): If e = e2 and eS = xS, then x = ex and e = xy for some 
y e S and so x = ex = xyx. 

THEOREM 14.3. Let E be an ordered set and let fe Res (E). If there 
exists g e Res (E) such that f = fog of then there exist idempotents a, 
b e Res (E) such that Im a = Im fand Im b+ = I m / + . 
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Proof Let S = Res (E). Iff = fog of then by Theorem 14.2 there 
exist idempotents a,b e S such that a o S = fo S and S o b = S of 
T h e n / = a o /and , for some h e S, a = fo h. It is immediate from this 
that Ima = I m / To say that Sob = Sofis equivalent to saying that 
b+ o S+ =f+ o S+ where S+ = Res+ (E). Thus a similar argument 
shows that Im b+ = I m / + . 

THEOREM 14.4. Let Ebe an ordered set and let f e Res (E). Suppose that 
a, b are idempotents o/Res (E)such that Ima = Im fandlm b+ = I m / + . 
Let g = b o / + o a and h = a+ o / o b+. Then 

(1) g e Res (E) with g+ = h; 
(2)f = fogofandg = gofog; 
@)f°g = a and g of = b; 
(4) Im g = Im b and Im h = ïma+ from which it follows that (i) g is 

range-closed if and only ifb is range-closed, (ii) g is dually range-closed if 
and only if a is dually range-closed; 

(5) fis right regular if and only if it is range-closed; and is left regular if 
and only if it is dually range-closed. 

Proof (1) Note that since I m / = Ima and I m / + = I m b + we must 
h a v e / = a o / a n d / + = b+ o / +

5 the latter giving/ = / o b. It follows 
that 

(fob+ ob = (fob)ob+ ob =fo(bob+ ob) =fob = / ; 

[a o a+ of = a o a+ o(a of) = (a o a+ °a)of=aof = f. 

We have thus established that 

f=aof=aoa+of = fob=fob+ob. (oc) 

Now (Vx e E) a(x) e I m / implies that a(x) = f(y) for some y and so 
( / o / + OÙ) (χ) = ( / o / + of) (y) =f(y) = a(x) and we deduce that 
a = fof+ o a. A dual argument produces b+ = f+ o fo b+. Thus 

a==f0f+oa and b+ =f+ ofob+. (ß) 
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We now apply (oc) and (ß) to write 

h o g = (a+ o / o b+) o (b of+ o a) = a+ o (f o b+ o b) of+ o a 

= a + °f°f+ oa 

= a+ o a 

> id. 

Similarly, we can show that g o h = b o 6+ < id, thus establishing (1). 
(2) Making repeated use of (oc), we have 

f°gof = fo{bof+oa)of={fob)of+o{aof)=fof+of = f 

and likewise 

g °f°g — (b °f+ oa)ofo (b of+ oa) = (b o / + ) o(a of) o (è o / + ) o a 

= ( i o / + ) o ( / o / + o f l ) 

= è of+ o a 

(3) By O) and (/?) we have 

f°g =f°(b°f+ od)of= (fob) o/+ oa =fof+ oa = a. 

Similarly, 

g o / = (è o/+ oa) o / = (6 o/+) o(a of) = è o/+ o / = i . 

(4) Since g = è o / + o a it is clear that Im g s Im A; and the fact that 
b = g of produces the reverse inclusion. By a dual argument we see that 
Im h = Im α+ and the remaining assertions in (4) are now obvious. 

(5) We established in (oc) and (β) that / = a of and fog = a. It 
follows from this t h a t / o Res (E) = a o Res (E). Now if / is range-closed 
we must have a range-closed since I m / = Im a. By Theorem 14.1, a is 
right regular. It is immediate that / is right regular. If, on the other hand, / 
is right regular then by Theorem 14.1 it is range-closed. A similar argu-
ment shows tha t / i s left regular if and only if it is dually range-closed. 
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COROLLARY. Every weakly regular residuateci mapping on a bounded 
lattice L is strongly regular. 

Proof. If / e Res (L) is weakly regular then I m / = [0,/(π)] and 
Im/ + = [/+(0), π]. If we choose a = θ / (π) and b = vV+<o) (these maps 
being defined immediately preceding Theorem 12.4), we have Im a = I m / 
and Im b+ = Im/ + . It then follows by Theorem 14.4(5) that/is strongly 
regular. 

Before stating the next theorem it will prove convenient to establish 
some additional notation. In a bounded lattice L we shall agree to write 
x 0 y = n to denote the fact that 

x u y = π and x n y = 0 with M (x, y) and M* (j, x). 
THEOREM 14.5. Let Lbe a bounded lattice and letfe Res (L) be weakly 

regular. Then the following conditions are equivalent: 

(1) there exists a weakly regular element g € Res(L)suchthatf=fogof 
and g = g o/o g; 

(2) (3s, teL) s ®f(n) = π= /+(0) 0 t. 

Proof. Suppose first that such a mapping g can be found. Then 
Im g 2 Im g o/and since g(x) = (g of) [g(x)] we have Im g £ Im g o / 
Thus Im g = Im g o / Similar arguments show that I m / = Im/og , 
Im / + = Im/ + o g+ and Im g+ = Im g+ o / + . It is immediate that/o g 
and g o/are each weakly regular idempotents. By Theorem 13.4 there 
must then exist s,teL such that s Θ/(π) = π = /+(0) Θ t. 

Suppose now that we are given elements s,teL such that s ®f{n) 
= π = f+ (0) © t. Then, as in the first part of the proof of Theorem 13.4, 
we can produce weakly regular idempotents a, b e Res (L) such that 
Imû = Im/and Im b+ = Im / + . Taking g as in Theorem 14.4, we see 
that Im g = Im b and Img+ = Im a+ and so g is weakly regular. 

We are now ready to relate this to the case where Lisa complemented 
modular lattice. In view of the corollaries to Theorem 13.7*, we see that 
in Res (L) the concepts of strong regularity, weak regularity and strongly 
range-closed all coincide. It follows that the strongly range-closed maps 
form a strongly regular Baer semigroup which coordinatizes L. The next 
theorem summarizes the situation. 
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THEOREM 14.6. A bounded ordered set E is a complemented modular 
lattice if and only if it can be coordinatized by one of the following types of 
Baer semigroup: strongly regular; left regular; right regular; strongly 
range-closed; range-closed; dually range-closed. 

EXAMPLE 14.1. Let L be a complemented modular lattice and let 
/ e Res (L) be weakly regular. By Theorem 13.2 the restriction o f / t o the 
interval [/+(0)? n] is an isomorphism ofthat interval onto [0,f(n)]. Let t 
be a complement of / + (0) and le t /denote the restriction of / to [0, t], 
Then defining g by the prescription g(x) = f+(x) n t for all x < / (π) , we 
see that, for x < / (π) , 

(fog) (x) =f[f+(x) nt] = x nf(t) = x 

since/(π) = / [/+(0) u t] = f(t). Similarly, for y < t, 

(gof)(y) = g[f(y)]=f+[f(y)]nt 

= [ynf+(0)]nt 

= y· 

Hence/ is an isomorphism with g as its inverse. 
Suppose now that in particular Fis a vector space over a division ring 

D and let L(V) be the lattice of subspaces of V. L e t / : L(V) -► L(V) be a 
weakly regular map and let M =f(V) and N =f+ {0}. If Tis a comple-
ment of N inL(V), t h e n / = /t|o},r] the restriction o f / t o [{0}, T], is an 
isomorphism of [{0}, T] onto [{0}, M] = I m / If the dimension of M is 
at least three then by the "Fundamental Theorem of Projective Geo-
metry" (see [2], p. 44) there exists a semilinear transformation s = (s',s") 
where s" : T -> M such t h a t / = s"~*. Let e be the projection of V onto T 
with kernel N and extend s to a semilinear transformation £ = (s', s" o e) 
on F. Then for each XeL(V) we have 

(S" o er (X) = * ~ [ e " W ] = . / [*"(*)] ■ (1) 

Defining g as in the first paragraph we have 

QtXeUV)) (gof)(X)=r[f(X)]nT=(XuN)nT. (2) 
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But e~* is a weakly regular idempotent and so, by Theorem 13.4, 

( V Z G L ( F ) ) e-+(X) = [ l u ^ { 0 } ] n e~+(V) = (XuN) η Γ. (3) 

From (2) and (3) we deduce that g of = e~* and so (s" oe)-> = / o ^ 
= f° g °f = f· We conclude that, with the exception of certain low-
dimensional cases, the weakly regular residuated mappings on L(V) are 
precisely those induced by semilinear transformations. 

EXERCISES 

14.1. Prove that the focal ideal of a right regular Baer semigroup <5; k > is a group. 

14.2. Prove that a binary relation on a set is range-closed if and only if it is right 
regular. [Hint. Use Exercise 13.5(1).] 

14.3. Let E be an ordered set and l e t / e Res (£). Show that the following condi-
tions are equivalent: 

(1) there exists an idempotent a e Res (E) such that Im a = I m / and Im a+ 

= Im/+; 
(2) there exists g e Res (E) such that f = f0g°f,g = g0f°g and /° g = g° f. 

14.4. Let L be a finite chain. Prove that Res (L) is regular in the von Neumann 
sense. [Hint. L e t / e Res (L) and define g by 

Use Exercise 2.12 to show that g e Res (L) and then note that / ' = f° g° f.] 

15. Decreasing Baer semigroups 

By a decreasing map on an ordered set E we shall mean a map/: E -* E 
which is such that/ < id£. In this section we shall first discuss decreasing 
residuated maps and then focus our attention on Baer semigroups in which 
every induced residuated map is decreasing. We shall see that this type of 
semigroup is intimately connected with a certain class of infinitely distri-
butive lattices. 

We begin with a study of residuated dual closure maps on a lattice L. 
Recall first that by Theorem 2.10 any such mapping/has the property that 
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/ = f°f+ a n d / + = f+ o f. It is immediate from this that/(x) = f(y) if 
and only i f / + (x) = f+(y). Let Rf be the equivalence relation associated 
with / and note that if x = y(Rf), then (W e L) / ( x υ ί ) = /(*) u / ( i ) 
= f(y) u / ( i ) =f(y\jt) and so x u ί = j u /(i?/). In a similar way, 
since / (x) = f(y) =>f+(x) = f+(y), we can show that / + ( x η ί) 
= / + (y n 0 a n d hence deduce that x n t = y n t(Rf). This shows that Rf 

is a congruence relation onL. But even more can be said. For if/(x) =f(y), 
then/+(x) = f+(y) and f(x) < y < / + ( x ) . On the other hand, if/(x) < y 
< / + ( x ) , then/(x) = ( / o / ) (x) < / ( y ) < ( / o / + ) (x) = /(*) shows that 

/ (x) = /(>>)· We thus have 

x^y(Rf)of(x)<y<f+(x) 

and so i?r has bounded congruence classes. Furthermore, / may be 
recaptured from Rf since 

(VxeL) f(x) = n{yEL;y = x(Rf)}. 

Suppose now that R is a congruence relation on L with bounded clas-
ses, say (Vx G L) x/i? = [xÄ, xR], Then, defining mappings/, g : L -► L by 
the prescriptions/(x) = xÄ and g(x) = xR, we see that 

x<y=>x = xny=>xR = xRny = xRn yR(R) 

=>xR< x= xRn yR(R) 

=>xR=: xRnyR <yR, 

and in a similar way x < y=> xR < yR. This shows that/ , g are isotone. 
We now observe that fog = / < idL and g of' = g > idL and so it 
follows tha t / i s a residuated dual closure map wi th / + = g. The original 
congruence relation may be recaptured from / since x = y(R) <=>/(x) 
= /GO· We have therefore proved the following result: 

THEOREM 15.1. Let L be a lattice. If R is a congruence relation on L 
with bounded classes then the mapping described by x -► n {y e L ; yex/R} 
is a residuated dual closure map. If conversely, fis a residuated dual closure 
map and Rf is the associated equivalence then Rf is a congruence relation 
on L having bounded classes. Moreover, the mapping described by f-> Rf 
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sets up a bijection between the residuated dual closure maps on L and the 
congruence relations on L which have bounded classes, 

The reader may find it instructive to compare the above discussion with 
his solution of Exercises 6.7 and 6.8. 

We next dispose of the question of when a residuated dual closure 
mapping is range-closed or dually range-closed. 

THEOREM 15.2. Let f be a residuated dual closure mapping on the 
bounded ordered set E. Then 

(1) fis range-closed o (Vx e E) x nf(n) exists and equals f(x); 
(2) fis dually range-closedO (Vx eE) xuf+ (0) exists and equals f+ (x). 

Proof (1) By Theorem 13.1,/ is range-closed if and only if (Vx e E) 
x π / ( π ) exists and equals ( / o / + ) (x). But by Theorem 2.10 we have 
/ = / o / + . (2) is established similarly. 

We next show that in a fairly wiëe class of lattices every decreasing 
residuated mapping is of the form x -► x n z, where z is central and use 
this to generalize Theorem 9.4. 

THEOREM 15.3. Let Lbe a lattice which is both section and dual section 
semicomplemented. Iff is a decreasing residuated mapping on L then fin) is 
central and (Vx e L)f(x) = x η / ( π ) . 

Proof For arbitrary xeL we evidently have x > [x nf(n)] 
u [ x n / + ( 0 ) ] . Lety < x be chosen such that yn{[xnf(n)]Kj [xn / + (0 ) ]} 
= 0. Then 

y η / ( π ) = y π χ η / ί π ) < y n {[x η / ( π ) ] u [x u / + ( 0 ) ] } = 0 

and so y η / ( π ) = 0. Similarly, we can show that y n / + ( 0 ) = 0. Since/ 
is decreasing, we clearly have f(y) < y η / ( π ) = 0 and so y < / + ( 0 ) 
whence y = y n / + ( 0 ) = 0. Since L is section semicomplemented we 
deduce that x = [x η / (π ) ] u [x n / + ( 0 ) ] . The same type of argument 
applied to the dual of L will yield x — [x υ / ( π ) ] η [x u / + ( 0 ) ] . It fol-
lows by Theorem 9.2 that/(7r) is central with/+(0) as its unique comple-
ment. The proof is completed by noting that / (x ) < x η / ( π ) and if 
y < x nf(n) is such that y n / ( x ) = 0 then f(y) < y n / ( x ) implies 
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fiy) — 0 and so y < / + ( 0 ) . Since also y < f(n) we deduce that y = 0 and 
consequently f(x) = x nf(n). 

THEOREM 15.4. Let L be a complete lattice which is both section and 
dual section semicomplemented. Then the centre of L is a complete sub-
lattice ofL. 

Proof. Let {za; oc e A} be a family of central elements. For each oc e A 
define fa by the prescription fa(x) = x n za. Note that each f% is a de-
creasing residuated mapping on L. Now let / : L -► L be described by 
/ (*) = U A W · We have / decreasing and so, by Theorem 15.3, f(n) is 

central. But f{n) = (J fjji) = (J za. A dual argument produces the fact 
aeA aeA 

that P) zÄ is central. 
aeA 

We now turn to the consideration of decreasing Baer semigroups; i.e. 
Baer semigroups <5; ky in which e|ph induced residuated mapping 9^ on 
0tk(S) is decreasing. The next result translates this condition into some 
interesting multiplicative properties of the semigroup <£; k}. In this 
result, e and/denote idempotents as usual. 

THEOREM 15.5. For a Baer semigroup <£; ky the following conditions 
are equivalent: 

(1) S is decreasing; 
(2) (Vx e S) Rk(x) is a two-sided ideal; 
(3)xyekS^xSy £ kS; 
(4) eS e 0tk{S) => (Vx e S) xe = exe; 
(5) eS e 0tk(S) o Se = e^e; 
(6) *?S e ^ ( S ) => eSe is a left ideal; 
(7) Sfe Se m => (Vx e S) /x = A / ; 
(8)iS/eJ2?k(S)=>/5 '=/S/; 
(9) 5 / e &k{S) =>fSfis a right ideal. 

Proof (1) => (2): Let eS = Rk(x). Then (Vy G S) cpy (eS) s eS gives 
j>e e eS and so eS is a left as well as a right ideal of S. 

(2) => (4) : Let eS be a two-sided ideal of S. Then e = eeeeS and so 
(Vx e S ) ^ e eS from which it follows that xe = exe. 
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(4) => (5) : If y e Se, then there exists xe S such that y = xe. By (4), 
y = xe = exe e eSe and so Se ç eSe. The reverse inclusion is obvious. 

(5) => (6): If Se = eSe, then e£e is a left ideal. 
(6) => (3) : Let xy e kS and let eS = (Rk o L*) (y). Then Lfc(» = Lfc(e) 

and so xe e kS. Since e = eee e eSe we have (Vw e &) we e eSe and so 
we = ewe and xwe = xewe e kS. It follows that xwy e kS and hence that 
xSy e fcS. 

(3) => (1) : Let eS e ^Λ(£) and let xe S. Then if we e kS we must have 
wxe e kS. Thus LÄ(e) ç Lfc (xe) and ̂  (eS) = (R^ o Lfc) (xe) ç (/?Γ ° £*) (e) 
= eS whence <px is decreasing. 

The remaining equivalences follow from the symmetry of condition (3). 
COROLLARY. Every abelian Baer semigroup is decreasing. 
The question now arises as to which lattices may be coordinatized by a 

decreasing Baer semigroup. The answer is provided by: 
THEOREM 15.6. A lattice L may be coordinatized by a decreasing Baer 

semigroup if and only if, for each yeL, the translation x -> x n y is 
residuated and the translation x-* x u y is dually residuated. 

Proof Let <£; k} be a decreasing Baer semigroup and let eS, fS 
e &k{S) with e,/idempotent. By Theorem 13.8,/is range-closed and so, by 
Theorem 15.2, <pf (eS) = eS nfS. Thus the translation eS -> eS nfS is 
residuated. Letting Se* = Lk(e), Sf* = Lk(f) and using the obvious 
right/left symmetry of Theorem 15.5, we also have the translation Se* 
-*· Se* n Sf* residuated on &k{S). Taking right fc-annihilators, this shows 
that eS -► eSvfS is dually residuated on Stk{S). 

Suppose, on the other hand, that L is a lattice in which, for all y, the 
translation x -+ x n y is residuated and the translation x -> x u y is 
dually residuated. Evidently L is then bounded. For each yeL define 
μγ(χ) = x n y and let vy be the unique residuated map such that Vy(x) 
= x u y. Let S be the semigroup formed by the decreasing residuated 
maps o n l and note that (Vj/eL)^, vyeS. Iff, g e S then by Theo-
r e m i ^ we have / o g = Oifandonlyifg^) </+ (0) .Let j =/+ (0) . If 
g(n) < y then g = μγ o g and if g = μν o g we have g(n) = μν [g(n)] 
= g{n) ny < y. It follows that R(f) = μν o S. Similarly, we have 
£(f) = S ovw where w = f(n). Thus & is a Baer semigroup. Furthermore, 
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as in the proof of Theorem 12.5, the mapping μγ o S -> y is an isomor-
phism of 0t{S) onto L. It is immediate that S is a decreasing Baer semi-
group which coordinatizes L. 

Making use of the fact that a complete lattice is infinitely distributive 
if and only if it satisfies the conditions of the previous theorem, we have 
the following : 

COROLLARY. A complete lattice is infinitely distributive if and only if 
it can be coordinatized by a decreasing Baer semigroup. A finite lattice is 
distributive if and only if it can be so coordinatized. 

As a final item for this section, we present a semigroup characteriza-
tion of the centre of the lattice of right fc-annihilators of a decreasing Baer 
semigroup. 

THEOREM 15.7. Let <S;A;> be a decreasing Baer semigroup and let 
eS e&k(S) with e = e2. The following conditions are then equivalent: 

(1) e S has a complement in 0tk(S); 

( 2 ) & e W 
(3) e is in the centre of S. 

Proof (1) => (2): L e t / S be a complement of eS in 0tk{S) w i th / = / 2 . 
Then, since 

eS n/S = <pe (fS) = (& o Lk) (ef) = <pf (eS) = (K ° Lk) (fe), 

we must have efe kS and/e e kS. Letting Se' = Lk(e) and Sf = Lk(f), 
we have e = ef. Also, eS YfS = 15 implies that kS = Lk(l) 
= Lk (eS YfS) = Se' n Sf. By an argument dual to the one given above, 
we can show that e'f e kS a n d / V e kS. But ef e kS implies/ ' e Rk(e') 
= (R? oLk) (e) = e S and so f = ef. It follows that e =f and so 
Se e &k(S). 

(2) => (3): This follows from Theorem 15.5. 
(3)=> (l) : Let e belong to the centre of S, let Sf = Lk(e) and let 

gS = Rk(e), where/ g are idempotent. Then/e ekS=> efe kS =>/ = gfi 
Similarly eg e kS => gè e kS => g = gfi It follows that / = g. Thus we 
have Sfe &k(S) and fS G 0tk(S), so by Theorem 15.5 we have (Vx e S) 
fx = fxf = xf. The same argument applied t o / i n place of e now shows 
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that since eS = Rk(f) we must have Se = Lk(f). Clearly eS nfS = kS, 
and since Se n Sf = kS we have that 15 = Rk (kS) = Rk {Se n Sf) 
= fS Y eS sofS is a complement of eS in Rk(S). 

EXERCISES 

15.1. Let /be a decreasing residuated mapping on a bounded semicomplemented 
lattice. Show that f(n) u/+(0) = n. 

15.2. Let/be a decreasing residuated mapping on a bounded section semicomple-
mented lattice L. Show that 

(VJC eL) Λ: = / (* ) u [JC o /+(0) ] . 
[Hint. Apply Exercise 15.1 to the interval [0, x].] Deduce that / i s idempotent and show 
finally that 

fin) o/+(0) = 0^>(V;ceL) f(x) = χ ο /(π) . 
15.3. Prove that the multiplicative semigroup of a Baer ring A is decreasing if and 

only if every idempotent of A is central. 
15.4. Let (X, 3~) be a TVtopological space and let R be a continuous relation on X. 

Show that the induced residuated mapping ηκ on the lattice of closed subsets of X is 
decreasing if and only if there exists an open subset A of X such that R = {(x, x) ; x e A}. 

15.5. Let (S;k) be a Baer semigroup and let Z be its centre. Show that <Z, k) 
is a decreasing Baer semigroup such that &k(Z) is a Boolean algebra. 

15.6. Let (S; k) be a Baer semigroup with eSe ^ ( S ) . Show that é?£ is a two-
sided ideal of S if and only if Lk{e) is a two-sided ideal. Deduce that the set {eS e 3tk{S) ; 
eS is an ideal} forms a sublattice of 0tk{S). [Hint. The intersection operation in &k(S) 
is set-theoretic while the union operation is given by 

eSYfS = Rk[Lk(e)r,Lk(f)].] 

15.7. Let <5; k > be a decreasing strongly regular Baer semigroup and let eS e &k(S) 
with e = e2. Define Ge = {x e S; (Rk ° Lk) (x) = eS}. Prove that: 

(1) e is in the centre of 5; 
(2) Ge is a subsemigroup of 5 which is in its own right a group ; 
(3) S is the disjoint union of the family of groups 

{Ge;eSe&k(S)}. 
[Hint. To show that x, y e Gc => xy e Ge argue that Lk (xy) = Lk (xe) = Lk (ex) = Lk(x) 
and deduce that (R£ ° Lk) (xy) — eS.] 

16. Annihilator-preserving homomorphisms 

In the study of any branch of algebra the "structure preserving" map-
pings are of great importance. In the theory of Baer semigroups we have 
to consider, in addition to the semigroup structure, the crucial annihilator 
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properties. We are thus led to define some sort of "annihilator-preserv-
ing" homomorphism. We begin by establishing some notation which we 
shall use throughout this section. 

<5; ky will always denote a Baer semigroup and e, g, h will always 
denote idempotents elements of S. I f / i s a homomorphism of S into the 
semigroup T we shall agree to write/fa) = x for each xe S and I m / = S. 
For each subset A of S we write as usual f~*(A) = {/(#) ; a e A}. It is clear 
that k is a central idempotent in S. We wish to consider annihilators in *S 
with respect to the ideal kS. Accordingly, we define 

Rk(x) = {y e S; xy e US} ; Ln(x) = {y e S; yx e kS}. 

Now if xy e kS, then clearly xy e IcS and so (/"" o Rk) (x) e Rk(x) 
= (Rn of) (χ). Similarly, (/"* o Lk) (x) s {Ln of) (x). To see that equality 
does not hold in general, we present the following example: 

Ob 

0 
S 

Now S and Tare pseudo-complemented lattices which may be regarded as 
Baer semigroups with respect to intersection, the foci being 0,5. If we 
define/: S -> ÜTby setting/(x) = χιΐχ Φ z and/(z) = Ö, then/is a semi-
group homomorphism of S onto T. Note that in T we have Rfi}(â) 
= {0, b} but/"* [R{0}(a)] = {/(0)} = {Ö}. Now this is precisely the sort of 
thing we wish to avoid, and leads us to the following definition: 

Definition. L e t / b e a homomorphism of S into the semigroup T. We 
shall call /annihilator-preserving or an AP-homomorphism if and only if 

(1) f-*oRk = Rnof and (2) f-+oLk = Lkof. 
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We shall speak o f / a s being an yiP-homomorphism of <£; k} into the 
Baer semigroup <Γ; /> if in addition to (1) and (2) we have 

(3) f(k)=j. 

THEOREM 16.1. Let f be an AP-homomorphism of(S; ky into the semi-
group T. Then (S; £> is a Baer semigroup. 

Proof. Let xeS with Rk(x) = eS. Then if y = êy we have 
f(xy) =f(x)f(y) =f(x)f(ey) = f(xe)f(y) =f(xek)f(y) = xëkyekS. 

If xy e US, then y e (R^ of) (x) = (/-* o Rk)(x) implies that y = f(w) for 
some TV e Rk(x). But then w = ew forces y = êy and so i^(3c) = ëS. 

Similarly, if Lk(x) = Sg, then LE(X) = $g-

Remark. It is important to note from the above proof thatif eS = Rk(x), 
then / - (*?S) = ( / - o Rk) (x) = (Ρβ of) (x) = ëSe^S). Similarly, if 
Sg E &k(S), then/"* (Sg) = Sge ^(S). We shall find it convenient to let 
φχ, ηχ denote the residuated maps induced by x on &R(S), &K(S)- Al-
though this notation is in a sense ambiguous, the reader should have 
little trouble in remembering that if x e S, then φχ e Res [0tk(S)] while for 
x 6 S we have <px e Res [^(S)]. It is also worth mentioning at this stage 
that, in view of the previous theorem, we may restrict our attention with-
out loss of generality to ^P-homomorphisms of <£; fc> onto a Baer 
semigroup <*?; ky. 

THEOREM 16.2. Let f be an AP-homomorphism of (S; ky onto the Baer 
semigroup <5; ky. Then, for each x e S, f~* o φχ = <p- of-* with f~* o 991 
— Ψ* °f^ andf"* o ηχ = η- of" withf"* o ηχ = ηί of". It follows that 
the restriction off"* to @k(S) is a lattice epimorphism ofMk(S) onto &K(S). 

Proof In the interest of notational convenience, let us identify the 
mappings Lk9 Lk and Lk as well as the mappings Rk, Rk and R^ of 
Theorem 12.1. With this done, we have 

( / - ° <Px) (eS) = (f- o Rk o Lk) (xe) = ( ^ o / - o Lk) (xe) 

= (RjtoLRof)(xé) 

= cpx(èS) 

= (<P*°f-)(eS). 

6 BRT 
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Similarly, we can show that/"" o ηχ = η- of"*. We may now write 

/"* °Ψχ = f~* °Rk°Vx°Lk = Rn of- o ηχοΣκ = RR o η- of"* c Lk 

= Rn o η - o Li of-* 

= ΨΪ of 
A dual argument shows that/"* o η+ = ηί ο/**. To see that the restric-
tion of/"* to 0tk{S) is a lattice homomorphism we now recall that, by 
Theorem 13.1, eS n gS = (φρ o <p+) (eS) for all eS, gS e #*(£). Hence 

f- (eS n gS) = ( / - o φ§ o φϊ) (eS) = (φ-9 ο φΐ of-) (eS) 

= (%°ç£)(a?) 
= ëS n gS. 

Similarly, / - (eS Y gS) = ëS Y £S. That / - maps &k(S) onto 0tR{5) 
follows from the fact tha t /maps S onto S. 

The identification of Lk, Lk and L^ [resp. jRfc, £ k and Rk] will remain 
in force for the rest of this section. 

We now switch our viewpoint from the external consideration of 
^4P-homomorphisms to the internal consideration of the induced con-
gruence relations. An equivalence relation E on a semigroup S will be 
called a congruence on S if and only if it is compatible on both the left and 
the right with the law of composition of S. Thus E is a congruence rela-
tion if and only if it is an equivalence relation such that x = y(E) 
=> (Vs e S)xs = ys(E) and sx = sy (E). As usual, we write x\E = {y e S; 
y = x(E)} and SjE = {x\E\ x e S}. The quotient SjE can, whenever E is 
a congruence, be made into a semigroup by defining (x\E) Q (yjE) = 
(xy)jE. Once this occurs, the canonical surjection %E : S -* SjE is a semi-
group epimorphism of S onto SjE. Now if E is a congruence relation on 
the Baer semigroup <<S; k} we shall agree to call E an ^IP-congruence 
whenever ^isannihilator-preserving. By Theorems 16.1 and 16.2, if 2? is 
an /IP-congruence, then (SjE; kjE} is a Baer semigroup with ^kjE (SjE) 
a homomorphic image of 0tk{S), We also have the following version of 
the "Fundamental Theorem of Homomorphisms" : 

THEOREM 16.3. Let f be an AP-homomorphism of(S; fc> onto the Baer 
semigroup <5; £>. If E is the equivalence defined by x = y(E)of(x) 
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= f(y) then E is an AP-congruence and there is a unique isomorphism / 
which makes the following diagram commutative: 

& 

S/E 

S 

Furthermore, there is a unique lattice isomorphism /"* which makes the 
following diagram commutative: 

tir 

f— 
Mps) 

f — 

^kjE(SIE) 

Proof. That E is an ^P-congruence follows quickly from the fact that 
/ i s an ^4P-homomorphism. The mapping / i s defined by f{x\E) —f(x) 
and the mapping/^ by/"> (g/EQ SjE) = / - (gS). The routine proof of 
this theorem will be left as an exercise. 

Suppose now that/ is an ^P-homomorphism of <5; k} onto the Baer 
semigroup <£;£>. We have already seen that/induces a lattice epi-
morphism of 0tk(S) onto ^ ( 5 ) . The resulting congruence relation T on 
â$k(S) which is given by 

gS^hS(T)of-(gS)=f-(hS) 

then satisfies (see Theorem 16.2) 

gS^hS(.T)^0/xeS) 
<P*(gS)stpx(hS)(T) 

<p;(gS) = <pUhS)(T). 
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An equivalence relation on &k(S) which satisfies the above condition is 
evidently a lattice congruence; such a congruence relation will hereafter 
be called a Thome congruence. We define the kernel of the Thorne 
congruence T by 

Ker T={gSe ak{S) ; gS = kS (T)}. 

Similarly, if .Eis an ΛΡ-congruence on <S; k} we define the kernel of Eby 

Ker E = {x e S; x = kx (£)}. 
Now if E is an ^-congruence on <S; k} there is induced naturally a 

Thorne congruence TE on 0tk(S) by the ^4P-homomorphism t!£. This is 
defined by 

gS = hS(TE)o fc£ (gS) = k£ (AS). 

Thus gS = Λ£(Γ£) if and only if g = hg (E) and A Ξ= gA(£). Our goal is 
now threefold : 

(1) to investigate Thorne congruences; 
(2) to show that every Thorne congruence is induced by an ^ - c o n -

gruence; 
(3) to show that the Thorne congruences on a complete Baer semi-

group form a Stone lattice. 

We begin by showing that every Thorne congruence is determined 
naturally by its kernel in a manner analogous to that of section comple-
mented lattices as shown in Theorem 10.11. In connection with this, it 
will prove convenient to denote by x* an idempotent generator of Lk(x). 

THEOREM 16.4. Let T be a Thorne congruence on &k(S). The following 
conditions are then equivalent: 

(l)gS = hS(T); 
(2)9Ì(gS)YV*(hS)eKerT; 
(3) (ßeSe ®k{S)) gS Y eS = hS Y eS [= gS Y AS]; 
(4) {3eS e Mk{S)) gS Y hS = (gS n hS) Y eS. 

Proof. (1) => (2): Since gS = hS (T) and r i s a Thorne congruence we 
must have φ£ (gS) s φ£ (hS)(T). But <p? (hS) = RkLk {h*h) = kS 
whence <p* (gS) e Ker T. Similarly, φ* (hS) e Ker T, and since T is a 
lattice congruence the union of these two elements must also be in Ker T. 
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(2)=> (3): Let eS = ç?* (AS) Y φ£ (gS). We wish to show that 
gS Y eS = hS Y eS, i.e. that 

gS Y ÄfcI* (g*A) Y ÄfcLk (A*g) = AS Y Ä,Lfe (g*A) Y RkLk (A*g). 

This is clearly equivalent to showing that 

Sg* n X, (g*A) n L* (ft**) = SA* n Lfc (g*A) n L* (A*g). 

If x is an element of the right-hand side of this equality then x = xA* and 
xg = xh*ge kS imply that Λ: e £fc(g) = Sg*. This evidently puts x in the 
left-hand side. A symmetric argument produces the reverse inclusion. 

In order to show that gS Y eS = AS Y eS = gS Y AS we need only 
show that eS £ gS Y AS. This is equivalent to showing that 

Sg^ n SA* £ Lfc (eS) = Lk (g*A) n Lfc (A*g). 

But if x e Sg^ n SA* then x = xg* and x = xA* and so xg*A = xA 
= xh*h e kS and similarly xh*g e A:S. 

(3) =s> (1): This is clear, as is (4) => (1). 
(1) => (4) : Let gS = AS (Γ) ; then gS Y AS = gS n AS (Γ) and so by 

(3) we have gS Y AS = (gS n AS) Y eS for some eS e Ker Γ. 

The next result, when combined with the previous theorem, shows that 
if E is an ^P-congruence on <S; fc>, then TE is determined by the kernel 
o f£ . 

THEOREM 16.5. Let E be an AP-congruence on <S; k}. Then 

x e Ker E o RkLk (x) e Ker TE-

Proof. If x e Ker E then ìE{x) e k\E Q S/E and so 

(ΪΕ oRkoLk) (x) = (Rk!E oL k / £ o WE) (χ) = fc/£ © SIE. 

Thus if gS = RkLk (x) we must have ^ (gS) = ^ (fcS) and so gS e Ker 
Γ £ . If, on the other hand, gS e Ker Γ £ , then %E (gS) = fc£ (fcS) implies 
g = kg (E) and so x = gx = kgx (E) and x e Ker E. 

It is a little startling that TE should be determined by Ker E since E is 
not itself so determined. We present an example to illustrate the point. 
The congruence defined by equality on S is clearly an ^-congruence, as 
is the congruence E defined by x = y(E) o <px = <py (see the proof of 
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Theorem 12.8). These two congruences are in general distinct yet they 
have the same kernel ! 

We now wish to show that every Thorne congruence is induced by an 
^IP-congruence. It turns out to be easier notationally to phrase the results 
in terms of homomorphisms rather than congruence relations. According-
ly, let <5; k} and <S; £> be two Baer semigroups. Let/: &k{S) -* 0tR(S) 
be a surjective mapping such that ÇixeS)f(gS) =f(hS) => (f°cpx) (gS) 
= (f°(px)(hS) and (/o φχ) (gS) = ( /o φχ) (hS). Our motivation for this 
definition comes from the fact that for any Thorne congruence T on 0ik{S) 
the canonical lattice epimorphism of 0tk{S) onto ^k(S)jT satisfies this 
property. It should be noted that / is of necessity a lattice epimorphism. 
Given x e S we can define mappings φχ, φχ : â$z(S) -> âtR(S) by the pre-
scriptions 

ψχ (gS) = ( / o tpx) (gS) ; φϊ (gS) = (f o ψϊ) (gS) 

where gS e Mk(S) and f(gS) = gS. These mappings are evidently well-
defined, isotone and make each of the following diagrams commutative: 

f f 
^ k ( S ) ^ ^ r ( S ) i ^ ( S ) i — ^ T ( S ) 

? x 

y 
^?k(S) - J ^ ( S ) /#k{S) "-J*Ï Ï (S) 

We claim that <px is residuated with ψχ as its associated residual map, thus 
justifying our notation. We have 

Φχ °ψχ°ί= Φχ °f0<Px=f°<Px°Tx^ fi 

ψχ ° ψχ ° / = Φχ °f°<pt =f°<Px°<Px~ £f, ' 
from which it follows that 

φχ οφχ> id^(5} > φχ o ^+, 
thereby establishing our claim. 

Our next assertion is that the mapping φ: S -* Res [^(5)] defined by 
SPC*) = 9* is a n ^4P-homomorphism. The proof of this will be broken up 
into a number of parts: 

(\)φ is a semigroup homomorphism. 
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Proof Given x,yeSwe have 

Ψx0Ψy0f=Ψx0f0ψy =f°<PX°<Py = f ° <Pxy = $xy °f 

and so φχ ο φγ = φχγ. 

(2) IfeS = Rk(x) and hS s ëS then <pe (AS) = AS. 

Proof If/(AS) = AS, then /(AS n eS) = hSnêS = hS. Heace ^e (AS) 
= (& o/) (AS n eS) = (focpe) (AS n eS) = /(AS n eS) = AS. Here, of 
course, we have made use of the fact that e is a range-closed element of S. 

(3) IfeS = Rk(x) then φχ o φν = 0 o cpy = ^e o ^y. 
Proo/ If ^y = ^ o ^ y , then by (1) we have 

ÌP* °$y°f=$x0$e0 $y °f = ^ W ° / = f°<Pxey=f°yk 

from which it follows that φχ o (py = 0. If, on the other hand, φχοφν = 0, 
then for each gS e @tk(S) we have 

Ψ* (gS) £ (^+ o & o ç>y) (gS) = <pt (kS) = (fo<pt) (kS) 

= (foRk)(x) 

= f(eS) 

= eS. 

Applying (2), we see that φβ [φν (gS)] = q>y (gS), and since gSis arbitrary 
we deduce that φν = φ€ ο φν. 

The remainder of the proof is dual to the above but for sake of com-
pleteness we shall give a brief sketch of it. 

(4) IfSh = Lk(x), h'S = Rk(h) andgS 2 h'S then φί (gS) = g5. 

Proof This is dual to (2). 
(5) IfLk(x) = Sh then ^ o ^ = 0 ^ ^ = ^ o ^ , 

Proof If q>y = ψγ ο φΗ we proceed as in (3). If φν°φχ = 0, then for each 
gS e @k(S) we have 

φ; (gS) Ξ> (φχ o φϊ o φϊ) (gS) = ψχ (IS) = (/o ç,,) (IS) 
= f[RkLk(x)] 

= (foRk)(h). 
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Making use of (4), we have (φ£ ο φ+) (gS) = φ* (gS) so ψ* = φ£ o φ+. 
It follows that ^ = f y o ^ . 

The fact that φ is an ^4P-homomorphism is an immediate consequence 
of (3) and (5). The only thing remaining is to show that if E is the AP-
congruence induced on S by φ and if J i s the Thorne congruence induced 
on 0tk{S) by/then T = TE. Now we observe that 

x = y(E) o φ(χ) = <p(y) ; gS = AS (T) of(gS) = /(AS). 

Thus we must establish 
(6)/(gS) = / ( A S ) o ? T (gS) = ? r (AS). 

By Theorem 16.2 we have φ~> (gS) = p, o Res [^(S)] G ^ [Res [&£S)]]. 
Also, it was shown in the course of proving Theorem 12.5 that for any 
bounded lattice L the mapping ξ o Res (L) -> £(JT) of M [Res (L)] -* L is an 
isomorphism. Since the greatest element of 0t^S) is ÎS and since 

ft(ÏS) = (Λ °/> (15) = (/oc,,) (IS) = / (gS) , 

we see that (6) is indeed true, thus completing the proof. 
In summary, we have proved: 

THEOREM 16.6. Let T be a Thome congruence on â$k(S). Then there 
exists an AP-congruence E on <S; k} such that T = TE. 

Our final goal in this section is to show that if <S; k} is a complete 
Baer semigroup (see Exercise 12.3) then the Thorne congruences on 
<S; k} form a Stone lattice. We shall require a number of preliminary re-
sults which are in their own right of some interest. 

THEOREM 16.7. Let E be an AP-congruence on <S; k} and let J = Ker£. 
Then Lk(J) = Rk(J). 

Proof. Let TE be the Thorne congruence induced by E on 0tk(S). 
Recall from Theorem 16.5 the fact that w e JoRkLk (w) e Ker TE. Now 
let x e J and y e Rk(J). Since Rk(J) is a right ideal we have yx e Rk(J) and 
since / is an ideal we have yx e J. If eS = RkLk (yx) we may apply 
Theorem 16.5 twice to see that yxeJ=> eSe Ker TE=> eeJ. Hence 
yx = eyx e kS puts y in Lk(J). This shows that Rk(J) £ Lk(J) and a dual 
argument produces the reverse inclusion. 
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THEOREM 16.8. Let E be an AP-congruence on the complete Baer semi-
group <5; ky and let J = Ker E. If RkLk (J) = eS with e = e2 then e 
belongs to the centre of S. 

Proof Let gS = Rk(J) and Sh = Lk(J). By Theorem 16.7 we have 
gS = Sh and so g = gh = h. Then gS = Sg and, for each x e S, 

gxeSg=>gx = gxg and xgegS=> xg = gxg. 

It follows from this that (Vx e S) gx = xg. If now eS = RkLk (J) = Rk(g)9 

the same sort of argument will show that (ix e S) ex = xe. 

THEOREM 16.9. Let e be an idempotent element of the Baer semigroup 
(S\ k} such that e belongs to the centre ofS. Define x = y(E) o ex = ey. 
Then E is an AP-congruence such that Ker E = Rk(e). 

Proof. That E is a congruence relation is clear. If xy = kxy (E) then 
xye = kxye and so ye e Rk(x) with y = ye (E). A similar argument for 
left fc-annihilators shows that E is an y4P-congruence. Finally, 

x e Ker Eoxe = xke ox e Rk(e). 

THEOREM 16.10. Lei (S;k} be a complete Baer semigroup with 
L = Stk{S). Order the set of Thome congruences on L by 

Tt < T2o(gS = hSÇTJ^gS = hS(T2)). 

With this ordering the Thome congruences on Lform a Stone lattice which 
is in fact a complete sublattice of Con (L). 

Proof By the nature of the lattice operations in Con (L) as given in 
Theorem 10.4, it is clear that for any family {Ta; oc e A} of Thorne con-
gruences both their union and their intersection (as computed in Con (L)) 
must be Thorne congruences. It follows that they form a complete sublat-
tice of Con (L) and hence a distributive lattice. We leave the reader the 
routine verification that both the smallest and the greatest elements of 
Con (L) are in fact Thorne congruences. 

Now let Tbe a Thorne congruence on L. By Theorem 16.6 there exists 
an ./4P-congruence E on <£; k} such that T = TE. Let / = Ker E and 
eS = RkLk(J). By Theorem 16.8, e is in the centre of S and by Theo-
rem 16.9 we can define an ^P-congruence^E* by x = y(E*) <s> ex = ey. Itis 
important to note that K e r £ * = Rk(e) = Rk(J). Let Γ* = TE*. If 
6a BRT 
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gS e Ker T n Ker T*, then by Theorem 16.5 we have g e Ker E n Ker E* 
= / n Rk(J). Since g = g2 it follows that gekS. Since by Theo-
rem 16.4 every Thorne congruence is determined by its kernel, we deduce 
that T n Γ* = ω, the zero element of Con (L). Suppose now that T' is a 
Thorne congruence such that T n T = ct>. We claim that Γ ' < Γ*. If E' 
is an ^-congruence such that T' = TE> and if x e J n Ker £", then by 
Theorem 16.5 we have RkLk (x) e Ker T n Ker T = kS. It follows that 
xekS and so y n Ker E' = kS. If x e J and j e Ker £", then we see that 
xyeJ n Ker £ ' = Α:5 and so Ker E' e i^^J) = Ker £*. It follows from 
this that Ker T s Ker Γ* whence 7" < T*. This shows that Γ* is the 
pseudo-complement of T in the lattice of Thorne congruences. 

We must still show that Γ* has a complement. Let e'S = Rk(e) and 
note that é is in the centre of S. Define is** by 

x = y(E**) o éx = éy 

and note that E** is an ^-congruence with kernel eS. If Γ** = T£** we 
clearly have T* n Γ** = ω. We shall require to know that eS Y e'S = IS. 
To see this, it suffices to show that Lk(e) n Lfc(e') = fciS. Now if x e Lk(e) 
n Lk{e') then xe e kS => ex e fcS' => x = éx => x = éx = xé e kS as 
desired. We may now complete the proof by noting that 05 = β5(Γ**) 
and 0S=e'S(T*) and so eS = eS Y OS = eS Y e'S(T*). Thus 
OS ΞΞ IS (Γ** Y T7*) and we conclude that Γ** is a complement of T*. 

In retrospect, we have shown that Thorne congruences interact in 
much the same way as do ordinary lattice congruences on a bounded rel-
atively complemented lattice ! To see this, the reader need only compare the 
above results with those of Theorems 10.10 and 10.11. 

EXERCISES 
16.1. Prove Theorem 16.3. 
16.2. Let us call a mapping/on a lattice L algebraic if/can be represented by the 

composition of a finite number of mappings, each of which is either a u-translation 
or an o-translation. We then call a Baer semigroup (S; k) algebraic whenever, for 
each x e S, φχ and ψχ are algebraic. 

(1) Show that every complemented modular lattice can be coordinatized by an 
algebraic Baer semigroup. [Hint. If g\ g are complements in such a lattice then 
the mapping <pg,tft defined by çv.gO) = (x u g') ng is residuated. Consider the 
semigroup generated by all mappings of this type.] 
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(2) Show that if <5; k) is algebraic then every congruence relation on £#k(S) is a 
Thorne congruence. 

16.3. Let Tbe a Thorne congruence on 0tk{S). Given eS e &k(S), let Se* = Lk(e). 
Show that eS = 1 5 ( Γ ) ο £fcLfc (e#) s Α:5(Γ). 

16.4. Let T be a Thorne congruence on &k{S). Define a relation Td on J£?*(S) by 
5^ = 5% (rd)<^ Λ ^ ) = Äfc(Ä) (Γ). 

Show that Td is an equivalence relation such that 

\vï(Sg) = ^(Sh)(Td). 

17. The notion of involution 

As a prelude to our consideration of orthomodular lattices and Foulis 
semigroups in the next two sections, we shall consider here the theory of 
ordered sets equipped with some sort of involution. 

By an involution ordered set we shall mean a pair (E, i) where E is an 
ordered set and i: 2s-> E is an antitone mapping such that i o / = id£ . 
The mapping i will be called the involution on E. In case E also happens 
to be a lattice, we shall speak of the pair (2s, i) as being an involution 
lattice. An involution semigroup is defined to be a pair (S, *), where S is a 
semigroup and * : S -* S is a mapping such that (Va, be S)* (ab) 
= *(b) *(α) and * o * = id s . The mapping * will be called the involution 
or the adjoint mapping and the element *(#) the adjoint of the element a. 
We shall often write a* instead of *(#). An idempotent ee S such that 
e = e* will be called a projection. 

Note that if Z i s any set then P(X) becomes an involution lattice with 
respect to the involution which sends every subset M of X to its comple-
ment. More generally, if L is any Boolean algebra then the mapping which 
sends each element to its unique complement is an involution. Also, if H 
is a Hilbert space then the lattice of closed subspaces of H becomes an 
involution lattice with respect to the mapping which sends the closed 
subspace M to M x , the orthogonal complement of M. When either of 
these types of lattice is referred to in the text as an involution lattice, it 
will be with respect to the above-mentioned involutions, unless other-
wise specified. 
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Let us note also that for any set A" the semigroup Rei (X) of relations 
on X forms an involution semigroup with respect to the involution t given 
by t(R) = R*. In the case of a Hilbert space H, the bounded operators on 
H form an involution semigroup with respect to the usual notion of 
adjoint. Whenever we speak of these semigroups as involution semigroups, 
it will be with respect to these involutions unless otherwise stated. 

Although our main concern here will be with the coordinatization 
problem for involution lattices, we first state an easily proved but none-
theless useful result which provides a sort of "de Morgan law" for 
involution ordered sets. The proof of the theorem will be omitted on the 
grounds that it is an immediate consequence of the fact that any involu-
tion on E is amongst other things a dual automorphism on E. 

THEOREM 17.1. Let (E, i) be an involution ordered set. Then 

(1) if E has a minimum element 0 the element i(0) is the maximum eie-
ment of E; 

(2) if E has a maximum element π the element i(n) is the minimum eie-
ment of E; 

(3) if x = (J {ea; oc e A) exists then so does f] {i(ej; oc E A} and this 
coincides with i(x); 

(4) if y = f] {ea; oc e A} exists then so does (J {ί(βΛ); oc e A} and this 
coincides with i(y). 

COROLLARY. Let (L, Ϊ) be an involution lattice. Then 

(Vx, yeL) i(x n y) = i(x) u i(y) ; i(x u y) = i(x) n i(y). 

To begin our programme of relating involution lattices with involution 
semigroups, we show that if (E, i) is an involution ordered set then there is 
induced a "natural" involution on Res (E). 

THEOREM 17.2. Let (E, i) be an involution ordered set and let f e Res (E). 
Definef* :E-> Ebyf* = iof+ of. Thenf*eRcs(E)with(f*)+ = / o/o /. 
The mapping * : Res (E) -> Res (E) thus defined is an involution. 

Proof Clearly/* and i o / o / are isotone. We also have 

(i o/+ o /) o (/ o / o i) = i o/+ o / o i < iaE; 

(i o / o /) o (/ o / + o /) = i o / o / + o / > i d £ , 
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thus showing tha t /* is residuated with ( /*)+ = / o / o /. Furthermore, 

(f° g)* = i ° (f°g)+ ci = iog+ o /+ o i = (i og+ o i) o (/ o /+ o i) 

= g* o / * 

and/** = / o ( /* ) + o / = / o (/ o / o /) o / = / 

If (£, 0 is an involution ordered set, the mapping * : Res (E) -*· Res (£) 
defined in the above theorem will be called the natural involution on 
Res(£). Unless otherwise specified, we shall always be working with this 
particular involution on Res (E). Given x,ye Ewe say that x is orthogonal 
to y, and write x _L y, whenever x < i(y). Note that orthogonality satis-
fies the following axioms: 

i1!) x±y=>y ±x; 

( χ2) x ±y. Xi < x=> xl ±y; 

( χ3) x -L y, x i . z => x _L (y u 2). 

For involution ordered sets, we have the following characterization of 
residuated mappings: 

THEOREM 17.3. Let (E, i) be an involution ordered set. An isotone map-
ping f:E-+E is residuated if and only if there is an isotone mapping 
g: E -> E such that g o i of < i and foiog < i. At most one such g exists 
and when it does it is necessarily equal tof*. 

Proof. Assume first t h a t / e Res(£). Then 
/ * o j o / = (i o / + o /) o / o / = i o / + of < i; 

/ o / o / * = / o / o ( / o / + 01) = / o / + o i < /. 

Suppose next that g can be found such that g oi of < î a n d / o i o g < i. 
Then 

goiof<i=>(iogo i) of > i d £ 

and 
f o i o g < i=>fo(iogoi)< i o i = id£ . 

This shows that / e Res (£) with / + = / o g o /. It follows that / * 
= î" o / + o i = i o(i o g o i) o i = g. 
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In view of the previous result, all of the structure of Res+ (E) can be 
recaptured directly from that of Res(ZT) and any theorem involving both 
residuated and residual maps can be rephrased as one involving only 
residuated maps. Although we shall not in general bother to do this, 
there are one or two cases of sufficient interest to warrant their explicit 
enunciation. At any rate, it is good practice! For example, the analogue 
of Theorem 12.4 is: 

THEOREM 17.4. Let (E, i) be an involution ordered set which is bounded. 
Then in S = Res (£), 

(1) Θ oy = 0 if and only ί/ψ(π) _L θ*(π); 
(2) ifR{d) = yoS with ψ = ψ2 then ψ(π) = (ι ο 0*) (π). 

If (L, i) is a bounded involution lattice and fe Res (L) then by Theo-
rem 17.3 we have 

(VJC eL) ( / o i of* o i) (x) < x nf(n). 

It is natural to ask when equality holds. The answer is provided by 
Theorem 13.1 : the necessary and sufficient condition that 

(VxeL) (foiof*oi)(x) = xnf(n) 

is that / be range-closed. Interestingly enough, the concept of dually 
range-closed is no longer required. For to say that / is dually range-
closed is equivalent to saying that 

(VxeL) (/+ of) (x) = x u / + ( 0 ) 
and this says that 

(VJC e L) (i of* o i of) (x) = x u (i of* o i) (0). 

Applying / to this identity we obtain (/* o i of) (x) = i(x) η /* (π) . Re-
placing x by i(x) we obtain (f* o / o / o /) (χ) = χ η /* (π) . It follows that 
/ i s dually range-closed if and only if/* is range-closed, and hence t h a t / 
is weakly regular if and only if b o t h / a n d / * are range-closed. Thus in an 
involution ordered set, rather than working with a pair of dually iso-
morphic semigroups of mappings, we are faced with a single semigroup 
equipped with a dual automorphism. 

We turn next to the question of defining an involution Baer semi-
group. We are motivated by the fact that for our chosen definition we 



COORDINATIZING BAER SEMIGROUPS 165 

would like to be able to prove that &k(S) is in some natural way an involu-
tion lattice. For there to be any hope of this, the involution must be related 
to the annihilator properties of <S; fc>. A reasonable requirement is 

xekS=> x* ekS. 

In particular, we must then have k* e kS and so k* = kk* = k. We are 
thus led to call a triple <5; k; *> an involution Baer semigroup whenever 

(1) <5; k} is a Baer semigroup; 
(2) (S, *) is an involution semigroup; 
(3) k* = k. 

We then have: 

THEOREM 17.5. Lei (S;k;*y be an involution Baer semigroup with 
L = &k(S). Ifi:L-* L is defined by i(eS) = Rk(e*) then (L, i) is an in-
volution lattice. Moreover, every bounded involution lattice arises in this 
manner. 

Proof. Note that if eS £ gS then e = ge and so e* = e*g* whence 
Rjc(g*) £ Rk(e*)- This shows that i is both well-defined and antitone. Let 
i (eS) = Rk(e*) = / S . Since xyekSo >>*** e fcS we see that Sf* = Lk(e). 
Hence (i o f) (eS) = i (/Sf) = JR*(/*) = (ΉΓ ° £*) 00 = eS, thus complet-
ing the proof that / is an involution on L. Suppose now that (M,j) is a 
bounded involution lattice with S = Res (M) equipped with the natural 
involution * as defined in Theorem 17.2. We know that <£; 0> is a Baer 
semigroup and that (5, *) is an involution semigroup. We also have 
0 = 00* so that 

0* = (00*)* = 0**0* = 00* = 0. 

Hence <S; 0; *> is an involution Baer semigroup. Recall from the proof 
of Theorem 12.5 that the mapping/: M(S) -» M defined b y / (θχ o S) = x 
is an isomorphism. We know that 0t(S) can be equipped with an involu-
tion i by the formula i(0x o S) = R(0*) = Θ, o S where y = (0*)+ (0) 
= 0' ° θχ °j) (0) = 0' ° θχ) (π) = j(x). Thus / o i = j of and so the iso-
morphism/induces both the lattice structure and the involution on M. 

Now if (L,i) and (M,y) are involution lattices we agree to call a 
homomorphism / : L -> M involution-preserving in case / o / = y o / We 
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agree to say that the involution lattice (L, i) is coordinatized by the involu-
tion Baer semigroup (S; k; *> in case there is an involution-preserving 
lattice isomorphism of $k(S) (equipped with the natural involution) onto 
L. It should be noted that, as was shown in Theorem 17.5, every bounded 
involution lattice can be coordinatized by an involution Baer semigroup. 
The coordinatization problem for bounded involution lattices is solved in 
the following two theorems. 

THEOREM 17.6. For a bounded involution ordered set (E, i) the following 
conditions are equivalent: 

(1) E is a lattice; 
(2) <Res(£); 0; *> is an involution Baer semigroup; 
(3) (E, i) may be coordinatized by an involution Baer semigroup. 

Proof This is immediate from Theorems 12.6 and 17.5. 

THEOREM 17.7. Lei <£;/:;*> be an involution Baer semigroup with 
L — &k(S). IfL is equipped with the natural involution induced from S and 
Res (L) the natural involution induced from L, then the homomorphism 
x -» φχ described in Theorem 12.8 is involution-preserving. 

Proof. Recall that for eS eLwe have / (eS) = <Rfc(e*) and for φ e Res (L) 
we have φ* = i o φ+ o i. Given eSeL and x e S let gS = (R? o Lk) (xe) 
and hS = i (gS) = Rk(g*). Then 

(9V o / o φχ) (eS) = (<px* o /) (gS) = φχ* (hS) = (R? o Lk) (x*h). 

Now 

h e Rk(g*) => g*h ekS=> h*g ekS=> h* e Lk(g) = Lk (xe) 

=> h*xe e kS 

=> e*x*h e kS 

=>x*heRk(e*) = i(eS). 

It follows that <px* o / o φχ < i and a similar argument produces φχ o / o φχ* 
< i. Applying Theorem 17.3, we conclude that <px* = (φχ)*. 
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EXERCISES 

17.1. Let (L, i) be an involution lattice. Show that, for all x e L, 

(<**)* = ßi(x), (&)* = 0ίΚχ)9 (θχ)* = ψηχ), (ψχ)* = 0 |(jc). 

17.2. Let (L,i) be a bounded involution lattice. Suppose that a,beL are such 
that a u b = π, flnè = 0, Μ(α,ò) and M* (6, «). Let <pû>&:L-+ L be given by 
ÇO.bW = (x va) nb. Use Theorem 17.3 to show that ç?af&eRes(.L) with (<pa,b)* 
= ?{(!>), {(a)· 

17.3. Let L be a three-element chain. Show that there is precisely one involution 
on Res (L) and describe it explicitly. [Hint. There is a Cayley table for Res (L) on 
page 17.] 

17.4. Show that every abelian Baer semigroup may be regarded as an involution 
Baer semigroup. 

17.5. Let <5; k; *> be an involution Baer semigroup and let i be the natural 
involution on 3tk(S). Show that if Rk(x) = eS where e is a projection then eS and / (eS) 
are complements such that M{i{eS),eS) and M* (eS, i \eS)) both hold, [//if/tf. Use 
Theorem 12.9.] 

18. Orthomodular lattices 

In this section we shall consider a seemingly modest strengthening of 
the notion of involution and show that the resulting class of lattices has 
new and somewhat amazing properties. However, we must warn the 
reader that there is a vast literature on this subject and one could very well 
devote an entire volume to the theory of orthomodular lattices alone. For 
this reason we must be content with a very brief glimpse into their most 
elementary properties. 

An involution lattice (L, /) is called an ortholattice and the involution i 
an orthocomplementation whenever 

( l ) L i s bounded; 

(2) (Vx eL) x n i(x) = 0 [and hence x u i(x) = π\. 

If, in addition, the orthomodular identity 

e <f=>f= eu [fni(e)] 

holds in L, then L is called an orthomodular lattice. We point out that we 
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shall often write x' instead of i(x) in an ortholattice and call x' the ortho-
complement of x. 

At this juncture it seems appropriate to say a word or two about how 
orthomodular lattices arise. First of all, any distributive orthomodular 
lattice is a Boolean algebra and it is easy to show that, conversely, every 
Boolean algebra is a distributive orthomodular lattice. 

A second important class of orthomodular lattice arises in connection 
with Hilbert spaces. The lattice of closed subspaces of any Hilbert space 
is easily seen to be orthomodular. In fact, Araki and Amemiya [1] 
have recently proved that the lattice of closed subspaces of a pre-Hilbert 
space is orthomodular if and only if the pre-Hilbert space is complete 
(i.e. is a Hilbert space). More generally, suitable sublattices of the lattice 
of closed subspaces of a Hilbert space are themselves orthomodular. Here 
we have in mind the projection lattice of a von Neumann algebra. 

It is well known that in classical logic propositions tend to band to-
gether so as to form a Boolean algebra. On the other hand, the lattice of 
closed subspaces of a suitable Hilbert space is regarded by many physicists 
as being an appropriate model for the underlying "logic" of quantum 
physics. This suggests (see [25]) that some sort of orthomodular lattice 
might serve as a "logic" of empirical science. 

As another indication of the possible importance of orthomodular 
lattices, we mention the fact that L. H. Loomis [19] has found them to be 
a suitable vehicle for an abstract lattice-theoretic version of the Murray-
von Neumann dimension theory of operator algebras. 

Aside from all this, the theory of these lattices is sufficiently interest-
ing to warrant its study on its own merits. The remainder of this section 
will be devoted to illustrating this point. 

Recall first that an ortholattice (L, i) is orthomodular if and only if 
the following identity holds: 

e <f=>f= ev(fne'). 

To say that the dual of L is orthomodular is equivalent to saying that L 
satisfies the dual orthomodular identity 

e <f=>e = ( e u / 0 n / . 
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THEOREM 18.1. For an ortholattice (L, /) the following conditions are 
equivalent: 

(1) the orthomodular identity holds; 
(2) the dual orthomodular identity holds; 
0)e<f and fne' = 0=>e=f 

Proof. (1) => (3): Let e <f and fr\ e' = 0. Then by (1) we have 
/ = e u ( / n e') = e u O = e. 

(3)=> (2): If (2) failed, we could find e,feL such that e <f and 
e φ (e u / ' ) n / . Then e < (e u / ' ) n / a n d 

[(e u / ' ) n / ] n e' = (e u / ' ) n (e u / ' ) ' = 0, 

a contradiction. 
(2) => (1): If e <f, t h e n / ' < e' and by (2) we h a v e / ' = ( / ' u e) n e'. 

Taking orthocomplements, this produces/ = (fn e') u e. 

COROLLARY. An ortholattice (L, /) is orthomodular if and only if its dual 
is orthomodular. 

EXAMPLE 18.1. When trying to prove that an ortholattice is ortho-
modular, Theorem 18.1(3) is often helpful. As an illustration of this point 
we shall consider in some detail the lattice of closed subspaces of a Hil-
bert space H. Basically, a pre-Hilbert space is a pair consisting of a vector 
space H over the field C of complex numbers together with a mapping 
( , ) : H x H -* C such that, for all x,y,ze H and all λ e C, 

(SPI) (x, y) = (y, x)* [the complex conjugate of (y, x)]; 
(SP2) (x + y,z) = (x9z) + (y,z); 
(SP3) (λχ,γ)=λ(χ,γ); 
(SP4) (x, x) > 0 for ail x Φ 0. 

We now define the norm of the vector x by \x\ = \l(x, x). We leave to the 
reader the routine verification that (x, y) = 0 in case either x or y is the 
zero vector. 

(A) [Cauchy-Schwartz inequality] For all vectors x, y in the pre-Hilbert 
spaceH,\(x,y)\ < \\x\\ · \\y\\. 
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Proof. Assume first that | | j | | = 1 and note that with 1 = (x, y) we 
have 

II* - AFII2 = (x - ly,x - ly) 

= (x, x — ly) + ( — ly, x — ly) 

= (x, x) + (x, -ly) + (-ly, x) + (-ly, -ly) 

= ||x||2 - 1* (x, y)-l (y, x) + 11* (y, y) 

= ||x||2 - 1*1 - 11* + 11* 

= I W I 2 - | ( * , J O I 2 . 

It follows from this that \(x, y)\ < \\x\\. If y = 0, there is nothing more to 
prove; and if y Φ 0 then yx = .y/lljll has norm 1 and so |(x, yx)\ < \\x\\ 
and consequently \(x,y)\ < \\x\\ · | | j | | . 

(B) [Triangle inequality] For all vectors x, y in the pre-Hilbert space H7 

\\x + y\\ < M + lljll· 
Proof. We begin by observing that if we denote by Re (1) the real part 

of each leC, then 1 -f 1* = 2 Re (1) < 2\1\. Making use of (A), we may 
now write 

\\x + y\\2 = \\x\\2 + \\y\\2 + (x9y) + (x,y)* 

< N l 2 + \\y\\2 + 2\(x,y)\ 

< \\x\\2 + W 2 + 2 | | x | | -W 

= (11*11 + Wl)2, 

from which the result follows. 
(C) [Parallelogram law] For all vectors x, y in the pre-Hilbert space H, 

II* + JII2 + | | A - - J | | 2 = 2 N | 2 + 2 | | J | | 2 . 

Proof. Simply add together the equations 

\\x + y\\2 = \\x\\2 + \\y\\2 + (x,y) + (y,x), 

l l*-y | | 2 = IMI2 + \\y\\2 - (x,y) - (y,x). 
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(D) For allx, y e H define d (x, y) = \\x — y\\. Then d becomes a metric 
on H in the sense that it satisfies 

(1) d (x, y) > 0 and d (x, y) = 0 holds only when x = y ; 
(2)d(x,y) = d(y,x); 
(3)d(x,y) < d(x,z) + d(z,y). 

Proof. The first two assertions are clear while the third follows from 
(B) and the observation that x — y = (x — z) + (z — y). 

If the pre-Hilbert space H forms a complete metric space with respect 
to the above metric, then His called a Hilbert space. For the remainder of 
this example it will be assumed that we are working in a Hilbert space H. 

We agree to call two vectors x, y orthogonal, and write x 1 y, 
whenever (x, y) = 0. We leave to the reader the routine verification that, 
for any subspace M of H, M1 = {x e H ; (Vm e M) x J_ m} is a subspace 
of H. It follows that the mapping M -* M1 sets up a Galois connection on 
the lattice of all subspaces of H. We let L denote the complete lattice 
formed by the Galois closed subspaces of H; i.e. L consists of those sub-
spaces M such that M = M11. Since we have M n M1 = (0) for each 
M e L, it is clear that L is an ortholattice. Our goal is to prove that it is in 
fact orthomodular. 

(E) Every Galois closed subspace of H is closed in the metric topology. 
[Note: the converse is also true, but we shall not need this fact]. 

Proof Let M eL and let x be any vector in the closure of M. Then 
there is a sequence (xn) of vectors in M such that limn xn = x. Now if 
j e M i w e have xn ± y for all n and hence 

IfojOl = l(* - Xn + XmJ>)l ^ l(* - *IMJOI + I(*»,JOI ^ II* - *»ll * ILvll · 

Since limn xn = x, this forces x ± y. It is immediate that x e M 1 1 = M. 
(F) Let M e Landlet x be any vector in H. Ifô = inf{\\y — x\\;yeM} 

then there exists a vector y0eM such that \\yQ — x|| = δ. 

Proof Let (yn) be a sequence of vectors in M such that lim« (|| yn — x\\) 
= * By ( O , 

ll(y. - *) + (ym - *)\\2 + II0>« - *) - 0>„, - *)ll2 

= 2 | | ^ - x | | 2 + 2\\ym-x\\2. 
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Rephrasing this, we have 

\\yn - ym\\2 = 2 \\yn - x\\2 + 2 \\ym - x\\2 - \\yn + ym - 2x||2. 

Now yn,ymeM=>i(yn + ym)eM and so \\i(yH + ym) - x\\ > Ô. It 
follows that \\yn + ym — 2x\\ > 2ô, so 

0 < \\yn - ym\\2 < 2 \\yn - x\\2 + 2 \\ym - x\\2 - 4Ó2. 

As n, m -> oo the right side of this inequality tends to zero. It follows 
from this that the sequence (yn) is a Cauchy sequence and so, by the 
completeness of H as a metric space, limn yn = y0 for some y0 e H. It 
follows from (E) that y0 e M and from (B) that 

||jo - *ll = limn(||j>n - *ll) = à. 

(G) Given M,NeL with M c N, it follows that N n M 1 Φ 0. 

Proof, Let χ be any vector in N but not in M. Define 

d = inf{\\y-x\\;yeM} 

and use (F) to find a vector j 0 in M such that | | j 0 — *ll = à. Now let 
w = y0 — x and note that we N. Consider a vector z in M with norm 
1. We have from the proof of (A) that, with λ = (w, 2), ||w — λζ\\2 

= IMI2 - |(w,z)|2andso||w - λζ\\2 < ||w||2. On the other hand, w - λζ 
= (y0 — x) — λζ = (y0 — λζ) — Λ% and by our choice of w this forces 
||w|| < || w - A2II. It follows that 

| M | 2 = \\w-Xz\\2= | | W | | 2 - | ( M ; , Z ) | 2 

and so w J_ z. This puts w e N n M x as desired. 
(H) We may now apply Theorem 18.1(3) to deduce that L is indeed 

orthomodular. 
[Note: The reader who was not able to fill in complete details of the 

above proofs should refer to [6] or to [14] for an introduction to the 
theory of Hilbert spaces.] 

Definition. Let (L, /) be an involution lattice. For each b G L we define 
the Sasaki projection cpb : L -► L by the prescription 

(Vx e L) (pb(x) = [x u i{b)] n b. 
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THEOREM 18.2. An involution lattice (L, i) is an ortholattice if and only 
ifL has a minimum element 0 and (W> e L) φ0(0) = 0;it is orthomodular if 
and only if it has a minimum element and 

(VèeL)(Vx < b) <pb(x) = x. 

Proof If L is an ortholattice it must have a minimum element 0 and 

(Ve e L) <pb(0) = [0 u i(b)] nb = i(b) nb = 0. 

Conversely, if 0 e L and (Vi e l ) <pb(0) = 0 then 0 = q>b(0) = [ 0 u i(b)] 
n b = i(b) n b and so L is an ortholattice. For an ortholattice (L, i) the 
assertion that (W> e L) (Vx < b) (pb{x) = x is none other than the dual of 
the orthomodular identity. The result follows by Theorem 18.1. 

In a Boolean algebra we have (Va, b e L) φύ{α) = a n b. This suggests 
the following definition. Let (L, Î) be an involution lattice. Given a,beL 
we say that a commutes with 6, and write aCb, whenever q>b(a) = a r\b. 
For each subset N of L we let C(N) = { x e L ; (ineN)xCn} and if 
iV = {n} we write C(n) in place of C({n}). In the next theorem we gather 
up a few important facts about commutativity in an orthomodular lattice. 

THEOREM 18.3. In an orthomodular lattice (L, i) the following conditions 
are equivalent: 

(1) eCf; 
( 2 ) / = ( / n e ) u ( / n e ' ) ; 
(3) fCe; 
(4)e = ( e n / ) u ( e n / ' ) ; 
(S)eCf; 
(6) there exist pairwise orthogonal elements et , / Ί , g such that 

e = etvg andf = / j U g ; 
( 7 ) / = ( / υ β ) η ( / υ β ' ) ΐ 
(8) e = (e u / ) n (e u / ' ) ; 
( 9 )en (e ' u / ' ) ± / n (e '< j / ' ) . 

Proo/. (1) => (2): If eC/, then φ/e) = (e u / ' ) n / = e n / and so 
[(e u / ' ) n / ] n (e' u / ' ) = (e n / ) n (e' u / ' ) = 0. Since / ' < (e u / ' ) 
n (e' u / ' ) and / n [(e u / ' ) n (e' u / ' ) ] = 0 we see by Theorem 18.1 



174 RESIDUATION THEORY 

t h a t / ' = (e u / ' ) n (ë u / ' ) . The proof is completed by taking ortho-
complements. 

(2) => (3): If / = (fn e) u ( / n e'), then / u e' = ( / n e) u ( / n e') 
u ë = (fn e) u ë. By the orthomodular identity we deduce that ( / u e') 
n e = [ ( / n e) u e'] n e = / n e and so fCe. 

(3) => (4) : Interchange the rôles of e a n d / i n the proof of (1) => (2). 
(4) => (1) : Interchange the rôles of e a n d / i n the proof of (2) => (3). 

We have at this point established the equivalence of (1), (2), (3), (4). 
(1) o (5): Use the symmetry of/ , / ' in (4). 
(1) => (6): Let eCf. Then e = (e nf) u (e nf) and / = (fn e) 

u (fn eO.Takeé?! = e nf,f = / n e ' a n d g = e n / T h e n e 1 ? / 1 ; g a r e 
pairwise orthogonal with e — e1\j g a n d / = / χ u g. 

(6) => (1) : Let ex , Λ , g be as in (6). Then e, < fi n g ' = (/x u g)' = / ' 
and g < fso g = (g u / ' ) n / . We may now write 

e n / < (euf)nf = (e1 u g u / ' ) n / = (gvf)nf= g <fne 

and so eC/*. 
(4) o (8) and (2) o (7) are clear in view of the equivalence of the first 

five conditions. 
(1) => (9): If eCf then e'Cf and f'Ce so e n (é u / ' ) = e nf and 

/ n (e' u / ' ) = / n e'. Note now that e nf ±fn ë. 
(9) => (1): If e n (e' u / ' ) < f / n (e' u / ' ) ] ' = / ' u (e n / ) then we 

have en(e'vf')<[f'v(enf)]n(e'vf')=f so en(e'vf) 
= e n (ë u / ' ) n / ' = e nf. This shows tha t / 'Ce , and in view of the 
equivalence of conditions (1), (3), (5) it follows that eCf. 

COROLLARY. If e < f or e If then e Cf. 

Proof e <f=>(evf')nf= e = e nf; e±f=>(evf)nf = f 
n / = 0 = enf. 

THEOREM 18.4. A necessary and sufficient condition that the ortholattice 
(L, i) be orthomodular is that the relation C be symmetric. 

Proof. If L is orthomodular we may apply Theorem 18.3 to deduce 
that C is symmetric. Suppose now that C is symmetric on L. Let e < f. 
Then fu ë = π => ( / u ë)ne = nne = e — fn e and so fCe. It 
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follows that eCf ana s o ( e u / ' ) n / = e c\fi This establishes the dual 
orthomodular identity on L. We now appeal to Theorem 18.1. 

The next theorem is of great interest in that it says that every interval 
sublattice of an orthomodular lattice is itself orthomodular. It follows 
from this, of course, that every orthomodular lattice is relatively comple-
mented. 

THEOREM 18.5. Let (L,i) be an ortholattice. For each interval [a,b] 
define a mapping iab : [a, b] -> [a, b] by setting 

(Vx e [a, b]) iab(x) = (x' u a) n b. 

Then a necessary and sufficient condition for (L, i) to be orthomodular is 
that for every interval [a, b] the pair ([a, b], iab) be an involution lattice. If 
(L, i) is orthomodular then so is every lattice ([a, b], iab). 

Proof Suppose first that (L, /) is orthomodular and let a,beL be 
such that a < b. For a < x < b write iab(x) = x1. If a < x < y < b, 
then y' < x' => y1 < x1 and we also have 

x1A- = (x±f Kja)nb = {[{χ' u a) n b]' u a} n b 

= [(x n a') u b' u a] n è . 

By the orthomodular identity, a < x => x = a u (x n a'). Hence 

x11 = [(x n a') u a u b'] n b = {x u b') n b = x 

and so iab is an involution. Since 

x1 n x = (x' v a) r\ b n x = (xr v a) n x = a, 

we see that iab is in fact an orthocomplementation. To show that [a, b] is 
orthomodular, we shall apply Theorem 18.1. Accordingly, let a < x < y 
< b with y n x1 = a. Then a = y n x1 = y r\ (xf KJ a) n b = 

y n (x' u ß) and so 

y r\ x' = y c\ x' r\ a' < y n(x' KJ a) r\ a' = a r>a' = 0. 

By Theorem 18.1, x < y with y n x' = 0 => x = j . Applying Theorem 
18.1 to the interval [a, b] we conclude that it is in fact orthomodular. 
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Suppose now that for every interval [a, b] the mapping iab is an involu-
tion. Then if e < f with fne = 0 we see that i0f(e) — ( e ' u O ) n / 
= ë nf = 0 and so e = (i0f o iQf) (e) = i0f(0) = / . It follows that L is 
orthomodular. 

If we were asked to pick the one theorem which is the most useful tool 
for handling orthomodular lattices, it would be the next one. This extreme-
ly important theorem is often referred to as the Foulis-Holland Theorem 
and says, roughly speaking, that whenever one really needs it an ortho-
modular lattice behaves as though it were a Boolean algebra. 

THEOREM 18.6. Lei e,f g be any three elements of an orthomodular 
lattice (L, i). If any two of the relations eCf eCg orfCg hold, then for 
any permutation (x, y, z) of the triple (e,f g) we have both D (x, y, z) and 
D*(x,y,z). 

Proof We begin by proving that 

(\)eCgJCg^D(e,fg\ 

To see this, note that (euf)ng > (e ng)\j(fng) and 

(e u / ) ngn[(eng)yj (fn g)]' = (e u / ) n g n (ë u g') n (f u g'). 

Now eCg => ëCg => {e' vg')ng = ë ng; and/Cg =>f'Cg=> (/ ' u gf) 
n g = / ' n g. It follows that 

(e u / ) n g n ( e ' u g') n ( / ' u g') = (e \jf) ngnë n ( / ' u g') 

= (euf)ngnë nf 

= 0. 

By Theorem 18.1 we have (e u / ) n g = (e ng)u (fn g). 
We next establish 

(2)eCf9fCg*>D(e,f,g). 

For this, it will prove convenient to let A = (e\jf)ng and k = (e n g) 
Kj (fn g). As in the proof of (1) we have k < h and h nkf = (e uf) n g 
n (ë u g') n (f u g'). Then fCg =>fCg => (f vg')ng=f'ng and 
so there results h nkr = (e\jf)ngnfn(ë\j g'). Since eCfwt have 
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(e u / ) nf = e nf and so h n k* = e nf n g n (e' u g') = 0. Thus A 
= A; and D (e,f, g) follows. 

Now let (x9 y, z) be any permutation of the triple (e,f g). Then two of 
the three relations xCy, xCz, yCz must hold. Now 

(a) xCy, yCz => D (x, y, z) by (2) ; 
(b) xCy, xCz => yCx, xCz => D (y, x, z) by (2) and so D (x,y,z); 
(c) xCz, yCz => D (x, y, z) by (1). 

Finally, to obtain D* (x, y, z) we apply the above arguments to the 
triple (A:', y\ z% noting of course thatxCy => x'Cy'9 etc. This establishes 
D (x'> y'9z') and we now merely take orthocomplements. 

COROLLARY eCf=> M (e,f) and M* (e,f). 

Proof. Let a <f. Then aCf and eCf so 

(a u e) n / = (a nf) u (e nf) = au(e nf). 

A similar argument establishes M* (e, /) . 

In the next theorem we gather up a number of conditions, each of 
which is equivalent to the ortholattice (L, i) being orthomodular. 

THEOREM 18.7. Let (L, i) be an ortholattice. The following conditions are 
equivalent: 

(1) (L, /) is orthomodular; 
(2) the dual of(L, i) is orthomodular; 
(3) a < b andb n a' = 0=> a = b; 
(4)a±b=>M(a,b); 
(5)(yeeL)M(e,e'); 
(6) if a = b u c with b L c then b = c' n a; 
(7)6 l c = > i = ( 4 u c ) n c ' ; 
(8) Ϊ /Ö = b Kj c with b < k and c < k' then b — k na\ 
(9) b < k < c' => b = k n (b v c); 

(10)c ±(dvb)=>dnb = dn(bu c). 

Proof The equivalence of the first three conditions was established in 
Theorem 18.1. 
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(1) => (4): If a _L b then aCb and so M (a, b) follows by the corollary 
to Theorem 18.6. 

(4) => (5): This is clear. 
(5) => (6) : If a = b u c with b _L c, then b < c' and by hypothesis 

M (c, c'). It follows that b = b u (c n c') = (b u c) n c' = a n c'. 
(6) => (7) : Let ό JL c and take a = b v c. 
(7) => (8): Let « = b u c with b < k and c < £'. Then b < k < c' 

and so è 1 c. By (7) we have b = φ u c) c\ c' = a n c'. Now c < k' 
=> k < c' and so b = ancr>ank>b whence b = a n k. 

(8) => (9): Lete < /c < e'.By(8),6 < fcandc < fc'=>Z> = kn(b u c). 
(9) => (10): If c 1 (rf u b) then b < du b < cf =>b = (du b) n(bu c) 

and so d n b = (d u b) n (b u c) n d = (b u c) n d. 
(10)=>(1): Let e < / . Then / ' _L (e uf) = / and so e = e nf 

= fn(euf). 

In the course of developing a coordinatization theory for orthomodu-
lar lattices, we shall find the Sasaki projections to be extremely useful. For 
this reason we pause to consider their properties. 

THEOREM 18.8. Let (L, i) be an orthomodular lattice with a,beL. Then 
(1) a n b < (pb(d) < b; 
(2) a = <pb(a)oa < b; 
(3) aCb<xpb(d) < a; 
(4) (cpb o / o ^ o /) (a) = an b; 
(5) cpb is a projection in Res(L) such that φ0(ττ) = b andcpt(fy = br; 
(6) q>b is weakly regular; 
(7) cpb(a) = Ooa ± b; 
(8)q>b(a) = boa' nb = 0; 
(9) aCb<xpa o<pb = <pbo <pa; 

(10) a < bocpa = <pbo<pa. 

Proof. (1) is clear from the definition oï(pb. 
(2) This follows from Theorem 18.2. 
(3) If aCb, then (pb(a) = a n b < a. If, conversely, q>b(ä) < a, then 

a r\b < (pb(a) < a n b forces q>b(a) = a n b. 



COORDINATIZING BAER SEMIGROUPS 179 

(4) {q>b o / o <pb o i) (a) = (<pb o i o (pb) (α') = (<pb o /) [{a' u V) n è] 
= <pò [(Û n è) u 6'] 
= [(a nb)vb']nb 
= a n b. 

(5) In view of (4) we may apply Theorem 17.3 to see that (pb e Res (L) 
with <pb = (ς?&)*. Since (Vx e L) <pb(x) < b it follows from (2) that 
(<Pb ° <P&) (*) = <Pb(x) a n ( i s o ^ is a projection. Clearly ^ ( π ) = b and ç?^(0) 
= O 'o%oi) (0) = (io<pb)(7t) = i(b) = V. 

(6) By (4) we have (q?b o 99 )̂ (a) = a n è = a n ^ ( π ) and so 9^ is 
range-closed. Since 9?d = (q>b)* we see that it is in fact weakly regular. 

(7) This follows from the fact that ç£(0) = V. 
(8) If cpb(a) — b, then (avb')r\b = b implies that b < Û u V whence 

a\jV = π and a! n b = 0. The converse is clear. 
(9) Let aCb. Then (Vx eL) aCb and 0 C (x u α') so, by Theorem 

18.6,2)*(jcufl f ,e,* f)-Then 

(<Pb ° 9 Ü 0 0 = <?*> [(x u #') n Û] = {[(x U a') π α] u b'} n è 

= (XUÛ'U è') n(au b') n b 

= (x u 0' u b') na n 6 

= 9WO0· 

Similarly, (g>a°<pb) 00 = ÇwOO a n d s o <Pa°<Pb = <Pb°<Pa- If, on the 
other hand, q>a

oçPb — ̂ b°9a^ then 

9>I>(Û) = (y 1» ° y«) 0 0 = fa« ° <Pb) 0 0 = ΨαΦ) < a, 

and so, by (3), aCb. 
(10) If φα = (pb o φα then a = ç?a(û) = (9^ o φα) (a) < b. Conversely, 

if a < è, then Çix e L) φα(χ) < b=> φα{χ) = ((pb o φα) (χ). 

COROLLARY. If Ci OC e A) χ^ Cb and ifx=\<J x* exists then xCb. 
<xeA 

Proof <pb(x) = <pb(\J χΛ = U <pb(Xo) = [j {x^nb) < x, and so, 
\aeA / <*eA <xeA 

by (3) of the theorem, we have xCb. 

In connection with the next theorem we shall require one additional 
item of terminology. A sublattice M of an ortholattice (L, i) will be called 
an orthosublattice if it satisfies the property me M => m' e M. We leave to 
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the reader the routine verification that every orthosublattice of an ortho-
modular lattice is itself an orthomodular lattice. 

THEOREM 18.9. Let M be a non-empty subset of the orthomodular lattice 
(L, i). Then 

(1) C(M) is a complete orthosublattice ofL; 
(2) a necessary and sufficient condition that CC (M) be a Boolean sub-

lattice of (L, i) is that M ç C(M). In particular, this is true if 
M = C(L) or M = {m}. 

Proof By the corollary to Theorem 18.8, C(M) is stable under the for-
mation of existing unions; and by Theorem 18.3, x e C(M) => x' e C(M). 
It is immediate that C(M) is a complete orthosublattice of L. 

To prove (2), we note that if CC(M) is Boolean then M s CC(M). 
Now if x, y e M then x, y, y' are all in CC (M) which is distributive. It 
follows that 

<Pyix) = {xvy') ny = (x c\y)Kj{y' c\y) = x c\y 

and so x Cy. But this shows that M £ C(M). We now assume that 
M £ C(M). This clearly implies CC(M) c C(M), so if x,yeCC(M) 
then x e CC (M) with y e C(M) implies xCy. It follows from Theo-
rem 18.6 that CC(M) is distributive and hence a Boolean sublattice of L. 
The remaining assertions are clear. 

THEOREM 18.10. Let (L, /) be an orthomodular lattice. Then, for each 
aeL, we have 

C(a) = {(b u f l ) n ( i u a'); beL} = {(b n a)u (b n a')\ beL] 

= Im(9?a Υφα). 

Proof IfbCa then by Theorem 18.3 we have 
b = (b\ja)n(b\ja') = (bna)u(bn af) = (<pa Y φα) {b). 

On the other hand, by Theorem 18.9, any element of the form (b u a) 
η ( ί ι υ a'), (b n a) u (b n 0') or <pfl(è) u gv(*) must commute with a. 

THEOREM 18.11. Let a be an element of the orthomodular lattice (L, i). 
Then the set of complements of a is given by 

{[(a'uf')nf\u(a'nf');feL}. 
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Moreover, given fe L, aCfo [{α' uf) nf] u (a! nf) = a'. 

Proof. Note first that since {a! u / ' ) Cf and (α' uf) Ca we have by 
Theorem 18.6 that 

a u [(a' u / 0 nf] = {aua' uf) n {a uf) = a uf 
Hence 

a u {[(a' uf) nf} u (a' n / ' ) ] = (« vf) u (β' n / ' ) = *. 
We next observe that (a' uf) nf < auf= (ar nf')' and so we have 
[(a' uf) nf]C(a' nf). Since also (a' nf) Ca we have 
a n {[(ar uf) nf] u {a' nf)} = [an (a' uf) nf] u(ana' nf)=0. 

On the other hand, if x is a complement of a, then [(#' u χ') η x] 
u (α' η χ') — x. 

lïaCf then by Theorem 18.3 
[(a' uf) nf] u (a' nf) = (a' nf) u (a' nf) = a'. 

Conversely, if [{α' uf) nf] u {a' nf) = a\ then (a' uf) nf < a' 
forces a'Cf and consequently aCf. 

COROLLARY. C(L) is the centre ofL. 

Proof If z e C(L) then, by the theorem, z has a unique complement in 
L. By Theorem 9.3, z is central. The proof is completed by noting that 
every central element z must commute with all elements of L. 

Since an orthomodular lattice is relatively complemented, it follows 
from Theorem 9.3 that it is Boolean if and only if it is uniquely comple-
mented. We close this section by extending this result to an arbitrary 
ortholattice. 

THEOREM 18.12. An ortholattice (L, i) is a Boolean algebra if and only 
if it is uniquely complemented. 

Proof Every Boolean lattice is uniquely complemented, so it suffices 
to start with a uniquely complemented ortholattice (L, /) and show that it 
is Boolean. In view of the remarks preceding the theorem, it is enough to 
show that (L, i) is orthomodular. This we now proceed to do. According-
ly, let a.beLbe such that a < b and set c = b n a!. Then 

c' na' nb = (b' u a) n a' n b = 0, 
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and since c u û < i w e must have c' c\a' > b\ so (c' n a') u b = π. It 
follows that c' r\a' = 6' and b = a\Jc = aKj(bn a'). But this is none 
other than the orthomodular identity, thus completing the proof. 

COROLLARY. A uniquely complemented lattice is Boolean if and only if 
the mapping which sends each element to its complement is an involution. 

EXERCISES 

Note. In each of the following exercises we shall be working in an orthomodular 
lattice (L, i) unless otherwise specified. 

18.1. Show that (Va, b e L) φα(ο) and (ι 0 q>b) (a) are complements. 
18.2. Show that aCbo<pa(b) C<pb(a). 

18.3. Given a e L, define aa:L-+ L by setting 
(VJC e D oa{x) = (x u ß) r> (# u ar). 

Prove that: 
(l)C(e) = Imcye; 
(2) σα is an increasing projection in Res (L); 
(3) σα = abo aaob e CC(a); 
(4)φα = aa 0φα. 

18.4. Show that if e9fe [a,b] then <pf(e) = [<? viab(f)] nf. Deduce that gp/e) 
~ ÇfeCf) m every interval containing e and / . Then prove that (pf(e) ~ <pe(f) in every 
interval which contains them. 

18.5. Given a, beL let * = a r>b and y = a u b. With notation as in Theo-
rem 18.5, show that aCbob — ixy(a). Deduce that if aCb, then a commutes with 
all elements in [x, b] as well as with all elements in [b, y]. 

18.6. Prove that an ortholattice is orthomodular if and only if it contains no sub-
lattice of the form 

o 

be/ \ a ' 

' I»/ 
a o ob 

[Hint. Use Theorem 18.1 (3).] 
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19. Foulis semigroups 

Our goal in this section will be to solve the coordinatization problem 
for orthomodular lattices. We begin with some general observations about 
an involution semigroup (S, *). We agree to let P(S), or if there is no 
danger of confusion, simply P denote the set of projections of S. Thus 

P(S) = {eeS; e = e2 = e*}. 

THEOREM 19.1. Let (S, *) be an involution semigroup. Then for elements 
e,fe P(S) the following conditions are equivalent: 

(l)e = ef; (2)e=fe; (3)eS^fS; (4) fifes Sf 

Proof The equivalence of the first two conditions is established by 
taking adjoints. 

(1) => (4): If e = ef then xeeSe=> xe = xefe Sf 
(4) => (1): If Se s Sf then e = ee=> ee Se ^ Sf and so there exists 

xe S such that e = xf whence ef = (xf)f = xf = e. 
(2) o (3) : This is the dual of (1) o (4). 
COROLLARY 1. The relation e < fo e = efis an ordering on P(S). 

COROLLARY 2. Ife,fe P(S) and eS = fS, then e = f 
In view of the above result we shall on occasion identify the projection 

e with the principal right ideal eS which it generates. 

THEOREM 19.2. Let (S, *) be an involution semigroup. 

(1) IfO is an element of S such that (V* e S) χθ = 0 then 0 e P(S) and 
(VJC e S) Öx = 0. Such an element (when it exists) is unique and is 
effective as a multiplicative zero element for S; 

(2) If 1 is an element of S such that (Vx e S) xl = x then 1 e P(S) and 
(Vx e S) lx = x. Such an element (when it exists) is unique and is 
effective as a multiplicative identity for S. 

Proof. (1) We evidently have 00 = 0 and 0*0 = 0. Taking adjoints 
this produces 0* = (0*0)* = 0*0** = 0*0 = 0 and so 0 G P(5). But then 
(Vx G S) x*0 = 0 => 0 = 0* = (**0)* = Ox** = Ox. If 0 e S had the 
same property then we would clearly have 0 = 00 = 0. 
7 BRT 
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(2) Note that 11 = 1 and 1*1 = 1*. Hence 1 = 1** = (1*1)* 
= 1*1** = 1*1 = 1* and 1 e P(S). It follows from this that (VJC G S) ìx 
= (x*l)* = x** = x. The uniqueness is clear. 

We are now ready to define a Foulis semigroup. The definition is mo-
tivated by our desire to have a Foulis semigroup as an involution Baer 
semigroup such that 0tk(S) forms an orthomodular lattice. In view of 
Exercise 17.5, there is only one reasonable type of definition. Right and 
left fc-annihilators must be generated by projections. A triple <S; k; *> 
will be called a Foulis semigroup (or a Baer ^-semigroup) if and only if 

(1) (S, *) is an involution semigroup; 
(2) k is a central projection of S; 
(3) (V* e S) (3ex e P(S)) Rk(x) = exS. 

We note that since xy e kSoy*x* e kS we have 

Lk(x) = {yeS; y* e Rk (x*)} = {yeS;y* = ex.y*} 

= {yeS;y = yex.} = Sex.. 

It follows that <5; k\ *> is an involution Baer semigroup and so 0tk{S) is 
an involution lattice. By Theorem 19.1, both Rk(x) and Lk(x) have unique 
projection generators. It will prove convenient in what follows to let x' 
denote the projection which generates Lk(x) and x" = (*')'. It is then clear 
thatLfcCv) = Sx\ Rk(x) = (**)' S, (Rk o Lk) (x) = x"Sand (L^ o Rk) (x) 
= S(x*)". Almost all of our knowledge of this class of semigroup stems 
from the work of D.J. Foulis (hence our terminology) who established 
their basic connection with orthomodular lattices. It was in fact the work 
of Foulis which provided much of the inspiration and impetus for the 
later development of the theory of Baer semigroups. Before doing 
anything else, we consider a few examples. 

EXAMPLE 19.1. Any abelian Baer semigroup <5; fc> may be converted 
into a Foulis semigroup by taking (V.v e S) x* = x. 

EXAMPLE 19.2. We noted in § 17 that for any set X, <Rel (X), 0 , t} is 
an involution Baer semigroup. However, if we refer back to Example 12.4, 
we see that, for any binary relation S, RQ(S) = IA o Rei (X) where 
A = [Dom S]' and xIAyox = ye A. Noting that IA is a projection, 
we see that we have an example of a Foulis semigroup. 
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EXAMPLE 19.3. An involution ring is a pair (A, *) where 

(1) A is a ring; 
(2) * is an involution on the multiplicative semigroup of A ; 
(3) (VA% yeA)(x + y)* = x* + y*. 

A Baer *-ring is an involution ring whose multiplicative semigroup is a 
Foulis semigroup with focus 0. A specific example is provided by the ring 
B(H) of bounded operators on the Hilbert space H. With respect to the 
usual notion of adjoint, it is well known that B(H) becomes an involution 
ring. As was noted in Example 11.3, if teB(H) then R(t) = e o B(H) 
where e is the orthogonal projection on the null space of t. Since e = e2 

= e* we see that B(H) is in fact a Baer *-ring. Other examples of Foulis 
semigroups may now be concocted by taking suitable subsemigroups of a 
Baer *-ring. For example, we can consider the semigroup formed by those 
bounded operators whose norm does not exceed 1. 

EXAMPLE 19.4. Let (X, F) be a topological space which is completely 
regular: i.e. it is a Hausdorff space such that for every closed set JF and 
every x$F there exists a continuous real-valued function g on X such 
that g(x) = 1 and Qfy eF) g(y) = 0. Let C(X) denote the set of all con-
tinuous real-valued functions on X and make C(X) into a ring by means 
of the "point-wise" operations 

<yxeX)(f+ g) (*) =/(*) + *(*); (f-g) (*) =Λχ)&). 

The constant function 0 defined by (Vx e X) Ô(x) = 0 is the zero element 
of C(X) and the function Î defined by (V* eX)l(x) = 1 acts as an identity 
element. Thus C(X) is a commutative ring with an identity. It seems rea-
sonable to ask when (if ever) it forms a Baer *-ring. A subset G of X is 
called a cozero set if and only if G = {xeX; g(x) Φ 0} for some g e C(X). 
We claim that C{X) is a Baer *-ring if and only if the closure of every cozero 
set is open. To see this, let g e C(X) with G = {xeX; g(x) Φ 0}. Suppose 
also that R(g) = e · C(X) with e = e2. Then I m e Ç {0, 1}, from which it 
follows that e*~(0) and e*~(l) are complementary subsets of X. Thus e*~(0) 
is both open and closed. Since g - e = 0we have xeG => e(x) = 0 and so 
G S é?*-(0). Since e+"(0) is closed, G" c e-(0). If G~ Φ e"(0) choose 
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TV e e*~(0)\G~. Using complete regularity, we may now find an h e C(X) 
such that h(w) = 1 and h(x) = 0 for all xeG". But then g · h = 0 implies 
h = e-h and so 1 = h(w) = e(w) h(w) = 01 = 0, a contradiction. We con-
clude that G~ = e*"(0) and so G~ is both open and closed. It follows from 
this that if C(X) is a Baer *-ring the closure of every cozero set must be 
open. To establish the converse implication, we note that if His both open 
and closed we can define e e C(X) by setting e(x) = 0 for x e H and 
e(x) = 1 for Λ: φ H and obtain e = è1. The details are left to the reader. 

EXAMPLE 19.5. Let G = {gx, g2,..., gn} be a finite group of order n. 
Let (F, *) be an involution ring such that 

(1) F is a field; 
n 

(2) X A,*A| = 0 in F => each Af = 0. 
i = l 

Consider the set A of all formal linear combinations of the form 
n 

£ Xigi where each λ% e F. With respect to the operations 
n n n 

Σ λ& + Σ i^^i = Σ (*f + /*f) Si 
i = l i = l i = l 

Σ (^ί)} ' Σ (pt8t)\ = Σ ttif*j)gigj 
i = i J l » = i J f , j = i 

we see that y4 forms a ring. If we define f Σ hSi I* = Σ ^ *^Γ1 it turns out 
that A becomes a Baer *-ring. ^l== 1 ^ I = 1 

The above examples were chosen to illustrate the fact that Foulis 
semigroups and Baer *-rings crop up in a variety of situations and, apart 
from their possible connection with orthomodular lattices, are in their 
own right of considerable interest. 

We are now ready to proceed with our discussion of the coordinatiza-
tion of an orthomodular lattice. Although some of the material is merely 
a restatement of previously proven results for Baer semigroups, we state 
it in the present context for sake of completeness. In connection with this, 
it will be convenient to work with the projection generators of right k-
annihilators rather than with the right &-annihilators themselves. For this 
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reason, if <5; k; *> is a Foulis semigroup we agree to let 

Pi(S) = {ee P(S) ; (3x e S) eS = Rk(x)}, 

and order Pk(S) by the prescription e <foe = ef. By Theorem 19.1, 
Pk(S) is a bounded involution lattice. Unless there is some danger of con-
fusion, we shall use the symbol P'(S) or even simply Pf in place of Pk(S). 
It will also be convenient to call a projection e closed in case e e Ρ'. 

THEOREM 19.3. Let <S; k; *> be a Foulis semigroup. Then 

(1)P'(S) = {eeS;(3xeS)e = x'} = {eeS;e = e"}; 
(2) the mapping given by i(e) = é is an involution on P'(S); 
(3)(VaeS)(yeeP')a = eaoa" < e\ 
(4) ifa = a* and ab = ba then ab' = b'a; 
(5) (ab)" = (ab")" < a". 

Proof. The fact that P'(S) = {eeS; (3x e S) e = *'} follows from the 
fact that for e e P(S) we have e S = Rk(x) o Se = Lfc(x*)· For any pro-
jection g, we have g'g ekS=> gg' ekS=> g = gg" s o g < g". If e = x' 
then e* e fcS => x*e ekS=> x* = **e' => x = e'x and so e"x = e "ex e kS 
and e" = e"e. Thus e" < e and by Corollary 1 to Theorem 19.1 we deduce 
that e = e". If e = e" then e = (e')' shows e to be closed, thus completing 
the proof of (1). 

(2) This can be deduced from the material in § 17, but it is just as easy 
to give a direct proof. If e, fe P' with e < / , then e = fe and/'e = f'fe e kS. 
It follows that / ' = fe' and hence that / ' < ë. By (1) we have 
QteeP')e = e". 

(3) If a = ea, then e'a = e'ea e kS gives e' = e'a' and so e' < a'. By 
(2) we have a" < e. If conversely a" < e, then e' < a1 and so e'a 
= e'ß'tf e fcS, a*ë e kS, a* = a*e and, finally, a = ea. 

(4) If ró = for, then b'ab = è'èa e kS gives Ô'Û = fe'flò'. Since a = a* 
it follows that 6'a = £'*&' = (b'ab')* = (f>'a)* = ab'. 

(5) χαδ" ekS=> xab = ;ναδ"ο e fcSand XÛÔ ekS=> xa = xaô' =>xab" 
= xab'U'ekS. Thus Lk(o6) = L*(aè"). It follows that (ró)" = (ab")". 
By (3) we have a = a"tf, so #& = a"ab and consequently (ró)" < a". 
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THEOREM 19.4. For every Foulis semigroup <£;&;*>, P'(S) is an 
orthomodular lattice. 

Proof. For each e e P ' w e have Rk(e) = e'S, eSeMk(S) and Se e &k{S). 
By Theorem 12.9, eS and éS are complements in 3%k(S) such that 
M (e'S, eS) holds. The obvious isomorphism eS -* e of &k(S) onto P ' 
then shows that e and e' are complements such that M (e', e). By Theo-
rems 19.3(2) and 18.7 it follows that (Ρ', ι) is orthomodular. 

In line with our previous definition of the coordinatization of an in-
volution lattice, we agree that the Foulis semigroup <£; k; *> shall co-
ordinatile the orthomodular lattice L in case there is an orthocomplement-
preserving lattice isomorphism of Pk(S) onto L. We then have: 

THEOREM 19.5. If(L, Ϊ) is an orthomodular lattice then <Res (L); 0; *> 
is a Foulis semigroup which coordinatizes L. 

Proof. By Theorem 17.2, <Res(L); 0; *> is an involution Baer semi-
group which coordinatizes L. By Theorem 18.8, φβ is a projection in 
Res (L) for each eeL; and by Theorem 17.4, we have 

θ οφ = 0οφ(π)± θ*(π)οφ(π) < [Θ*(π)]'. 

Now if e = (Ϊ ο 0*) (π) we see that θ ο <pe = 0; and if θ ο φ = 0 then 
<ρ(π) ^ ^ gives φ = <ρβοφ. It follows that Ρ(θ) = <pe o Res (L) and so 
Res (L) is in fact a Foulis semigroup. The proof is now completed by mak-
ing use of the fact that the mapping eS -+ e is an orthocomplement-
preserving lattice isomorphism oï0tk(S) onto P'{S) for any Foulis semi-
group <£; k; *> and in particular for the one presently being considered. 

Combining the above results with Theorem 17.6, we have established 

THEOREM 19.6. For a bounded involution ordered set (E, i) the following 
conditions are equivalent: 

(1) (E, i) is an orthomodular lattice; 
(2) <Res (E); 0; *> is a Foulis semigroup; 
(3) (E, i) may be coordinatized by a Foulis semigroup. 

Let <S; k; *> be a Foulis semigroup with L = P'(S). Then for each 
e S we can define <pa: L -* L by setting q>a(e) = (ae)". Since we have 
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(R£ o Lk) (ae) = (ae)" S we see from Theorem 17.7 that φα e Res (L) with 
(<Pa)* = <Pa** There is no conflict here with the notation for Sasaki pro-
jections in that the Sasaki projections are precisely the closed projections 
in Res (L), so if g is a closed projection in S the induced residuated map <pg 

is none other than the Sasaki projection determined by g. Combining 
these observations with Theorem 17.7, we obtain: 

THEOREM 19.7. Let (S; k;*} bea Foulis semigroup and let L = P'(S). 
The mapping x -» <px is an involution-preserving semigroup homomorphism 
of S into Res (L) which maps the closed projections of S onto the Sasaki pro-
jections of Res (L). Moreover, {<px; xe S} forms a Foulis semigroup (with 
the same focus and involution as Res (L)) which coordinatizes L. 

In closing, we mention that the above results constitute only a very 
brief introduction to the theory of Foulis semigroups. 

EXERCISES 

Note. In each of the following exercises (S; k;*) denotes a Foulis semigroup 
with L = P'(S). 

19.1. Let {ea; oc e A} £ L and suppose that e — (J e& exists in L. Prove that if 
<xeA 

(Va e A) e*x = xea then ex = xe. 
19.2. Prove that if e,feL and ef — fe then efeL and ef — e nf. Prove in 

general that for e,feL we have e n / = (fe'Yf. 

19.3. Prove that e,/commute (in the lattice theoretic sense) in L if and only if e,f 
commute (in the semigroup sense) in S. 

19.4. Let a e S and eeL. Prove that ea = aeo(ae)" u (û*e)" < e. 

19.5. Let e e L and suppose that g = (J (xe)" exists in L. Prove that (Vj> G 5) 

gy = yg- Prove further that # > e and if h > e has the property that (V^ e 5) /ry = yh 
then h > g. 

20. Idempotent residuated mappings 

It should have become apparent by now to the reader that idempotent 
residuated maps are extremely important. The very notion of Baer semi-
group rests heavily on their existence and, as we saw in § 14, they are 
intimately connected with notions of regularity. As an added indication 
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of their importance, we list a number of facts about a bounded ordered 
set E. The reader should have no trouble verifying each of the following 
items from the material already at hand: 

(1) E is an n-semilattice if and only if, for each xeE, there exists an 
idempotent range-closed residuated map ex on E such that ex(n) = x; 

(2) Eis a u-semilattice if and only if for each xeE, there exists an idem-
potent dually range-closed residuated map fx such thatfx(0) = x$ 

(3) E is a lattice if and only if for each xeE, there exist idempotents 
ex,fxe Res (E) such that ex is range-closed, fx is dually range-closed, 
ex(n) = x andfx(0) = x; 

(4) E is a complemented modular lattice if and only if for each xeE, 
there exist strongly range-closed idempotents eX9fxe Res (E) such 
that ex(n) = x = / ί ( 0 ) . 

This list could be enlarged, but we hope that we have made our point : 
idempotent residuated mappings are important. Our purpose here is to con-
sider this class of mappings in some detail and to prove a number of results 
which will be required in the next section. 

Definition. Let E be an ordered set. Then 
(1) a mapping f:E-»E will be called a residuated closure map in 

case it is both residuated and a closure map; 
(2) a subset M of E will be called bicomplete if and only if, for each 

xeE, [<-, x]r\ M has a greatest element and [x,-+]n M has a 
smallest element. In other words, to say that M is bicomplete is 
equivalent to saying that M is a closure subset of both E and its 
dual. 

Let / b e a residuated closure map on the ordered set E. By Theorem 
2.10, / = /+ o / a n d / + = / o / + . If x =/ (*) , then/+(x) = (/+ of)(x) 
= f(x) = x and, dually, x —f+(x) gives x = / (x) . Thus I m / = Im/+ , 
and so by Theorem 4.3 and its dual I m / is bicomplete. Suppose now 
that M is a bicomplete subset of E. For each xeE define 

f(x) = the smallest element of [x, -*] n M; 
g(x) = the greatest element of [<-, x] n M. 
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Then/, g : E -► E are both isotone,/ o g = g < idE and g of = f > id£. 
It follows that/is a residuated closure map with g = / + . Clearly I m / = M. 
Since by Theorem 4.5 any closure map is completely determined by its 
image, we have established: 

THEOREM 20.1. Let E be an ordered set. There is a bijection between the 
set of residuated closure maps on E and the set ofbicomplete subsets ofE, 
namely that given byf-+ Im/. 

We now ask the reader to recall our consideration in § 15 of resi-
duated dual closure maps on a lattice L. By Theorem 15.1 they are in 
one-one correspondence with congruence relations having bounded con-
gruence classes. One may very well ask just what all this has to do with 
the nature of an arbitrary idempotent residuated map. The answer is pro-
vided in the next theorem. 

THEOREM 20.2. Given a lattice L, let f be a residuated closure map on L 
and let g be a residuated dual closure map on Im/. Then g of is an idem-
potent element o/Res (L). Moreover, every idempotent element o/Res (L) 
arises in this manner. 

Proof. (1) Let/, g be as in the enunciation of the theorem. With some 
abuse of notation, let g+ represent the residual of g in Res (Im/). Since 
Im (g of) c I m / = Im/+ we have/+ °gof=gof Similarly,/og+ o/+ 
= g+ ° / + - Hence 

(g+ ° / + ) ° (g °f) = g* °g °f ^ idL and 
(g °f) ° (g+ ° / + ) = g o g+ °f+ ^ idL. 

This shows that go/eRes(L) with (g o/)+ = g+ o /+ . Also, (g of) 
0 (g °f) = g ° g of = g °f [Note. This much of the theorem is true for 
any ordered set !] 

(2) Let h — hohe Res (L). Set / = h Y idL and note that / is a re-
siduated closure map whose image is {x e L; h(x) < x}. Let g denote the 
restriction of A to Im/and let g+ denote the restriction of h+ to Im/. 
Then on I m / we have g+ o g = h+ o h < id Im/ and g og+ = h o A+ 

> id Im/. This shows that g e Res (Im/) with g+ its associated residual 
map. Clearly g is a residuated dual closure map on Im/. The proof is 
7a BRT 
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completed by noting that for each xeL 

(g °f) (x) = S [χ u K*)] = h [x u h(x)] = A(x) u (h o A) (x) = A(x) 

and so A = g o/. 
Our next goal will be to develop an explicit characterization of the 

projections in Res (L) for an arbitrary orthomodular lattice L. It turns 
out that much of the needed machinery can be developed in a much more 
general setting. This we now proceed to do. It will prove useful to call 
a residuated map/on the ordered set E weakly increasing if the restric-
tion of/ to the order ideal generated by its image is increasing. We then 
have: 

THEOREM 20.3. Let Lbea bounded lattice and letf = f2e Res (L). The 
following conditions are then equivalent: 

(1) fis weakly increasing; 
(2) (V* e L) f{x) = [x uf(x)] η / (π) ; 
(3)/(x) < x=>f(x) = x nf(n); 
(4) x e Im/+ =>/(*) = x π / (π) ; 
(5)(\fxeL) f(x)>xnf(n). 

Proof (1) => (2): We clearly have [x u/(x)] nf(n) < x u/(x) and 
so {f[x u/(x)]n/(7r)} < / [xu/ (x) ] =/ (x) . Since/is weakly increasing, 
we have [x u/(x)] η/(π) < f{[x uf(x)] π / (π)}. Hence 

Ax) * lx vAx)i n/K«) < / { [* u/(x)] η/(π)} < f(x) 

from which it follows that f(x) = [x u/(x)] r\f(n). 
(2) => (3): If x > f(x), then/(*) = [x u/(x)] η/(π) = x nf(n). 
(3)=>(4): This follows from the fact that if x = f+(y), then/(x) 

= (fof+)(y) = (fon IT (y)] <r(y) = x. 
(4) => (5): Note that f(x) = ( /o/+ of) (x) with (/+ of) (x) e Im/ + . 

It thus follows by (4) that f(x) = /[( /+ of) (x)] = (/+ of) (x) nf(n) 
> xnf(n). 

(5)=>(1): This is clear. 
COROLLARY. Iff e Res (L) is a weakly increasing idempotent then 

/+(0) η/(π) = 0. 
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The only explicit formula which we have thus far obtained for an 
idempotent residuated map was that given in Theorem 13.4 : every weakly 
regular idempotent residuated map on a bounded lattice L is of the form 

Q/xeL) f{x) = [x u /+(0)] η / (π) . 
We now see what this means in the weakly increasing case. 

THEOREM 20.4. Let f be a weakly increasing idempotent residuated map 
on the bounded lattice L. The following conditions are then equivalent: 

(1) (V* e l ) fix) = [x u/+(0)] π / (π) ; 
Ì2)x>n0)^x<rix); 
Ì3)x>f+i0)=>x>fix). 
Proof (2)o(3): If x <f+ix), then/(x) < ( /o /+ ) (x) < x. Dually, 

fix) < x gives x < if+ of) ix) <f+ix). 
(1)=> (3): If x > / + (0) , then fix) = [x u/+(0)] η / (π) = χ η/(π) 

< x. 
(3)=>(1): (VxeL) x u /+(0) >/ + (0) . By (3) and the fact tha t / i s 

weakly increasing, we deduce fix) =f[x u/+(0)] = [x U / + ( 0 ) ] η / (π) . 
COROLLARY. Iff is dually range-closed then 

(V* eL) fix) = [jc u/+ (0)] η / (π ) . 
THEOREM 20.5. Suppose that fis a weakly increasing idempotent resi-

duated map on the bounded lattice L and thatf+ is weakly increasing on the 
dual ofL. Then a necessary and sufficient condition that f be dually range-
closed is 

iMxeL) fix) = [x u /+(0)] η / (π) . 
Proof Suppose that ( V * G L ) / ( X ) = [x u/+(0)] η / (π) . By Theo-

rem 20.4, Λ; > /+(0) => JC < f+ix). But by hypothesis we have x > f+ix) 
for each x >: /+(0) and so/is dually range-closed. The converse implica-
tion is contained in the corollary to Theorem 20.4. 

We are now ready to apply all of this to the case of an orthomodular 
lattice. Accordingly, until further notice we shall be working in an ortho-
modular lattice (L, i) with Res (£,) equipped with the natural involution. We 
agree to call an element/of Res (L) a symmetric closure map whenever 
/ i s an increasing projection. Evidently, every symmetric closure map is 
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among other things a residuated closure map. The analogue of Theo-
rem 20.1 is: 

THEOREM 20.6. There is a bijection between the set of symmetric clo-
sure maps on L and the set of closure subsets ofL which are stable under 
the formation of orthocomplements, namely that given by / - » I m / . 

Proof Every closure subset which is stable under the formation of 
orthocomplements is evidently bicomplete. Thus, in view of Theorem 20.1, 
it suffices to show that a residuated closure map is symmetric if and only 
if its image is stable under the formation of orthocomplements. This we 
now proceed to do. 

First le t /be a symmetric closure map on L. Using the fact t h a t / = / * 
we see that if x =f(x), then ( / o /) (x) = ( / o / of) (x) < i(x). But since/ is 
i ncreasing we must have i(x) < (foi) (x). We deduce that i(x) = (foi)(x) 
and so I m / i s stable under i. Suppose now that / i s a residuated closure 
map and that x e Im/=> i(x) e I m / . Then for each x e l w e have 

f(x) e Im/=> (i of) (x) e Im/=> (Jo i of) (x) = (i of) (x). 

Now x < f(x) => (/ of) (x) < i(x) and so (Jo / of) (x) < i(x). It fol-
lows that / = / * . 

COROLLARY. For any symmetric closure map fon L, Imfis an ortho-
modular lattice. 

We are now able to produce our long-sought characterization of the 
projections in Res (L). 

THEOREM 20.7. Let f be a symmetric closure map on L and let z be a 
central element oflmf. Define g: I m / - » I m / by the prescription g(x) 
= x n z. Then g of is a projection in Res (L). Moreover, every projection 
in Res (L) arises in this manner. 

Proof (1) Note first t h a t / i s a projection in Res (L) and that g is a 
projection in Res ( Im/ ) . Letting j denote the restriction of i to I m / a n d 
using the arguments given in the proof of Theorem 20.2, we see that 

(g ° / ) * = i ° (g °f)+ ° i = i ° (g+ °f+) ° I = 0' ° g+ °j) ° 0* °f+ ° 0 
= g °f 

Hence g of is a projection in Res (L). 
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(2) Now let h be a projection in Res (L). Setting / = h Y idL it is 
clear that / i s a symmetric closure map on L. Then if g is the restriction 
of h to Im/we have h = g of by Theorem 20.2. But by the corollary to 
Theorem 20.6, Im/is orthomodular and hence relatively complemented. 
Since g is a decreasing residuated map on I m / we may apply Theo-
rem 15.3 to deduce that g(n) = h(n) is central in I m / with g(x) 
= x n g(n) for all x e Im/. 

COROLLARY. Every projection in Res (L) is weakly increasing. 

The above theorem can be used to provide an even more useful char-
acterization of the projections in Res (L). 

THEOREM20.8. Let xeL and let f be a symmetric closure map on the 
interval [0, x]. Thenfoçx is a projection in Res (L). Moreover, every pro-
jection h arises in this manner. The projection h uniquely determines both 
fand x by the requirement that x = h(n) and f — the restriction of h to 
[0,x]. 

Proof. (1) It is implicit in the statement of the theorem that the inter-
val [0, x] is equipped with the natural orthocomplementation given by 
j(y) = x n i(y) so that, by Theorem 18.5, ([0, x]9j) is an orthomodular 
lattice. Thus it is meaningful to speak of a symmetric closure map on 
[0, x]. With notation as given above, we have 
(Vy e l ) (iofo <px) (y) > i(x) => (<px o i of o φχ) (y) = χ n(iofocpx) (y) 

= U°f°<px)(y)' 
Hence 

( / o φχ o i o / c φχ) (y) = (foj ofocpx) (y) < (J o φχ) (y) 

= [(y u x') n x]' n x 

= [ ( / n x) u *'] n x 

= y' n x 

<yf 

= i(y). 
Thus fo(px=s(fo φχ)* e Res (L). Clearly, / o φχ is idempotent. 



196 RESIDUATION THEORY 

(2) Now let A be a projection in Res (L). Taking x = h(n) we have 
h = <px o h. Applying the adjoint operation, this implies h = h o φχ. We 
must now show that/, the restriction of A to [0, x], is a symmetric closure 
map on this interval. Lettingy denote the orthocomplementation on [0, x] 
we have tha t /o j of < hoioh < i from which it follows that foj of 
<j and so / = / * e Res ([0, x]). Clearly / i s idempotent and, by the 
corollary to Theorem 20.7, it is increasing. 

(3) We must still show that if h e P [Res (L)] and if A = / o φχ with/ 
a symmetric closure map on [0, x] then x = h{n) and/coincides with the 
restriction of h to [0, x]. Both of these facts are indeed immediate ! 
Note first that h{n) = (f°(px)(n) = f(x) = x. Also, for y < x, h(y) 
= (f0(Px) (y) = f(y)> thus completing the proof. 

COROLLARY 1. IfheP [Res (L)] then the restriction of h to [0, Ιι(π)] is 
a symmetric closure map on that interval. 

COROLLARY 2. The projections on Res (L) can be put in one-one cor-
respondence with the symmetric closure maps on intervals of the form [0, x]. 

Our next and last item of business in this section will be to provide a 
characterization of bicomplete subsets in terms of extensions of residuated 
maps. We therefore now drop the assumption that (L, i) is an orthomodular 
lattice and work instead in a bounded ordered set E. Suppose that we have 
{0, n] ç M £ E. Then with the inherited ordering M itself forms a 
bounded ordered set, so we may consider Res (M). We may also con-
sider the set 

Res(£|M) = {/eRes(£); I m / ç M, Im/ + s M}. 

Evidently Res (E\M) is a subsemi group of Res (E). To say that an ele-
ment g of Res (M) can be extended to / i n Res (E\M) will be to say that 
g is the restriction o f / t o M. Note that if g can be extended t o / i n 
Res (E\M) then for all x,yeM we have 

g(x) < yofix) <yox <f+(y). 

Since f+(y) e M it follows that g+ is the restriction of/+ to M. Note 
further that at least two elements of Res (M) can be extended to 
Res (E\M), namely the zero map on M and the residuated closure map 
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whose image is {0, π]. To say that M is bicomplete turns out to be equi-
valent to saying that every element of Res (M) can be so extended: 

THEOREM 20.9. Let E bea bounded ordered set and let {0, π} £ M ^Ε. 
The following conditions are then equivalent: 

(1) M is bicomplete; 
(2) there is a residuated closure map f on E such that I m / = M; 
(3) every element o/Res (M) can be extended to Res (E\M)* 
(4) the identity map on M can be extended to Res (E\M)> 
(5) there is a semigroup isomorphism between Res (E) and Res (E\M)j 
(6) Res (E\M) has a multiplicative identity element. 

Proof (1) o (2): This was established in Theorem 20.1. 
(2)=>(3): LetgeRes(M). Then g of: E -> E and g+ of+:E-+E 

are each isotone. Since I m / = Im/+ = M and Im (g of) g M , w e see 
that/+ o (g of) = g o/. Hence (g+ o/+) o (g o/) = g+ ogof>f> id£. 
Dually, we have (g of) o (g+ o/+) < id£ and so g o /e Res (E) with 
(# ° / ) + = g+ °f+- Evidently, g o /e Res (is|M) and g is the restriction 
of g o/ to M. 

(3) => (4): This is obvious. 
(4) => (5): Let / be the extension of idM to Res (E\M). Then idM is 

evidently the restriction of/+ to M. It follows from this that / = / + of 
and so / i s a residuated closure map. As in the proof of (2) => (3), for 
each g e Res (M) we have g o / e Res (-E|M) with (g o/)+ = g+ o / + . 
Define F : Res (M) -► Res (E\M) by setting F(g) = g o/. Since/is the 
extension of idM, we have F (g o h) = g o Ä O / = (g o/) o (A o/) 
= ^G>) °f(A) and so F is a semigroup homomorphism. If F(g) = F(h)9 

then 
(VX 6 M) g(x) = (g of) (x) = (h of) (x) = h(X) 

and so g = h. To show that F is surjective, let g e Res (E\ M) and let h be 
the restriction of g to M. Then A e Res (M) with A+ the restriction of g+ 

to M. It follows that g = F(h). 
(5) => (6): This is clear. 
(6) => (1): Let / be the multiplicative identity element of Res (E\M). 
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Given me M recall that am e Res (E) was defined by 

( m if x φ 0; 
0 if x = 0. 

Also, α„ is given by 

( π if x > m; 

0 otherwise. 
Clearly <xm e Res (£|M) so tha t /o #m = #w o / = #m. But then /« = <xm(/w) 
= ( / ° O (#0 = / (w) . Thus (Vra e M) /(m) = m and a dual argument 
shows that/+(m) = m. Thus / = / + o / is a residuated closure map whose 
image is M. 

COROLLARY l. If E is a lattice then M is bicomplete if and only if 
Res (E\M) is a Baer semigroup. 

Suppose now t h a t / i s a residuated closure map and that M = I m / . 
For g e Res (E) we have Im g^Mog=fog and I m g + ç M 
<s>g+ = / + o g + , this latter condition being equivalent to g — g o / . It 
follows from this that g e Res (E\ M) o g = f o g of and so Res (E\ M) 
= / o Res (is) of. The next corollary is now immediate: 

COROLLARY 2. Let f be a residuated closure map on the bounded ordered 
set E and let M = I m / . Then Res (M) w isomorphic to fo Res (£") o / , 
ί/ze isomorphism being given by g-* g of. 

We are now in a position to state a representation theorem for resi-
duated mappings on a complete infinitely distributive lattice. 

THEOREM 20.10. Let L be a complete infinitely distributive lattice. There 
exists a Boolean algebra A and a residuated closure map fon A such that 
Res (L) is isomorphic to f o Res (̂ 4) of. 

Proof. This follows immediately from Theorems 10.7 and 20.9. 

EXERCISES 

20.1. Let L be a complete lattice and let T — {ίΛ; a e A} be a semigroup of resi-
duated maps on L such that at least one ΐΛ is increasing. Let t — Y V Prove that t is 

<xeA 
a residuated closure map on L whose image is {x e L; (Va G A) tx(x) < x}. [Hint. The 



COORDINATIZING BAER SEMIGROUPS 199 

fact that r i s a semigroup guarantees that t o t < t and since some ΐΛ is increasing so 
is /.] Show that if in fact T is a group of automorphisms on L then the image of t is 
{x 6L; (Va 6 Ä) ίΛ(χ) = x}. 

20.2. Call a residuated map / o n a bounded lattice L weakly decreasing if the 
restriction of/to [0,/(π)] is decreasing. Show that if £ is relatively complemented then 
an idempotent / e Res (L) is weakly decreasing if and only if it is range-closed. [Hint. 
Apply Theorem 15.3.] 

20.3. Let / be a weakly decreasing idempotent residuated map on a bounded 
relatively complemented lattice L. Prove that the following conditions are equivalent: 

( l ) / i s dually range-closed; 
(2) (VxeL) f(x) = [x u/+(0)] nf&). 

21. Boolean algebras 

There is a vast amount of research which has been done in this general 
area of mathematics. Our purpose in this section is definitely not to survey 
this literature. Rather, we wish to see how the notions of Baer semi-
group and residuated map tie in with Boolean algebras and, while we are 
at it, to prove a few results which will be of use to us in the sequel. We begin 
with some remarks concerning the coordinatization problem for Boolean 
algebras. In what follows, we shall use the symbol x' to denote the unique 
complement of x in a Boolean algebra. 

THEOREM 21.1. Every Boolean algebra may be coordinatized by a de-
creasing Baer semigroup. 

Proof. We leave to the reader the routine verification that in any 
Boolean algebra L each translation * -> x n a is residuated with 
x -» x u a' its associated residual map. Now apply Theorem 15.6. 

Thus the question of coordinatizingaBoolean algebra with a decreasing 
Baer semigroup amounts to deciding when such a semigroup has the pro-
perty that its lattice of right fc-annihilators is a Boolean algebra. This we 
now proceed to answer. 

THEOREM 21.2. Let <5; fc> be a decreasing Baer semigroup. The follow-
ing conditions are then equivalent: 

(1) 0tk{S) is a Boolean algebra; 
(2) eS e mk{S) =>See &k{S); 
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(3) eS e 0lk(S) => e is in the centre of S; 
(4)(VxeS)Rk(x) = Rk(x

2); 
(5) kS is a radical ideal (in the sense that xn e kS => x e kS); 
(6)(VxeS)Lk(x) = Rk(x). 

Proof The equivalence of the first three conditions follows from Theo-
rem 15.7. 

(3) => (4): If xy e kS we must clearly have x2y e kS. Suppose now 
that x2y ekS and let eS = Rk(x). Then xyeRk(x) implies xy = exy 
so that, by (3), xy = exy = xey and so xy e kS. 

(4) =*> (5): If xn e kS with n > 1, then 2 (n - 1) > n and so O""1)2 

e kS. Thus Rk(x
2n~2) = S and so, by (4), Rk(x

n-*) = S thereby showing 
that x11'1 ekS. Repeated applications of this argument will now show 
that xekS. 

(5) => (6): If y e Rk(x)9 then (yx)2 = yxyx = y (xy) xekS implies 
yx e kS and so y e Lk(x). A dual argument produces the reverse inclusion. 

(6) => (2): Let eS = Rk(x) and Sf '= Lk(x). Then eS = Sf and so 
e = ef = f and eS = See&k(S). 

COROLLARY. If (S;k} is an abelian Baer semigroup then &k(S) is a 
Boolean algebra. 

For a decreasing Baer semigroup, distributivity of the associated lat-
tice is automatic and any condition producing complementation will con-
sequently produce a Boolean algebra. In particular, one might conjecture 
that every Boolean algebra may be coordinatized by a range-closed de-
creasing Baer semigroup. The next result verifies this conjecture. 

THEOREM 21.3. Let <5;fc> be a decreasing Baer semigroup. Then a 
necessary and sufficient condition that 0lk{S) be a Boolean algebra is that 
<ß\ ky be range-closed. 

Proof If <*S; k} is range-closed then by Theorem 13.9 the lattice Mk{S) 
is complemented and by Theorem 15.6 it is distributive. 

Suppose conversely that 0tk(S) is a Boolean algebra. Then we have, 
by Theorem 21.2, eSe3&k(S) implies that e is in the centre of S. Now 
let xeS,fS = (Rk o Lk) (x) and eS e 3tk(S). Then since Lk(x) = Lk(f) 
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we have 

a (xe) ekSo aex ekSo aefe kSoa (fé) e kS 

so Lk(xe) = Lk(fe). It follows that 

<px (eS) = (R? o Lk) (xe) = (R? o Lk) (fé) = <pf (eS). 

Thus <px = φβ and so, by Theorem 13.8, x is range-closed. 
By duality, one can also say that the decreasing Baer semigroup <£; fc> 

coordinatizes a Boolean algebra if and only if <5; fc> is dually range-
closed. 

A Boolean algebra is, amongst other things, an orthomodular lattice 
and so it seems reasonable to inquire about a Foulis coordinatization. 
The next result summarizes the situation. 

THEOREM 21.4. Let <5; k;*} be a Foulis semigroup. Then 
(1) <*S; ky is a decreasing Baer semigroup if and only if every closed 

projection of S is in the centre of S; 
(2) P'(S) is a Boolean algebra if and only if for all e,fe P'(S) ,ef = fe. 

Proof (1) This follows from Theorem 21.2 and the fact that if e is a 
closed projection then eS e 0tk(S) and Se e 3?k(S). 

(2) This follows from Exercise 19.3. 

Our next major goal will be to give a topological interpretation to resi-
duated mappings on a Boolean algebra and to give a coordinatization in 
terms of a semigroup of continuous relations. This task will occupy our 
attention for the remainder of this section, but will also provide some use-
ful information about Boolean algebras and, in particular, about prime 
and maximal ideals of Boolean algebras. We begin with two important 
examples. 

EXAMPLE 21.1. Let I b e a topological space. We ask the reader to 
recall the notation introduced in Examples 12.4 and 12.6. In particular, 
we write Cl (̂ 4) for the closure of A, i(A) for the complement of A and 
call a binary relation S on Z continuous if A open => S'(A) open. Let us 
consider the set CR* (X) of binary relations S on X such that both S 
and St are continuous. Clearly, (CR* (X), t) is an involution semigroup. 
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Also, by Example 12.6, if S, T e CR* (X) then SoT =0oOomS 
c (i o Cl) (Im T) and so L0(T) = CR* (X) o IA where A = (/ ° Cl) (ImT). 
Since 7Λ is a projection in CR* (X), it follows that CR* (X) is a Foulis 
semigroup. We now investigate the nature of P' (CR* (X)). 

The mapping A -» (t o Cl) 04) is easily seen to set up a Galois connec-
tion on the lattice of open subsets of X. It follows that 

A = O o C l o / 0 C l ) ( ^ ) o ( 3 5 o p e n ) A = ( ;oCl ) (£ ) . 

Such a set is called a regular open set. We have already seen that every 
closed projection is of the form IA with A a regular open set. Suppose now 
that A is an arbitrary regular open set. Then if B = (t o Cl) (A) we have 
IB e CR* (X) and £0(/B) = CR* (X) o /,, where D = 0 ° Cl) (Im IB) 
= 0 o Cl) (5) = 0 ° Cl o ; o Cl) (A) = A. It is easily seen from this that 
P' (CR* (X)) is isomorphic to the Boolean algebra formed by the regular 
open subsets of X. 

EXAMPLE 21.2. A subset K of a topological space X is called clopen if 
it is both open and closed. The space is called totally disconnected if every 
open set is the union of a family of clopen sets; and a Boolean space if it 
is a compact totally disconnected Hausdorff space. Let X be a Boolean 
space and let s# denote the associated Boolean algebra formed by the 
clopen subsets of X. Finally, let 5*(Z) be the set of binary relations S 
on X such that 

f A open => S(A), S*(A) open; 

,B closed => S(B), S'(B) closed. 

If S e B*(X) then the mapping | s : si -> sé defined by is(A) = 5(^) is 
then evidently residuated with Ιί(^4) = 0 ° S* °.0 (^)· O u r g°al is t o 

show that B*(X) is isomorphic to Res {si). We clearly have: 
(1) S -+ is is a homomorphism. 

We claim that this homomorphism is surjective. To see this, l e t / e Res (si) 
and define S by 

xSyoyef){f(K);Kesi9xeK}. 

We claim that 
(2)(MKesJ) f(K) = S(K). 
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To see this, note that if h e S(K) then there exists xeK such that xSy 
and by the definition of S we must have y ef(K). This shows that 
S(K) ^f(K). Suppose now that y<£S(K). Then for each xeK there 
exists Kxesé such that xe Kx and y $f(Kx). Now K £ (J Kx and since 

xeK 

K is compact, K ç (J Kx for some finite subset F of K. Since/e Res sé 
xeF 

we have f(K) ^ ( J / ( ^ ) with the union being set-theoretic. It follows 
xeF 

that y φ/(Κ), sof(K) = S(K) which completes the proof of (2). 
Now le t /* be the adjoint o f / and define S* by 

xS*y o y e f] {f*(K); Kesé.xeK). 

We claim that 
(3) S* = SK 

To see this, let xSy. lfyS*x failed then (3Ke sé) yeK, x φ/*{Κ). This 
implies x e (t o/*) (K) which is clopen, so by the definition of S we must 
have ye(foiof*)(K). But, by the definition of the adjoint map, 
fot o / * < ; and so this puts y e K n t(K)9 a contradiction. We conclude 
that xSy => yS*x and a similar argument shows that xS*y => y Sx. It fol-
lows that S* = S'. 

Notice now that, by (2), S maps clopen sets to clopen sets. Since every 
open set is the union of a family of clopen sets, it follows that S maps 
open sets into open sets. A similar observation applies to S*. This estab-
lishes 

(4) A open => S(A), SXA) open. 
We now show that 

(5) B closed => S(B), S*(B) closed. 
It clearly suffices to prove that S(B) is closed. For this purpose, suppose 
that y e (Cl o S) (B) n (t o S) (B). Now y φ S(B) => Çix e B) xSy fails. It 
follows that (VJC e B) (3MX esé)xeMx,y φ/(Μχ). Now Β ^ \j Mx and 

n xeB 

by compactness there exist x1,x2,...,xn€ B such that B ^ (J Mx.. Hence 
i = l 

S(B) ^s(\jMxA=f({jMxA = (jf(Mx) which is clopen and so 
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(Cl o S) (B) £ (J f(Mx). Since this union is set-theoretic and y φ/(Μχ) 

for i = 1,2,..., n we see that y φ (Cl o S) (5), contrary to our initial choice 
of y. This then shows that S(B) is closed. 

In summary, we have established 
(6) Every f e Res (sé) is of the form tsfor some S e J3*(X). 

We must finally show that 
(7) S -> is is injective. 

Accordingly, let S, Te B*(X) with | s = | T . Now S9 Tare each continuous 
so they induce residuated mappings ξ&9ξτ

 ο η the lattice of closed subsets 
of X according to the prescriptions 

UB) = (Cl o S) (B) = S(B), ξτ(Β) = Γ(5). 

Evidently | s is the restriction of £s to J^ with | ^ the restriction of ξχ 
to sé. Now every closed set is obviously the intersection of a family of 
clopen sets, so if B is closed with B = f] Ka where each ΚΛ e sé, we have 

<x 

ÌHB)=& (o K\ = n ξϊαο = n liw 
V « / a a 

= n f ΐ(Φ 

= ίί(Λ). 

This shows that Is = £Î and so fs = | r . It follows from this that 
(Vx e l ) 5 ({Λ:}) = T({x}) from which we obtain S = T. 

We wish to show that every Boolean algebra may be regarded as the 
Boolean algebra of clopen subsets of a suitable Boolean space. This will 
be achieved by having a close look at the maximal ideals of a Boolean 
algebra. Since it will not cost us anything, we shall phrase our results 
wherever possible in a more general context. Recall first that an ideal / 
of a lattice L is called maximal if J φ L and the only ideal properly con-
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taining / is L. The ideal / is called prime if (1) J Φ L, (2) x nyeJ 
=> x e J or y e J. We begin with the following characterization of prime 
ideals in an arbitrary ortholattice. 

THEOREM 21.5. Let (L, i) be an ortholattice and let J be a \j-subsemU 
lattice ofL such that πφΐ. A necessary and sufficient condition that Jbea 
prime ideal ofL is that (Vx e L) either xeJ or i(x) e J. 

Proof If J is a prime ideal then the properties π φ J and (Vx 6 L) 
x n i(x) = 0 e / imply that either x e J or i(x) e J. Conversely, suppose 
that this condition is satisfied by / . Then since πφΙν/Q must have 0 e / . 
If a e /and b < a, then we must have b e /since otherwise i(b) e /would 
imply a u i(b) = π e / , a contradiction. This shows that / is an ideal 
of L. Now if a n b e J with a φ J and b φ J then from i(a), i(b) e / we 
deduce that π = (a n i ) u i(a) u i(b) e / which is once again a contradic-
tion. We conclude that / i s a prime ideal ofL. 

THEOREM 21.6. (1) Every prime ideal of a complemented lattice is maxi-
mal. (2) An ideal of an ortholattice is prime if and only if it is maximal and 
is the kernel of a congruence relation. 

Proof (1) It clearly suffices to show that if P is a prime ideal ofL and 
x φ P, then [0, x] Y P = L. Accordingly, let x φ P and ysL. Then if x' 
is a complement of x we must have x' eP. Since y < XKJ x' we see that 
y e [0, x] Y P and so [0, x] Y P = L. 

(2) Let P be a prime ideal of the ortholattice (L, /). Then, by (1), P is 
maximal and the mapping p : L -> {0, π} defined by 

(0 if xeP; 

[π if x φ Ρ 

is evidently a lattice homomorphism whose kernel is P. Now suppose 
that P is a maximal ideal ofL and that P is the kernel of a congruence 
relation R on L. Then if x φ P we must have P Y [0, x] = L and so there 
exists peP such that i(x) < pKj x. Then i(x) = i(x) n (/? u x) = /(#) 
n ( 0 u x ) = /(x) n x = 0(P) puts /(*) e P. Thus for each x e L we have 
either x e P or i(x) e P. It follows by Theorem 21.5 that P is a prime ideal 
ofL. 

file:///j-subsemU
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COROLLARY. An orthomodular lattice (L, i) is Boolean if and only if the 
prime and maximal ideals ofL coincide. 

Proof If L is Boolean then every ideal is the kernel of a congruence 
relation, so by part (2) of the Theorem an ideal is maximal if and only if 
it is prime. Suppose conversely that the prime and maximal ideals coin-
cide. By the dual of Theorem 7.7, every principal ideal is the intersection 
of a family of maximal ideals, hence of a family of prime ideals. It follows 
that every principal ideal is the kernel of a congruence relation and a 
glance at the proof of Theorem 10.5 will show that L is therefore distri-
butive. 

Another interesting characterization of Boolean algebras is given in the 
next result. 

THEOREM 21.7. The following conditions on a lattice L are equivalent: 

(1) L is distributive; 
(2) every proper ideal ofL is the intersection of a family of prime ideals; 
(3) every proper principal ideal of L is the intersection of a family of 

prime ideals. 

Proof (1) => (2): Let I be an ideal of L and let x φ I. Consider the 
set X of all ideals / of L such that x φ J and I ^ J. Clearly X Φ 0 . Let 
us order X by set inclusion and consider a chain {Ja} of elements of X. 
Since the set-theoretic union of the family {Jx} also belongs to X, we may 
apply Zorn's axiom to deduce that Zhas a maximal member M. We claim 
that M is a prime ideal ofL. Suppose that υ$Μ,\νφΜ but v n weM. 
Then [<-, v] Y M φΧ=> xe [<-, v] Y M and so there exists me M such 
that x < v u m. Similarly there exists ne M such that x < w u n. Hence 

x < (v u m) n (w u n) = [v n (w u n)] u [m n (w u n)] 

= (v n w) v (v n n) u (m n w) u (m nn). 

But this puts x e M, a contradiction. 
Now if / is a proper ideal ofL the above argument shows that there 

is a prime ideal containing L Consider the family {Pa} of all prime ideals 
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containing I. Clearly / £ f] ΡΛ and if x φ I then x φ f] Pa. It follows 
t h a t / = ( V « . 

(X 

(2) => (3): This is obvious. 
(3) => (1) : If every proper principal ideal is the intersection of a family 

of prime ideals then every principal ideal of L is the kernel of a con-
gruence relation. It follows from the proof of Theorem 10.5 that L is 
distributive. 

COROLLARY. A complemented lattice is a Boolean algebra if and only if 
every proper ideal ofL is the intersection of a family of prime ideals. 

We are now ready to associate with an arbitrary Boolean algebra a 
Boolean space X whose algebra of clopen subsets forms a Boolean algebra 
isomorphic to the given one. This, of course, is a version of the well-
known Stone representation theorem for Boolean algebras. 

THEOREM 21.8. For every Boolean algebra A there exists a Boolean 
space X such that A is isomorphic to the algebra of clopen subsets of X. 

Proof Let A be a Boolean algebra and for each x e A let Mx be the set 
of maximal ideals of A that do not contain x. We begin by observing that 

(1) Mxn My = Mxny and MXKJ My = Mxuy. 

To prove the first of these, we observe that if x n y φ M then we clearly 
cannot have x eM or y eM; on the other hand, since every maximal 
ideal is prime, if x φ M and y φ M for a maximal ideal M, then x ηγφΜ. 
The second equality comes from the observation that for any ideal M we 
have χνγφΜοχφΜ orγφΜ. 

Let us now use {Mx; x e A} as a base for open sets of a topology on Ji, 
the space of maximal ideals of A. Thus we agree to call a collection Θ of 
maximal ideals open if and only if Θ can be expressed as the union of a 
family of sets of the form Mx. Notice that, by (1), Mx and Mx> are com-
plementary subsets of Ji> so each Mx is clopen. This shows that our space 
is totally disconnected. 

(2) Jt is a Hausdorjf space. 
For. let M and JVbe distinct maximal ideals of A. With no loss of general-
ity we may assume the existence of an element x such that xeM but 
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x φ N. But then NeMx and M φ Mx whence M € Mx*. Thus Mx and Mx> 
are disjoint open sets such that JV e Mx and M e Mx*. 

(3) M is compact. 
It clearly suffices to prove that if (J {ΜΧβ; β e B} = Jl then there exists 
a finite subset Bf of B such that Jl = (J {ΜΧ/ΐ ; /? e Z^}. Let / be the ideal 
of A generated by {χβ; β e B}. If / Φ A then by Theorem 21.7 there exists 
a maximal ideal M containing I. But then (Vß e B) xßeM which gives 
Μφ[) ΜΧβ, contrary to the fact that Jl = (J {M^; ßeB}.We con-

gés 
elude that I = A and so there exists a finite subset ^y of B such that 
(J X0 = π. It follows from (1) that (J M ^ = Jl. 

ßeBf ßeBf 

At this point we have shown that Jl is indeed a Boolean space. The 
last step is provided by 

(4) the mapping x -► Mx is an isomorphism of A onto the algebra of 
clopen subsets of Jl. 

We have already seen in (1) that the mapping in question is a homo-
morphism. That it is injective follows from (2). Thus we need only show 
that if X is a clopen subset of Jl then X = Mx for some xeA. Now 
if JT is clopen we may write X = (J MXa and note that there must 

ex. n n 

exist indices oc1, oc2 > · · · ? ^n such that J T = (J MXe. = My where j = (J ^ . 

We have already noted [see Exercises 4.15, 13.5 and 14.2] that every 
binary relation R on a set X induces a residuated mapping ξR on P(X) 
by the prescription £Ä(M) = R(M) and that there is an interesting connec-
tion between properties of the relation R and properties of the induced 
residuated map £R. Much of the same sort of thing carries over in the 
context of Boolean algebras and Boolean relations. The next theorem 
illustrates this point. 

THEOREM 21.9. Let X be a Boolean space and let sé be the Boolean 
algebra formed by the clopen subsets of'BF. Then if S e B*(X) and f' = | s 
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we have: 

(l) fis increasing if and only if S is reflexive; 
(2)fof < f if and only if S is transitive; 
0)f = f* if and only if S = S*; 
(4) / is a residuated closure mapping if and only if S is both reflexive 

and transitive; 
(5) fis a symmetric closure mapping if and only if S is an equivalence 

relation on X; 
(6) fis decreasing if and only if S = IK for some Ke sé; 
Çl)fis weakly regular if and only if both S and S1 are functions (i.e. if 

and only if S is a homeomorphism of a clopen subset ofX onto some 
clopen subset ofX). 

The proof of the above result is left to the exercises at the end of the 
section on the grounds that it is completely analogous to the case of 
binary relations on a set (see Exercise 4.15). 

COROLLARY. IfL is a complete infinitely distributive lattice then there 
exists a Boolean space X and an element TofB*(X) such that T is reflexive 
and transitive with Res (L) isomorphic to T o B*(X) o T. 

Proof This follows from Theorems 20.10 and 21.9. 

EXERCISES 

21.1. Let A be a Boolean algebra. Prove that for each a e A the mapping x-+ xna 
is residuated with JC -* JC u a' its residual. 

21.2. Prove that every Boolean algebra may be coordinatized by an abelian Baer 
semigroup. 

21.3. Prove Theorem 21.9. [Hint. To prove (7) assume xSy and xSz with y Φ z. 
Then there exists a clopen N such that y e N but z $ N. Argue that y e N=> x ef*(N) 
and z φ N=> xe(f* ° ;) (N). Use Exercise 13.7(2) to arrive at a contradiction.] 

21.4. Prove that the Boolean space associated with a given Boolean algebra in 
Theorem 21.8 is unique up to within homeomorphism. [Hint. Let Xt(i = 1,2) be 
Boolean spaces with s/t the algebra of clopen subsets of Xt. Let / : s/t -► «J/2 be an 
isomorphism. Define a relation S from X1 to X2 by 

xSyoyef] if(M); xeM, Me s/rf. 
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Argue that if xSy then xeM, Mes^^oyefiM). Proceed as in part (7) of Exer-
cise 21.3 to show that both S and St are functions. An obvious modification of the 
argument given in Example 21.2(4) will show both S and Sl to be continuous.] 

21.5. Let X be a Boolean space with J / its algebra of clopen subsets. Let S e B*(X) 
and / = fs. Prove that / i s a projection in Res (<$/) if and only if S is symmetric and 
transitive as well as being reflexive on its domain. [Hint. Use Corollary 1 to Theo-
rem 20.8.] 

21.6. A residuated mapping / on a lattice L is said to be quasi-multiplicative if 
(VJC,yeL) f[x nf(y)] = / (*) nf(y). 

(1) Prove that every quasi-multiplicative residuated mapping is idempotent. 
(2) Let L be a bounded section semicomplemented lattice. Prove that if the resi-

duated mapping/on L is quasi-multiplicative then QixeL) x — [x π/(π)] 
υ [x r>/+(0)]. Deduce that Q/xeL) fix) =f[x η/(π)] . Prove further that a 
quasi-multiplicative residuated mapping is weakly increasing if and only if 
fin) o/+(0) = 0. 

21.7. Let A be a Boolean algebra. 
(1) Prove that a residuated mapping/on A is a quantifier [see Exercise 9.10] if 

and only if it is a symmetric closure map. 
(2) Prove that a residuated mapping / on A is a projection if and only if it is 

weakly increasing and quasi-multiplicative. 
[Hint. (1) I f / i s a symmetric closure map, argue first that x nf(y) = 0 =>/(*) nf(y) 
= 0. Then let w be a complement of f[x nf(y)] in [0,f(x) nf(y)\ and show that 
iv = 0. (2) Use Theorems 20.7, 20.8 and part (1) of the exercise.] 



CHAPTER 3 

RESIDUATED ALGEBRAIC 
STRUCTURES 

22. Residuated groupoids and semigroups; Molinaro equivalences 

By an ordered groupoid we shall mean a groupoid G which is also an 
ordered set in which, for each xe G, the translations λΧ9ρχ given by 
Kiy) = xy a n d Qx(y) = yx are isotone mappings. We shall say that an 
ordered groupoid G is residuated on the left [resp. right] if each left [resp. 
right] translation on G is a residuated mapping; and residuated if it is 
residuated on both the left and right. In what follows we shall be concerned 
with residuated groupoids and semigroups, though some of the results 
hold when residuation occurs on one side only. 

From the properties of residuated mappings derived in § 2 we see that 
if G is a residuated groupoid then, for any given x, y e G, the sets 

{z e G; xz < y} and {z e G; zx < y] 

are not empty and admit maximum elements. These maximum elements 
are respectively X^iy) and Qx(y). Henceforth we shall denote them using 
the notations y . * x and y ' . x respectively and call them the right [resp. 
left] residual of y by x. The residual y . · x is thus characterized by the 
properties 

(1) x(y r x) <y; 

(2) xz < y => z < y . * x. 

Similarly, y ' . x is characterized by the properties 

(3) (y.x)x<y; 
(4) zx < y => z < y *. x. 

211 
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Note that (1) is none other than λχ ο λχ < id and that (3) is none other 
than Qx°qt < id. The corresponding properties λχ ολχ > id and 
Qx ορχ > id are then respectively 

(5) y < xy . · x; 

(6) y < yx · . x. 

Let us now note that, given a,beG, we have 

a.'x>boxb<aox<a'.b. 

It follows from this that for each aeG the mapping ζα from G to its 
dual G* described by ζα(χ) = a . * x is residuated with residual given by 

ί«+(6) = ΰ · . * = ρ 5 » . 

The property £* o £y > idG then gives 

(7) x < j ' . (y .* x)9 

whereas ζν ο ζ* < idG* gives 

(8) x < y.'(y.x). 

Note that these also follow from (1), (4) and (2), (3) respectively. 
Now since each of λχ , ρχ is isotone we have 

(9) a < b => (VA: e G) α . * A: < b . * A:, a '. x < b '. x. 

Furthermore, since 

a < b => λα < Xb => Xî < λα Ο λα Ο λϊ < λα θ ΐ , θ λϊ < λα 

we deduce that 

(10) a < b=> (VA: e G) x .' b < x .' a9 x ' .b < x '. a. 

THEOREM 22.1. If G is a residuated groupoid and x,yeG, then 

(a) x(y .' x) = yo(3ze G) y = xz; 
(b) (y ' . x) x = y o (3z e G) y = zx; 
(c) xy . * A* = y o (3z e G) j = z . · A ; 
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(d) yx ' . x = y o (3z e G) y = z ' . x; 
(e) x . * (x ' . y) = y o (3z e G) y = x .' z; 
(f) x ' . (x . ' y) = y o(3z e G) y = x '. z. 

Proof If / : A -> B is a residuated map then clearly 

ί* = ( / ° / + ) (x)o(lyeA) x =f(y); 

U = (/+ o/) (x) o(3y eB)x= f+(y). 

Applying these observations in turn to λχ, ρχ, ζχ and their residuals we 
obtain the result. 

THEOREM 22.2. If G is a residuated groupoid then the following condi-
tions are equivalent: 

(1) G is abelian; 
(2) Qtx,yeG) x . ' y = x ' . y. 

Proof (1) holds if and only if (Vx e G) Av = ρχ. By the uniqueness of 
residual maps, this is equivalent to (Vx e G) ?>x = ρ* which is (2). 

Remark. In the abelian case, we write x . ' y = x ' . y = x : y. 

THEOREM 22.3. If G is a residuated groupoid then the following conditions 
are equivalent: 

(1) G is a semigroup; 
(2) Qfx,y,zeG) (x .' y) .' z = x .' yz; 
(3)Q/x,y9zeG) (x ' . y) ' . z = x · . zy; 
(4) (VA% y, ZE G) (x . · y) '. z = (x ' . z) . ' y; 

((x . ' y)z < xz .- y; 
(5)0fx,y,zeG) 

[y(x ' . z) < yx ' . z. 

Proof. G is a semigroup if and only if (Vy, z e G) y (zx) = (yz) x 
and this is equivalent to (Vy, z e G) λν ο λΖ = λνζ. This is in turn equi-
valent to (Vy, z e G) λζ o Xy = XyZ which is none other than (2). 

In a similar way, (1) is equivalent to (Vy, z e G) Qy o ρζ — ρζγ which 
is equivalent to (Vy, z e G) ρζ o ρ + = ρ^ which is (3). 

Now (1) is also equivalent to (Vy, zeG) ly o ρζ = ρζ ο λγ which is 
equivalent to (Vy, z e G) ρζ o λ+ = λ* ο ρ* and this is (4). 
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To establish the equivalence of (1) and (5), we note that if E is an 
ordered set and/, g e Res (E) then 

f°g<g°fog°f+ <f+°g. (*) 

[Infact5/og < g o / = > g o / + < f ofogof+ < /+ ogofof* <f+og; 
and conversely g o/+ <f+ og=>fog <fog op of < fop ogof 
^ g °/·] Now (1) holds if and only if (Vy, zeG) ^ ο ρ ζ = ρζο ),y which 
is equivalent to the conditions λν o ρ2 < ρζ o %y and QZ° λν < λνορζ. 
By (*) these are equivalent to ρζολ£ < λ* ο ρζ and λνορ+ < ρ+ ο λγ. 
These are none other than the conditions given in (5). 

We shall now give a few simple examples of residuated semigroups; a 
great many more will be given both in the text and in the exercises to 
follow. 

EXAMPLE 22.1. Every Boolean algebra is residuated with respect to n . 
It is readily verified that for all x, z the set {y; x n y < z} is not empty 
and admits a maximum element, namely z : x = z u x\ 

EXAMPLE 22.2. Every ordered group is residuated. Again for all x, z the 
sets {y, xy < z) and {y; yx < z} are not empty and admit maximum ele-
ments x"xz and zx~x respectively, so that z . " x = x~~ xz andz ' . x = zx"1. 

EXAMPLE 22.3. The ordered semigroups 1(A) of Example 2.4 is resi-
duated. It is readily seen that a : b is the ideal {xeA; (Vb e b) xb e a}. 

EXAMPLE 22.4. For any semigroup E define a multiplication on the 
ordered set P(E) by 

XY= {xy;xeX,yeY}; 

X0 = 0 = 0X. 

It is readily seen that P(E) becomes an ordered semigroup which is also 
residuated; we have 

X .* Y= {zeE;(VyeY)yzeX} 
and 

X -. Y = {z e E; (Vy e Y) zye X} 
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though these sets may of course be 0 . We shall have occasion later (§ 24 
and § 29) to deal with this important residuated semigroup. 

Our next goal is to introduce three important types of equivalence 
relation on a residuated groupoid. These arise in a natural way from the 
following result and its dual. 

THEOREM 22.4. Let E, F be ordered sets and let fe Res (E, F). If Rf 

denotes the equivalence relation associated with f then Rf is a closure equi-
valence on E and can be characterized as an equivalence relation with con-
vex classes such that each class modulo Rf contains one and only one ele-
ment oflmf+ which is the greatest element in its class. 

Proof Since f = fof+ of we have (V* e E) x = (/+ of) (x) (Rf) 
and x < (f+ of) (x). It follows that (/+ of) (χ) is the greatest element 
of xIRf. To show that Rf is a closure equivalence, it is sufficient by virtue 
of Theorem 6.9 to show that Rf satisfies the link property. To do so, sup-
pose that we have a diagram in E of the form 

a b 
O JO 

a* 

the equivalence being modulo Rf. Since a* < b we have a < (f+ of) (a) 
= (f+ °f) (0*) ^ (/+ °f) (*) whence there results the diagram 

^ o (f+of) (b) 

a* 

Thus Rf satisfies the link 
8 BRT 

property. 
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It is clear that Rf has convex classes and that each class contains at 
least one element of I m / + , for x = / + [f(x)] (Rf). Now if f+(y) 
ΕΖΓ(Ζ) (Rf) t hen( /o /+) (y) = (fof+) (z) whence/+O0 = (f* ofof*)(y) 
= (/* °f°f+)(z) = f+(z). Thus each class contains precisely one ele-
ment of I m / + ; and this element is maximum in its class. 

Conversely, suppose that R is an equivalence relation on E such that 
R has convex classes and each class contains precisely one element of 
I m / + which is maximum in its class. Given any aeE there then exists 
one and only one/+(>) e E such that a = f+(y) (R) and a < f+(y). Now 

a < (r of) (a) < (/+ 0/0/+) GO = / + ω 
and so the convexity of the classes gives 

(f+cf)(a)=r(y)(R). 

Since each class modulo R contains precisely one element of I m / + , we 
deduce that ( / + of) (a) =f+(y). It follows this that 

a = b(R)=>a=f+(rì = b(R) 

=>(f+ of) (a) =T(y) = (f+of) (b) 

=>a = b(Rf) 

and hence that R < Rf. Now as we know, each class modulo Rf con-
tains one and only one element of I m / + and so it follows that we must 
have R = Rf [for if R Φ Rf then R < Rf and so at least one class 
modulo Rf splits up into several classes modulo R and, since each class 
modulo R contains precisely one element of I m / +

5 that class modulo Rf 

contains several elements of I m / + , which is impossible]. 
We shall have occasion to use the dual of Theorem 22.4; stated ex-

plicitly: 

THEOREM 22.4*. Let E, F be ordered sets and let fe Res (E, F).IfRf 
denotes the equivalence associated withf+ then Rf is a dual closure equi-
valence on F and can be characterized as an equivalence relation with con-
vex classes such that each class modulo Rf contains precisely one element 
of Im f which is the minimum element in its class. 

Let us now apply the above results to the case of a residuated groupoid. 
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Definition. Let G be a residuated groupoid. For each x e G we define 

(a) the Molinaro equivalence of type A associated with x by 

a = b(Ax) ox . * a = x . * b; a = 0(^4) o x ' . « = x # . è; 

(b) the Molinaro equivalences of type F associated with x by 

a = b(Fx) o xa = xb ; a = 6(XF) <=> ax = bx ; 

(c) the Molinaro equivalences of type B associated with x by 

a = b(Bx) oa .' x = b .' x; a = £(*#) o a · . x = 6 *\ x. 

Let us now recall that the maps λχ , ρχ : G -» G described by Ax(y) = xj>, 
Qx(j) — yx a r e residuated as are the maps λχ , ρχ : G* -> G* described 
byA.v (j) = >' . * x, ρί(^) = y ' . x and the mapsC^,^ : G -> G* described 
by Cxiy) = x .' y, ^iy) = x ' . y. We note also that 

Ax = Rçx; XA = Κηχ; Fx = Β.λχ; XF = RQx; Bx = RÀ+; XB = RQ+. 

Applying Theorem 22.4* in the case where E = G, F = G* and in 
turn / = ζχ, ηχ and remembering that a dual closure on G* is simply a 
closure on G, we obtain : 

THEOREM 22.5. For each element x of a residuated groupoid G the equi-
valence Ax [resp. XA] is a closure equivalence on G andean be characterized 
as an equivalence relation with convex classes such that each class modulo 
Ax [resp. XA] contains one and only one left [resp. right] residual of x which 
is the greatest element in its class. The greatest element in the class of y 
modulo Ax [resp. XA ] is x '. (x . ' y) [resp. x . ' (x ' . y)]. 

In a similar way, we can apply Theorem 22.4 in the case where 
E = F = G and in turn / = λχ, ρχ to obtain : 

THEOREM 22.6. For each element x of a residuated groupoid G the equi-
valence Fx [resp. XF ] is a closure equivalence on G and can be characterized 
as an equivalence relation with convex classes such that each class modulo 
Fx [resp. XF ] contains one and only one right [resp. left] residual by x which 
is the greatest element in its class. The greatest element in the class of y 
modulo Fx [resp. XF] is xy .' x [resp. yx ' . x]. 
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Finally, applying Theorem 22.4 in the case where E = F = G* and 
in turn f = λχ ,qt we obtain : 

THEOREM 22.7. For each element x of a residuated groupoid G the equi-
valence Bx [resp. XB] is a dual closure equivalence on G and can be char-
acterized as an equivalence relation with convex classes such that each 
class modulo Bx [resp. XB] contains one and only one right [resp. left] mul-
tiple ofx which is minimum in its class. The minimum element in the class 
of y modulo Bx [resp. XB] is x (y . ' x) [resp. (y · . x) x]. 

Our aim now is to examine closure and dual closure equivalences on a 
residuated groupoid for possible compatibility with either multiplication 
or residuation. Such equivalences have interesting connections with the 
Molinaro equivalence. The following result is fundamental in the discus-
sion. 

THEOREM 22.8. Given a diagram of sets and mappings of the form 

F-^F-->G-^G 

in which f of — f9 the following conditions are equivalent: 

(l)x = y(Rf)=>e(x)=e(y)(Re); 
( 2 ) g o 0 o / = g o e . 

If, moreover, F and G are ordered then, under the conditions shown, the 
following table gives equivalent formulations of(2): 

fa closure 

g a closure 
B isotone 

1 Bof^goB 

g a dual closure 
B ant itone 

Bof>goQ 

f a dual closure 

g a closure 
B isotone 

godof> B 

g a dual closure 
B antifone 

g°B°f<B 

(a) (b) (c) (d) 

Proof. Suppose that (1) holds. Since x = f(x) (Rf) for each Λ* e F we 
deduce that θ(χ) = Θ [f(x)] (Rg) whence we obtain (2). Conversely, using 
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(2) we deduce from f(x) = f(y) that (g o 0) (x) = (gofl of) (x) 
= (g o Θ of) (y) = (g o Θ) (j) which gives (1). 

Suppose now that F, G are ordered with/a closure map on F. If g is a 
closure map on G and Θ is isotone, then since g > id we have g o Θ of 
> Θ of which shows that (2) => (a). Conversely, (a) implies that 

goe = gogo6>goeof>god [Θ isotone and / > id] 

whence we have equality and (2). This then shows that if/ g are closures 
and 0 is isotone, then (2) is equivalent to (a). We leave the rest of the table 
as an exercise for the reader. 

The usefulness of the above result is reflected in the following. 

THEOREM 22.9. Let S be a residuatecigroupoid. If h is a closure map on S 
then the closure equivalence Rh is 

(a) compatible on the left [resp. right] with multiplication if and only if 

(Vx, yeS) X' h(y) < h (xy) [resp. h(x) · y < h (xy)] ; 

(b) compatible on the right with . * [resp. '.] if and only if 

(Vx, y G S) h(x) .' y < h(x . · y) [resp. h(x) *. y < h (x '. y)]; 

(c) compatible on the left with . * [resp. '.] if and only if 

(Vx, y 6 S) h [x . · h(y)] > x . · y [resp. h [x · . h(y)] > x '. y]. 

If correspondingly, h is a dual closure map on S, then the dual closure equi-
valence Rh is 

(d) compatible on the left [resp. right] with multiplication if and only if 

(Vx, y e S) x · h (y) > h (xy) [resp. h(x) - y > h (xy)] ; 

(e) compatible on the right with . " [resp. '.] if and only if 

(Vx, y e S) h(x) . · y > h(x . * y) [resp. h(x) · . y > h (x ' . y)]; 

(f) compatible on the left with . * [resp. '.] if and only if 

(Vx, y e S) h [x . · h(y)] < x . · y [resp. h [x · . h(y)] < x ' . y]. 
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Proof. For each closure map A on S we have 
(a) Rh is compatible on the left with multiplication if and only if 

h(y) = A(z)=> (VxeS) (A ολχ) (y) = (A ολχ) (ζ). 

Applying Theorem 22.8(a) with F = G = S,f = g = A, 0 = λχ we ob-
tain the necessary and sufficient condition λχ o A < A o λχ which gives 
x -h{y) < h(xy). 

(b) Rh is compatible on the right with . * if and only if 

h(y) = A(z) => Q/xeS) (A oXt) (y) = (A ολ^) (ζ). 

Applying Theorem 22.8(a) with F = G = S,f = g = h, θ = λχ we ob-
tain the necessary and sufficient condition λχ o h < h o λχ which gives 
h(y) . ' x < h (y . ' x). 

(c) Apply Theorem 22.8(c) with F = S*, G = S,f = g = h, θ = ζχ. 
In the corresponding case where A is a dual closure map, to prove: 

(d) Apply Theorem 22.8(b) with F = 5*, G = S,f = g = A, θ = λχ. 
(e) Apply Theorem 22.8(b) withF = S*, G = 5 , / = g = A, θ = λ ί . 
(f) Apply Theorem 22.8(d) with F = G = S9f = g = h, θ = ζχ. 

THEOREM 22.10. Lei G be a residuateci groupoid and let Rbe a closure 
equivalence on G. Denoting by f the associated closure map and by C the 
associated closure subset, the following conditions are equivalent: 

(1) R is compatible on the right [resp. left] with multiplication; 
(2) x e C => (Vy e G) x '. yeC [resp. x .' yeC]; 
(3)R< f] Ax [resp.R< f] XA]; 

xeC xeC 

(4)(V*,Z>eG) f(a).-b=f(a).'f(b) 
[resp.f(a)-.b=f(a)'.f(b)]. 

Proof We shall show that (1) o (2) and that (1) => (3) => (4) => (1). 
Suppose that (1) holds and let x e C. By the definition of C, x = f(x). I) 
now a = x ' . y then using Theorem 22.9(a) we have f(a) y <f(ayf 
< f(x) = x so that/(ö) < x ' . y = tf. It follows that/(«) = d and hence 
that ae€. Conversely, if (2) holds, then from y < yx '. x < f(yx) 
'. x e C we deduce that/(j) < f[f(yx) ' . x] = /0>x) · . x and sof(y) x 
< fiyx) whence R is compatible on the right with multiplication. 
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To show that (1) => (3), let a = b(R) and let x e C. By (1) we have 
a (x . ' b) = b (x . ' b) (R). Now Λ" e C and so is maximum in its class mo-
dulo R so that xjR £ [«-, x]. Since b (x . · b) < x it follows from the 
above that [a (x . * Ä)]/JR n [«-, x] Φ 0 . Since J? is strongly upper regular 
we deduce from Theorem 6.10 that [a (x . · b)]jR £ [*-? x] whence 
a (x . ' b) < x and consequently x .' b < x ,m a.lna similar way we can 
show that x . · a < x . ' b. We have thus shown that a = b(R) => a = ό(̂ 4χ) 
for each xeC; this is (3). 

Suppose now that (3) holds. Then from b = f(b) (R) we deduce that, 
for each x e C, x . * b = x . ' f(b). Since x e Cif and only if* =/(x),(4) 
follows. 

Finally, if (4) holds then for any û , i e G w e have 
a < ba.'b <f(ba)rb =f(ba) . · /(*) 

whence /(&) 0 < / (6Û) and so (1) holds by Theorem 22.9(a). 

It should be noted that we do not have equality in general in (3) of the 
previous theorem. For example, consider the ordered semigroup S con-
sisting of a four-element chain a < b < c < d with every product equal 
to a. It is clear that this is a residuated semigroup; every residual is equal 
to d. The partition {{0, b}9 {c9 d}} corresponds to an equivalence relation 
R which is clearly a compatible closure equivalence with associated closure 
subset C = {b, d]. Now Ab = Ad = ns the universal equivalence on S. 
It follows that R < Ç] Ax. 

xeC 

THEOREM 22.11. Let G be a residuated groupoid and let Rbe a closure 
equivalence on G. Then R is compatible with multiplication and compatible 
on the right with . * and ' . if and only if 

(Vx,yeG) f(x) .' y =f(x . · y) and f(x) · . y =f(x · . y), 

f being the associated closure mapping. 

Proof Suppose that R is compatible with multiplication and com-
patible on the right with . " and ".. Given any ^ j e G w e deduce from 
x = f{x) (R) that x . · y = f(x) . ' y(R) and x · . y = f(x) '. y(R). Since 
f(x) . * yeC and f(x) ' .yeC [Theorem 22.10], it then follows that 
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f(x) .' y = f(x . * y) and/(x) *. y = f(x ' . y). The conditions are there-
fore necessary. 

Conversely, if the conditions are satisfied then by Theorem 22.9 we 
have that R is compatible on the right with . · and *.. Moreover, these 
conditions also show thatf(x) . · yeC and/(;v) *. y e C so that, by Theo-
rem 22.10, R is also compatible with multiplication. 

THEOREM 22.12. If S is a residuated semigroup, then for each xe S 

(1) Ax [resp. XA] is compatible on the right [resp. left] with multiplica-
tion; 

(2) Fx [resp. XF] is compatible on the right [resp. left] with multiplica-
tion; 

(3) Bx [resp. XB] is compatible on the right with *. [resp. .']. 

Proof. The closure mapping associated with Ax is given by the prescrip-
tion h(a) = x *. (x . ' a). Using Theorem 22.3 we have [x · . (x . ' a)] b 
< x · . {x . * [x · . (x . · a)] b} = x -. ([x .' {x '. (x .' a)}] r b) 
= x '. [(x . * a) . ' b] = x '. (x . * ab), 
i.e. h(a) · b < h (ab). It follows by Theorem 22.9 that Ax is compatible 
on the right with multiplication. All of the other statements are proved 
in a similar way. [Alternatively, these results may be proved directly; for 
example, x . ' a = x . · b => (Ve e S) x . · ac = (x . * a) . · e = (x . * b). " c 
= x . ' bc]. 

Our next result is the analogue of Theorem 22.10; we leave its proof 
to the reader. 

THEOREM 22.13. Let G be a residuated groupoid and let R be a dual 
closure equivalence on G. Denoting by f the associated dual closure map 
and by C the associated dual closure subset, the following conditions are 
equivalent: 

(1) Ris compatible on the right with '. [resp. . · ] ; 
(2)xeC=>(VyeG) xyeC [resp.yxeC]; 
(3)Ä< fi Βχ [resp.R< f] XB]; 

xeC xeC 

(4) (Va, be G) a .-f{a ·». b) = f(a) . · f(a \ b) [resp. a'.f(a.· b) 
= f(a)-.f(a.'b)]. 
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[Hint. For (1) => (3) consider a ' . (a . ' x) = b ' . (a . * x) (R) and the dual 
of Theorem 6.10.] 

THEOREM 22.14. If S is a residuated semigroup, then for any x e S: 

(Ì)AX < Π Ax.t and XA < f] xrtA; 
teS ieS 

(2)FX < f]Ftxnf] At,x and XF < f] xtF n f] %_.XA; 
teS teS teS teS 

(3)BX< Π BxtandxB< f]txB. 
teS teS 

Proof. The closure subset associated with Ax is the set of elements 
which are of the form x ' . t for some teS. (1) therefore follows from the 
results of Theorems 22.12 and 22.10. Statements (2) and (3) are proved 
in a similar way, the extra part in (2) resulting from the implications 

a = b(Fx) => xa = xb => (Vi 6 S) txa = txb =>(VteS)a = b (Ftx). 

[Alternatively, for example, x.'a = x.'b*>QfteG) (x *. t) . · a 
= (x . · a) · . t = (x . ' b) *. / = (x '. t) . · b.] 

THEOREM 22.15. Let G be a residuated groupoid. If Ris a closure equi-
valence on G which is compatible on the right [resp. left] with multiplication 
with associated closure subset C then 

f]Fx< 0 XA \resp. Ç] XF < f) Ax] . 
JceC xeC L xeC xeC J 

Correspondingly, ifR is a dual closure equivalence on G which is compatible 
on the right with ' . [resp. . '] with associated dual closure subset C then 

Π XA < f]Fx \resp. Ç) Ax < f) XF] . 
xeC xeC L xeC xeC J 

Proof Let a = b if] Fx\ and, for any m e C let tx = m *. a and 

t2 — m ' . b. By Theorem 22.10 we have tl9t2e C. Now on theonehand 
t2a = t2b < m and so t2 < m *. a = tx\ and on the other txb = txa < m 
and so t± < m '. b = t2. Thus t1 = t2 and so a = b (mA). Since this 
8a BRT 
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holds for each meC, the first result follows. The others are proved 
similarly. 

THEOREM 22.16. If G is a residuated groupoid then 

(a) f] Ax= C] XF; (b) ΠΧΑ= f] Fx; (c) f) Bx = f] XB. 
xeG xeG xeG xeG xeG xeG 

Proof. Consider the relation of equality on G. This is clearly both a 
closure and a dual closure on G which is compatible with both multiplica-
tion and residuation. The properties (a), (b) then follow immediately 
from the results in Theorem 22.15. 

As for (c), let a = b I f] Bx\ so that a . * x = b . * x for each xeG. 

Given x e Glet a . ' x = b . ' x = p and consider the elements/?! = #'./? 
and/?2 = b '. p. We have a . ' px = a .' (a '. p) = p whence b .' px=p 
and so/?! < b ' . (b .' pt) = b ' . p = /?2. In a similar way we can show 
that Pi < P\ and so we have px = p2. We have thus shown that if 
a = b ( f] Bx\ and if/? is a right residual of a or of b then # = b (PB). 

Suppose now that y is any element of G and let a '. y = zx and 
e . ' Zi = z2. Then a '. z2 = a '. (a .' zx) = zL and j < a . · ζγ = z2. It 
follows that b '. z2 < b ' . y. But from the previous paragraph we have 
b · . z2 = a ' . z2 = Z\ — a ' . y. Hence a ' . y < b ' . j>. In a similar way 
we can show that b ". y < a ' . y whence we deduce that a = b (yB). 
Since y was chosen arbitrarily in G, we thus have f] Bx < f] XB. Inter-

xeG xeG 

changing left and right residuals throughout, we can obtain the reverse 
inclusion. This establishes (c). 

We end the present section by considering a particular situation in 
which equality does hold in Theorem 22.10(3). For this purpose, we 
require the following result. 

THEOREM 22.17. Let G be a residuated groupoid and let R be a closure 
equivalence on G which is compatible with multiplication. Then GjR is a 
residuated groupoid. 

Proof. Since R is compatible (left and right) with multiplication, it is 
clear that G\R is a groupoid. Since R is strongly upper regular we can 
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order GjR in the usual way, namely 

xlR <R y IR o (V** e xlR) (ßy* e yjR) x* < y*. 

If we denote by/the associated closure map, then we note that this order 
is the same as that defined by 

xiR<ylRof(x)<f(y). 

To show that G/R is residuated, let x/R and yjR be given arbitrarily. 
Since x [f{y) .' x] < f(y) implies f{x [f(y) . * x]} < f(y) we see that 

xlR-[f(y).-x]lR<ylR. 

Moreover, xz/R < yjR implies xz < f(xz) < f(y) which gives z < f(y) 
. ' x and hence z\R < [f(y) . * x]jR. It therefore follows that 

ylR.-xlR = [f(y).'x]lR. 
In a similar way we can show that yjR \ xjR = [f(y) · . x]jR. 

THEOREM 22.18. Let G be a residuated groupoid. If Ris a closure equi-
valence on G which is compatible with multiplication and if every element 
of C, the associated closure subset, is both a left and a right residual of 
itself then f] Ax = R = f] XA. 

xeC xeC 

Proof Let / denote the associated closure mapping. For each x e C 
we have x = f(x) and, by Theorem 22.1, Λ; . * (x *. x) = x = x *. (x . * x). 
Using Theorems 22.17 and 22.10(4) we have, for each a e G, 

alR . · (alR · . a\R) = a\R . · If (a) · . a]\R = {/(a) . · [f(a) '. a]}\R 

= {f(a).'[f(a)'.f(a)]}lR 

= f(a)lR 

= a\R 

and similarly a\R ' .{ajR .' a\R) = a\R. Thus in the residuated groupoid 
GjR each element is both a left and a right residual of itself. Now let 
b = c if] Ax\. Since f{b) e C we have f(b) .' b = f(b) . 'c whence we 

have b[R . · bjR = bjR . · cjR and so 
c/tf < b\R ' . (6/tf . · c/Ä) = blR*. (bjR . · è/i?) = 6/tf. 
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In a similar way we can show that b\R < c\R. Hence b\R = c\R and it 
follows that Ç] Ax < R. The required equality then follows by Theo-

xeC 

rem 22.10(3). A similar argument yields R = f] XA. 
xeC 

Remark. It should be noted that the hypothesis on Cin Theorem 22.18 
is satisfied in the case where every element of G is both a left and a right 
residual of itself ; i.e. whenever each x e G is maximum in its class modulo 
Ax and XA. This happens in particular when G has a neutral element; 
for, denoting such an element by 1, the equalities λχ = Q1 = id give 
λί* = ρί" = id and hence (Vx eG)x.9l=x = x'.l.In each of the 
above cases the relation of equality is clearly a compatible closure equi-
valence with associated closure subset G itself. We deduce that in any 
such groupoid f] Ax and f] XA reduce to equality. Another consequence 

xeG xeG 

of the previous result is that if G contains a maximum element π then the 
universal equivalence nG is a compatible closure equivalence having {π} 
as closure subset, so that nG = An = nA. 

EXERCISES 

22.1. Consider the ordered groupoid G described by the following Hasse diagram 
and Cayley table 

a 
b 
c 
d 
e 

a b e d e 
a b e e e 
a b e e e 
e e e e e 
d d e e e 
e e e e e 

Show that G is residuated and compile tables of residuals. Determine the partitions 
associated with each of the Molinaro equivalences and verify the result of Theo-
rem 22.16. Show also that the equivalences fj AXi f] FX, Ç] Bx are distinct, 

xeG xeG xeG 

22.2. Consider the ordered (abelian) semigroup defined by 

S = {aua2,aò,...} 

αλ > a2 > a3 > "· 

O d 
O 

o 
e 
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Show that S is residuated, find a formula for the residuals and determine the partitions 
associated with the Molinaro equivalences. 

22.3. Let G be a residuated groupoid. Prove that for each x e G the set of right 
[resp. left] multiples of x is equipotent to the set of right [resp. left] residuals by x. 
Show also that the set of right residuals of x is equipotent to the set of left residuals of x. 

22.4. Show that in an ordered group every Molinaro equivalence reduces to 
equality. 

22.5. Let B be a Boolean algebra. Prove that, for each xeB, 

(a) Ax- = Fx; (b) y Ξ ζ ( 5 > / = z'(Ax>). 

Given any x, y e B show that y/Ax = [y n x\ y u jc], 

22.6. If a, b are elements of a residuated groupoid G such that a u b exists, show 
that so also does (x . * a) r\(x . * b) for each xeG and that (* . * a) n (x . * b) 
= x . * (a u b). If G is a u-semilattice, show that G is v-semireticulated in the sense 
that (Va, btceG) a(b v c) = ab v ac, (b u c)a = ba u ca. Show also that each equi-
valence of type A and each equivalence of type Fis compatible with u. If G is a lattice, 
show that the property (Va, b,ceG) (a r\b) .' c = (a .' c) n(b .' c) also holds and 
deduce that each equivalence of type B is compatible with n. 

22.7. Let G be a residuated groupoid. Prove that the following conditions concern-
ing x e G are equivalent: 

(a) Çïy e G) xy = yx; 
(b) Qfy e G) y . ' x = y '. x. 

22.8. Let G be a residuated groupoid. If R is a dual closure equivalence on G with 
associated dual closure map / and dual closure subset C, prove that the following 
conditions are equivalent: 

(1) R is compatible on the left with *. [resp. . *]; 
(2)R<0Fx\resp.R<C\xF}; 

xec L xec J 
(3) 0fx9yeG)f(x)'y =f(x)f(y) [resp. x -f(y) =f(x)f(y)l 
22.9. Supply complete details of all the analogous proofs in this section. 

23. The zigzag equivalence 

In this section we shall introduce a particularly simple equivalence 
relation which we shall use to obtain further information concerning the 
structure of residuated groupoids. Let us begin by considering the follow-
ing remarks: 

(a) there exist ordered sets on which no multiplication can be defined 
such that they be residuated [for example, the set E = {x, y, z} 
with y < x, z < x, y\\ z]; 
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(b) there exist ordered sets on which several multiplications can be 
defined such that they be residuated [for example, E = {x, y, z) 
with z < y < x is residuated under each of the multiplications 

x y z 

x 
y 
z 

X 

z 
z 
z 

y 

z 
z 
z 

2 

z 
z 
2 

x y z 
y y z 
z z z ]; 

(c) there exist groupoids which, even though they can be ordered in 
an isotone manner, can nevertheless not be residuated [for example, 
take G = {x, y) with xx = xy = x, yx = yy = y and y < x]; 

(d) there exist groupoids which can be ordered in several ways such 
that they be residuated [for example, G — {x,y,z, t} with 
(Vtf, beG) ab = t can be ordered in 12 different ways in order 
that it be residuated]. 

This being the case, we ask the following question : What can one say 
about a residuated structure as far as it being an ordered set is concerned? 
In seeking an answer to this question, we shall impose several restrictions 
on the multiplication and observe the different forms permissible for each 
of the structures in the following diagram: 

semigroup S 

groupoid G 

c-groupoid Gc 

( = groupoid with 
cancellation laws) 

q-groupoid Gq 

=groupoid in which 
quotients exist) 

c-semigroup Sc 

( = semigroup with 
cancellation laws) 

quasigroup Q 
(=groupoid in which 

quotients exist 
and are unique) 

group G 
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Definition. Let E be an ordered set. By the zigzag equivalence on E we 
shall mean the relation Z defined on E by 

{ there exist x±, x2,..., x„ e E such 

that a f * ! , . . . 5 x f f Xt+l9...9xHJK b. 

It is clear that Z is an equivalence relation on E. In any Hasse dia-
gram, the classes modulo Z are the disjoint portions. For example, if an 
ordered set E is given by the Hasse diagram 

a d e 
o o o 

, / 

o o o 
c a h 

then the classes modulo Z are {a, b, c}, {d, e,f g, ft}, {/}, {j}. 

THEOREM 23.1. If G is an ordered groupoid then the zigzag equivalence 
Z is strongly regular on G and is compatible with multiplication. Moreover, 
if G is residuai ed then Z is compatible with residuation. 

Proof. It is clear from the definition of Z that this equivalence satisfies 
Theorem 6.1 and hence is regular on G. Now if a1 = a2(Z), then for any 
bJR a2 w e have ax s b(Z); hence Z satisfies both the link property and 
its dual and so is strongly regular on G. To show that Z is compatible 
with multiplication, let ax Ξ α2(Ζ) so that a1 and a2 are connected by a 
finite zigzag chain 

ax = Χ ι Ϊ : * 2 Ϊ · · · 1 *n-if *,, = a2. 

By the isotonicity of multiplication, it follows that for each beG 

axb = Xib ft x2b)l(-··)!( xnb = a2b 

and so axb = a2b (Z). Thus Z is compatible on the left with multiplica-
tion. Similarly it is compatible on the right. 
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Suppose now that G is residuated. Let a = a*(Z) and b = Z>*(Z). 
Then there exist al9...9an and bl9...,bm such that 

tf = ö l f t f 2 ! - | a „ = û* and 6 = biJ/fb2)K - Î * M = 6*. 

From the properties of residuals we deduce that 

a . · 0 = 0! .' b)/(a2 . · 6 f • • • i â f n . -è = o* . · £ , 

a* . ' 6 = a* . - ^ f tf*.-62f-f a* . · 6 Μ = β* . ' è * 

whence we have a .' b ΞΞ a* .' b*(Z). A similar result holds for left resi-
duals. 

THEOREM 23.2. If G is a residuated groupoid then the groupoidGjZ is a 
quasi-group homomorphic to G. 

Proof. Since Gis residuated, the relations a(b .' a) < b and (b '. a) a 
< b imply that a(b .' a) = b(Z) and (b ' . a)a = b(Z), so that if s/ de-
notes the class of a modulo Z and & denotes the class of b modulo Zthen 
the class SC of b . · a modulo Z satisfies s&2£ = ^ and the classa of b ' . a 
modulo Z satisfies Wstf = ^ . It follows that quotients exist in G/Z. We 
now show that these quotients are unique. Let s/9 &, ^, 3f e G/Z be 
such that st@ = J / ^ = ^ and let us show that $& = if. Since G is resi-
duated the residuals rf . ' a exist for alide 2 and all a e sé and by Theo-
rem 23.1 all these residuals belong to the same class modulo Z. Let this 
class be ê and consider the product ab = d where a e s/, be &,de@. 
We have b < d . · aeê whence b e ê and consequently J* = *f since Z is 
an equivalence relation. Considering in a similar way a product ac = d* 
where a es/, ce<if,d*e@a.n analogous proof shows that <€ = S. We 
have thus established that the equation siSC = Sf has a unique solution. 
In a similar way so also does %/stf = 3f and hence G\Z is a quasigroup. 
Finally, it is clear that the canonical map bz: G-> G/Z is a homo-
morphism. 

COROLLARY. GjZ is a loop if and only if (Va, be G) a . * a = b '. b(Z). 

Proof The necessary and sufficient condition that GjZ be a loop is 
that it contain a neutral element. This is clearly equivalent to the condi-
tion stated. 
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THEOREM 23.3. If a residuateci groupoid G contains a maximal element 
then that element is maximum in its class modulo Z. 

Proof. Let ä be maximal in G. We show first that for any x e G 

[<-, x] n [<-, ä] Φ 0 => x < ä. 

In fact, let x be such that [<-, x] n [<-, ä] φ 0 . Clearly x and ä are in 
the same class modulo Z. Let this class be $0 and let SS — $0s4'. For any 
element a e [<-, x] n [<-, 0] we have 

ÇibeâS) b '. ä < b '. a and b '. x < b '. a. 

Considering therefore the element è* = â2 we have, since ä is maximal, 

à = 6* ' . ä = ό* ' . a. 

It follows from the above that b* '. x < b* '. ä whence (ό* *. x) ä < è* 
and so, ä being maximal, ä = 6* . ' (δ* · . x) > x. 

This being the case, consider any element Ö* e «^ other than ä. [If no 
such element exists then clearly sé = {a] and there is nothing to prove.] 
Suppose that there exists in any finite zigzag chain connecting ä to a* a 
first element, #k say, which satisfies ak φ [<-, ä]. Then we have necessarily 
[<-, ak] n [<-, â] ^ 0 since the element preceding ak in the zigzag chain 
belongs to this set. By applying the result of the previous paragraph we 
deduce that ak < ä which is contrary to the hypothesis. It follows that, 
in any finite zigzag chain connecting ä to a*, there is no first element which 
is not less than or equal to â. Consequently all the elements in any such 
chain are less than or equal to ä and in particular a* < ä. Since Û* was 
chosen arbitrarily in Ä/ we conclude that ä is maximum in s/. 

THEOREM 23.4. Let G be a residuated groupoid. Then 
(1) if G contains a descending chain which is unbounded below, each 

class modulo Z contains at least one such chain; 
(2) if G contains an ascending chain which is unbounded above, each 

class modulo Z contains at least one ascending chain which is un-
bounded above and at least one descending chain which is unbounded 
below. 
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Proof. Let ax > a2 > a3 > · · · denote a descending chain, unbounded 
below, in the class sé modulo Z. Let ̂  be any class modulo Z. Then there 
exists one and only class *€ modulo Z such that ^ ^ = sé and 

(Ve e ̂ ) α1 . " c > a2 . * c > a3 . · c > · · · 

Let bi — αΛ .' c for each index / and let us show that the chain given by 
bi > bi+1 (i = 1, 2, 3,...) is unbounded below. Suppose in fact that there 
existed an element be3$ such that (Vn) b < bn; then we would have 
(Vn) cb < a„ and the chain at > ai + 1(i = 1, 2, 3,...) would be bounded 
below by cb, contrary to the hypothesis. It follows that & contains a 
descending chain which is unbounded below and since â& is arbitrary the 
same is true for all classes modulo Z. 

Suppose now that ax < a2 < a3 < ··· is an ascending chain, un-
bounded above, in the class sé modulo Z. Let *€ be any class modulo Z. 
Then there exists one and only one class 3& modulo Z such that £%sé = fé7 

and 
(Ve e äf) ba± < ba2 < ba3 < · · ·. 

Let Ci = bùi for each index / and let us show that the chain ct < ci+1 

(i = 1,2, 3,...) is unbounded above. Suppose in fact that there existed an 
element c e ^ such that (Vn) c„ < c. Then we would have (Vn) ban < c 
whence (Vn) a„ < c . · b and the chain at < ai+i (i = 1, 2, 3,...) would 
be bounded above by c . ' b, contrary to the hypothesis. It follows that 
every class modulo Z contains an ascending chain which is unbounded 
above. 

Moreover, for each class ^ modulo Z there is one and only one class 
3 modulo Z such that séQ) = <% and 

(Ve e Çf) c . · ax > c . · a2 > c . ' a3 > -

Definedt = c . " at for each index /. The chain dt >di+1(i=l,2,3,...) 
is not bounded below [for if it were then there would exist d < c .' αηίοτ 
each n, whence an < c *. d and the chain at < ai+1 (i = 1, 2, 3,...) 
would be bounded above]. Since 3f contains a descending chain which is 
unbounded below, the result follows from part (1). 

Collecting the above results, we can now prove: 
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THEOREM 23.5. If the residuateci groupoid G contains a maximal element 
then each class modulo Z contains a maximum element. 

Proof. Suppose that ä is maximal in the class s4 modulo Z. By Theo-
rem 23.3, ä is the maximum element of «a/. It follows that «s/ contains no 
ascending chain which is unbounded above and hence by Theorem 23.4 
that no class modulo Z can contain such a chain. By Zorn's axiom, each 
class therefore contains a maximal element which, by virtue of Theo-
rem 23.3, is maximum in its class. 

Let us now see what is implied by the existence of a minimal element 
in a residuai ed groupoid. 

THEOREM 23.6. If the residuated groupoid G contains a minimal element 
then every class modulo Z is an upper directed set. 

Proof. Let $ be minimal in G and consider first of all any two elements 
a1, a2 of G such that [<-, a±] n [<-, a2] Φ 0. We know that there exists 
y e G suchthat axy = 2i(namely,7 = x . ' at). Let a e [<-, ax] n [<-, a2]; 
then by the isotone property, and remembering that x is minimal, we 
have x = axy = ay < a2y whence a± < a2y '. y. But we know that 
a2 < a2y ". y; it therefore follows that [al9 -►] n [a2, -►] Φ 0. 

This being the case, let 08 be any class modulo Z and let βχ, β2 be any 
two elements of â8. By the definition of Z there are finite zigzag chains 
joining /?! to ß2. Choose one of minimal length, say 

ßi = bab2jir-jirbm = ß2. 

Now amongst these elements there is a finite number, iVsay, of elements bt 

such that bt-χ < bt and bt+1 < bt. Denoting such elements by 6f- we 
consider the finite sequence 

M fell-II *ff, 
where the non-comparability results from the minimality of the length 
of the chain. Now from the definition of bt we have [«-, ß±] n [«-, bj] Φ 0. 
The result of the first paragraph above therefore gives [ßx, ->] n [bi, -»] 
Φ 0. Consider any element b^e [βί9 -»] n [bi, - * ] ; since [«-, &i] 
^ [<-> £2] Φ 0 we deduce that [<-, 6X*] n [<-, 65] # 0 so that, by the 
above result, [bt*, -»] n [62? -*] Φ 0 and consequently [ßj, -»] n [63,-*] 
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Φ 0 . Consider now b2* e [β±, ->] n [£2, -»·]; since [<-, 62] n [<-> £3] # 0 
we have [<-, 62*] n [<-> *â] ^ 0 so that, by the above result, [b2*, ->} 
n [£§> -+] Φ 0 and consequently [j?l5 -»] n [63, ->] ̂  0 . Consider now 
any element è3* e [βχ, -> ] n [Ô3 » -► ], etc. After a finite number (in fact N) 
applications of this process, we arrive at [βι, ->] n [ÔJV, ->] # 0 . Since 
we also have [«-, £#] n [<-,/?2] τ* 0 a final application of the process 
yields [βι, ->] n [ß2i ->] # 0 and this completes the proof. 

THEOREM 23.7. If the residuateci groupoid G contains a minimal element 
then that element is minimum in its class modulo Z. 

Proof. Let a be minimal in G and let si be its class modulo Z. Let x 
be any element of si. Since si is upper directed by Theorem 23.6, there 
exists z e [x, -»] n [a, ->] and since there exists * such that fc = a (namely 
ί = # · . z) we have tx = ta = a. In other words, for any x e s/ there 
exists an element, which we shall denote by tx, such that txx = a and 
f* < a *. a. 

Consider now any element j e s/. Since G is residuated, there exists 
xesi such that (a'. a)x < y. It follows by the isotone property that 
px < y for all p < a *. a and in particular that a = txx < y. Since y was 
chosen arbitrarily in si, it follows that 5 is the minimum element of si. 

THEOREM 23.8. If the residuated groupoid G contains a minimal element 
then every class modulo Z contains both a maximum element and a mini-
mum element. 

Proof Let a be minimal in G and let si be its class modulo Z. By 
Theorem 23.7, a is minimum in si. It follows that si contains no descend-
ing chains which are unbounded below and so, by Theorem 23.4(2), no 
class modulo Z contains an ascending chain which is unbounded above. 
All ascending chains in G being bounded above, it follows by Zorn's 
axiom that G contains maximal elements and so, by Theorem 23.5, each 
class modulo Z contains a maximum element. Moreover, since a is 
minimum in si, it follows by Theorem 23.4(1) that no class modulo Z can 
contain a descending chain which is unbounded below. Again by Zorn's 
axiom each class modulo Z therefore contains minimal elements. The 
result is completed by appealing to Theorem 23.7. 
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The previous results give us the general form of residuated groupoids; 
we summarize in the following: 

THEOREM 23.9. If the ordered groupoid G is residuated then each class 
modulo Z contains either: 

(1) a maximum element and a minimum element; or 
(2) a maximum element and no minimal elements; or 
(3) no maximal elements and no minimal elements. 

It should also be noted from the above results that Z is a closure equi-
valence if and only if one of the classes modulo Z admits a maximum ele-
ment; and that Z is both a closure and a dual closure equivalence if and 
only if one of the classes admits a minimum element. Theorem 23.9 may 
thus be restated in the form: 

THEOREM 23.9*. If G is a residuated groupoid then the zigzag equi-
valence Z on G is either a closure equivalence or both a closure equivalence 
and a dual closure equivalence or neither. 

The three types of residuated groupoid as described in Theorem 16.9 
are in general distinct. This can be shown by means of examples and for 
this we refer the reader to Exercises 22.1, 23.1 and 23.2. 

THEOREM 23.10. In a residuated groupoid the Molinaro equivalen ces are 
finer than the zigzag equivalence. 

Proof. This follows from the observations 

(i) a = b(Ax) =>a<xm.(x.*a) = x'.(x.'b)>b=>a = b(Z); 
(ii) a = b(Bx) =>a>x(a.9x) = x(b.'x)<b=>a = b(Z); 

(iii) a = b(Fx) =>a<xa.'x = xb.'x>b=>a== b(Z). 

THEOREM 23.11. A residuated groupoid G contains a maximal element 
if and only if 

(3x eG) Ax = Z [resp. XA = Z]. 

Proof. Suppose that x is maximal (hence maximum) in the class 9£ 
. modulo Z. Let $0 be any class modulo Z. There exists one and only one 
class ^ modulo Z such that s#@l· = 2£\ let h be the maximum element of 
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this class. Since (Va e stf) ab < x we have (Va e sé) B = x .' a.lt fol-
lows that a = a*(Z) => a = a*(yQ whence Z < A*. Appealing to Theo-
rem 23.10, we then have Z = Ax. Conversely, if there is an element x e G 
such that Z = Ax then since each class modulo Ax admits a maximum 
element so also does each class modulo Z. 

THEOREM 23.12. The following conditions are equivalent and are neces-
sary and sufficient for a residuated groupoid to admit a minimal element: 

(l)<ßxeG) FX = Z [resp.xF = Z]; 
(2) (3x G G) Bx = Z [resp. XB = Z]. 

Proof If G contains a minimal element then each class modulo Z 
contains a maximum element and a minimum element (Theorem 23.8). 
Consider &s/ = # with £ minimum in J*, a maximum in rf and ç mini-
mum in ^. We have necessarily bä = ç; for if we had bä — c>c then 
we would have (Ve e &) bä > e > ç and consequently there would not 
exist be G such that bä < ç, so that G would not be residuated. From 
this equality we deduce, using the fact that ç is the minimum element of &, 
that (Va e sé) ba = c. It follows that a = a*(Z) => a = a*(Fb) whence 
Z <Fb and so Z = Fb by Theorem 23.10. Conversely, if there is an ele-
ment xeG such that Fx = Z, let 9C be the class of x modulo Z and let sé 
be any class modulo Z. Writing $\s/ = <& we have, since F* = Z, 

(3j* e <&) (Va e sé) χα = y*. 

Now if j is any element of <& there exists an element a* (= y . · x) such 
that χα* < j> and so it follows that j>* < y whence y* is the minimum 
element of <& and hence is minimal in G. 

The corresponding assertion concerning the equivalence of type B is 
proved as follows. Considering Ή3Ι = sé, we have as in the above cb = a 
so that (Vaerf) cb < a and consequently (Vaerf) c = a ' . Ä. It fol-
lows that Z < Bb and hence that Z = Bb. The converse is clear. 

Introducing the notation max G [resp. min G] to denote the set of 
maximal [resp. minimal] elements of G, the following result is immediate 
from the previous proof: 
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THEOREM 23.13. If the residuated groupoid G contains a maximal ele-
ment x, then 

max G = {x . ' a; a e G} = {x '. a; a e G}. 

Correspondingly, if G contains a minimal element y then 

max G = {a .' y; aeG] = {a '. y; aeG}; 

min G = {ay; aeG} = {ya; aeG}. 

Let us now examine the situation when G is a semigroup. 
THEOREM 23.14. If the ordered semigroup S is residuated then SjZ is a 

group. 

Proof. Since Z is compatible with multiplication by Theorem 23.1, it 
follows that SjZ is a semigroup. Being a quasigroup by Theorem 16.2, 
SjZ is therefore a group. 

It can be shown by means of examples that restricting the multiplica-
tion to be associative does not alter the general form of G as an ordered 
set; see Exercises 23.3, 23.4 and 23.5. The general form of residuated 
semigroups may therefore be enunciated as in Theorem 23.9. 

Turning now to the case where G is a c-groupoid (i.e. one in which the 
cancellation laws hold) we have the following results, of which the first 
is an immediate consequence of the definition: 

THEOREM 23.15. A residuated groupoid G is a c-groupoid if and only if 
every equivalence of type F on G reduces to equality. 

THEOREM 23.16. A residuated c-groupoid cannot contain a minimal ele-
ment without the equivalence Z reducing to equality. 

Proof Suppose that G contains a minimal element χ. Let 2£ be its 
class modulo Z. Let y = x(Z); then since by Theorem 23.6 there exists 
z e [2Γ, -*] n [y, - * ] , there exists t (namely t = x # . z) such that tx = ty 
[= x] · It follows by the cancellation law that x = y. Since y was chosen 
arbitrarily in 2£ we conclude that 2£ = {x}. Since each class moduloZcon-
tains a minimal element, we deduce from this that Z reduces to equality. 

Exercises 23.6 and 23.7 show that no further simplification of Theo-
rem 23.9 arises in the case of c-groupoids. The general form of residuated 
c-groupoids is thus as follows. 
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THEOREM 23.17. If a c-groupoid is residuated then either the equi-
valence Z reduces to equality or each class modulo Z contains a maximum 
element and no minimal elements or no maximal elements and no minimal 
elements. 

Let us now pass to the case of a ^-groupoid; i.e., a groupoid G in 
which (Va, beG) (3x, yeG)ax = b,ya = b. 

THEOREM 23.18. A residuated groupoid is a q-groupoid if and only if 
each equivalence of type B reduces to equality. 

Proof. The sufficiency of the condition follows from the fact that 
Q/a,beG) a(b . · a) = b(Ba); (b · . a)a = b(aB). 

Conversely, if G is a ^-groupoid then every element is both a left and a 
right multiple of every other element. Thus every element is minimum in its 
class modulo every equivalence of type B. The condition is therefore also 
necessary. 

THEOREM 23Λ9.Α residuated q-groupoid cannot contain a maximal ele-
ment without the equivalence Z reducing to equality. 

Proof Suppose that G is a residuated g-groupoid and that ä is maximal 
in G. By Theorem 23.18 we have 

(Vi,6*eG) b(ä.-b) = ä = b*(ä.' b*). (*) 
In particular, suppose that b, è* belong to the same class modulo Z. Then 
since Aä = Z by Theorem 23.11 we have ä . ' b = â . ' è* = c say, so that 
by (*) b = 6*(CF). Since this holds for each class modulo Z we deduce 
that Z = CF and hence by Theorem 23.12 that each class modulo Z con-
tains a minimum element. Now let x be any minimal element of G. By 
Theorem 23.13 the minimal elements of G are simply the multiples of x. 
But since Bx, XB are equality, every element is a multiple of x and so is 
minimal in G. It follows that Z is equality. 

The general form of residuated ^-groupoids is as follows, their exist-
ence being assured by Exercise 23.8. 

THEOREM 23.20. If a q-groupoid is residuated then either the equi-
valence Z reduces to equality or each class modulo Z contains no maximal 
elements and no minimal elements. 
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The general form of residuated c-semigroups is deduced from that of 
residuated semigroups and that of residuated c-groupoids. Its enunciation 
is as in Theorem 23.17 and examples of each type are given in Exer-
cises 23.9 and23.10. The generalform of residuated quasigroupsis deduced 
from that of residuated c-groupoids and that of residuated #-groupoids. 
Its enunciation is as in Theorem 23.20. An example of a residuated quasi-
group is to be found in Exercise 23.11. We also have the following results 
concerning residuated quasigroups, of which the first is immediate. 

THEOREM 23.21. A residuated groupoid G is a quasigroup if and only if 
all the equivalences of types B and F reduce to equality. 

THEOREM 23.22. If G is a residuated quasigroup then every equivalence 
of type A reduces to equality. 

Proof. Given any a, ce G there exists a unique b e G such that ab = c. 
Consider the set of elements x e G such that ax < c. We have ax < ab 
and so x < ab . ' a = b since Fa is equality. It follows from this that 
b = c . * a. In a similar way, a = c ' . è.Thusa = c *. b = c ". (c . * a). 
Since a, c are arbitrary, it follows that each equivalence of type A is equal-
ity. 

Definition. An ordered groupoid will be called \j~semireticulated if it 
is a u-semilattice in which the following distributive laws hold 

(Va, b, ceG) a(b u c) = ab u ac; (b u c) a = ba u ca. 

THEOREM 23.23. Let Q be an ordered quasigroup. IfQ is a v-semilattice 
then Q is residuated if and only if it is u-semireticulated. 

Proof. If Q is residuated then, each translation being a residuated 
mapping, Q is u-semireticulated by Theorem 5.2 (see also Exercise 22.3). 
Conversely, let Q be u-semireticulated. Given any a9beQ there exists a 
unique e e ß such that ac = b. Let us show that this element c is the 
greatest of the elements xeQ such that ax < b. Given any x satisfying 
ax < b, consider the element z = c u x. We have 

az = a (c u x) = ac u ax = b u ax = b = ac 

whence z = c by the cancellation law and so x < c. 

file:///j~semireticulated
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Definition. By a reticulatedgroupoidwe shall mean a u-semireticulated 
groupoid which is a lattice. 

THEOREM 23.24. Every u-semireticulated quasigroup is reticulated. 

Proof. If g is u-semireticulated then by the previous theorem Q is 
residuated. Given any aeQ, consider the mapping fa : Q -> Q given by 

(VxeQ) fa(x) = a .' x. 

Since Aa is equality by Theorem 23.22, fa is injective. Moreover, since aA 
is also equality every element of Q is a right residual of a and so / e is sub-
jective. Thus/ a is a bijection; and since it satisfies 

x <yofa(y) <fa(x)9 

it follows that Q is isomorphic to its dual and so is a lattice. 
As far as groups are concerned, we have seen in Example 22.2 that 

every ordered group is residuated with b . * a = u r l a n d o '. a = ba'1. 
The general form of residuated groups is as in Theorem 23.20. We also 
have the following result. 

THEOREM 23.25. Every \j-semilattice ordered group is reticulated and 
as a lattice is distributive. 

Proof. Let G be a u-semilattice ordered group. Being residuated, it 
is then u-semireticulated by Theorem 23.23 and hence is reticulated by 
Theorem 23.24. Now intersection in G is given by 

(Va,6e(r) ac\b = J ( û u i ) - 1 a . (*) 
In fact, from 

x < y o 1 = xx~x < yx"1 oy'1 < y~xyx~x = x'1 

we deduce that for any a, bin G, a'1 > (au b)"1 and b'1 > (# u b)"1. 
It follows that b (a u b)~ * a is a lower bound for {a, b). Now if x < a,b 
thenßT1, b"1 < x'1 and so a'1 u è " 1 < x" 1 . But since G is reticulated 
a'1 u b~x = ΟΓ 1 (b u Ö)Z>- 1 . Hence we have x < b(a u b)'1a. This 
establishes the equality (*). To show that G is distributive as a lattice, we 
use the result of Theorem 9.1. Suppose that a u b = a u c and that 

file:///j-semilattice
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a n b = a n c; then from (*) we have 

b = (a nb) a"1 (a u b) = (a n c) a""1 (U(UC) = C 

as required. 
We end the present section with a structure theorem which follows 

from the results of the previous discussion. 
Definition. By a.proper Molinaro equivalence on a residuated groupoid 

G we shall mean an equivalence of type A, B or F which is distinct from 
equality and from the zigzag equivalence. 

THEOREM 23.26. Let G be a residuated groupoid with a neutral element. 
If G has no proper Molinaro equivalences then there are but two possibilities: 

(1) the classes modulo Z have at most two elements and the class of 1 is 
isomorphic to the Boolean algebra {0, 1}; or 

(2) G is a loop; and if the class of 1 consists only of 1 then the loop 
ordering is the trivial ordering a\boa — b. 

Proof First of all, if every Molinaro equivalence reduces to equality 
then G is a loop by virtue of Theorem 23.21 ; and if the class of 1 consists 
only of 1 itself, then 1 is minimal in G and so, by Theorem 23.13, every 
element of G is minimal and consequently Z is equality, the trivial order-
ing. 

Suppose therefore that not every Molinaro equivalence reduces to 
equality. By Theorem 23.10, Z is not equality and there exists, by hypo-
thesis, at least one equivalence of type A, B or F which coincides with Z. 
It follows by virtue of Theorems 23.11, 23.12 and 23.5 that each class 
modulo Z admits a maximum element. Suppose that ä is the maximum 
element in the class of 1 modulo Z. From 1 < ä we have ä = ä\ < ää 
so that, ä being maximal, ä = ää and consequently 1 = ä(Fs). Now if 
F à = Z we have (Vx = ä(Z)) äx = ää whence it follows that ä is also 
minimum in its class modulo Z [for since ää = ä we have (Vx = ä(Z)) 
äx = ä and if there existed y = ä(Z) with y < ä then there would not 
exist x e G such that äx < y, so that G would not be residuated]. It fol-
lows from this that if Fâ = Z then the class of 1 modulo Z reduces to {1} 
and as we have seen above this implies that Z is equality, contrary to the 
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hypothesis. Hence we cannot have Fâ = Z, whence F5 must be equality. 
It then follows that 1 = ä so that 1 is maximum in its class modulo Z. 
Since we always have (Vx eG)l < x .' x, it then follows that (Vx e G) 
1 = x. ' x. Consider now any class 3C modulo Z. Let x be the maximum ele-
ment of 2£ and consider Χχ < x2 < x. We have x2 . * x± > x2 . ' *2 = 1 
whence, 1 being maximal, it follows that xt = x2 04*2) · But since x2 · * *2 
= 1 we also have the equality x2 '. (x2 .' x2) = x2* .1 = x2 so that x2 is 
maximum in its class modulo AX2 and so x2 Φ x(AX2). We deduce from 
this that AX2 Φ Z and so AX2 must be equality, whence Xl — X2. Con-
sequently, any element which is covered by x is necessarily minimal in SC 
and such an element must be minimum in SC by virtue of Theorem 23.7. 
The proof is completed by noting that if the class containing 1 is {x, 1} 
then x < 1 gives x2 < x and this forces x2 = x; consequently {x, 1} 
is isomorphic to the two-element Boolean algebra. 

EXERCISES 

23.1. Consider the ordered set defined by 

G = [at , UÌ; λ,μ = 0,1,..., 5; ij = 1, 2, 3,...} 

at < bf < c&oλ = μ = v, i > j > k. 

Endow G with the following multiplication: 
(a) choose as G/Z the following quasigroup 

s/° 
sf1 

sé2 

s/3 

st* 
s/5 

sj° 

SJX 

sé2 

sé* 
s/5 

s/0 

s/3 

sé1 

sé2 

s/5 

s/0 

s/3 

s/1 

sé* 

s/2 

sé* 
s/0 

sé3 

s/*· 
sé2 

s/5 

sé3 

s/5 

sé* 
si2 

s/0 

sé3 

s/1 

sé* 

s/0 

s/3 

s/1 

s/* 
sé5 

sé2 

s/5 

s/3 

sé1 

s/5 

s/2 

s/* 
sé° 

(b) for element-wise multiplication, define 

al*, = 4bt = atr, ftfef, = bfbt = bîr 
where sé1*1 is the product séxsév as determined by (*). Show that G is a residuated 
groupoid in which, if {///} denotes the integer N such that N — 1 < i/j < Nana sé*"'*1 
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is the class s/p such that sé^st* = «a/A, 
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αχ at.'bf = b?.'b? = ä 

bf. 

ai 

, Λ . 

.«? = «£·.*? 
Λμ _ Α^ · A " _ Α

Λ
 ' ·? 

{'/il ' 

23.2. Consider the ordered set defined by 

G = {(χ,γ)λ; λ = 0 ,1 , . . . , 5; JC, j> integers with x < 0}; 

(*, γ)λ < (*', / ) " <=> A = μ, Λ: < χ', y < / . 

Endow G with the following multiplication: 
(a) as the groupoid G\Z choose the quasigroup (*) given in Exercise 23.1 ; 
(b) for element-wise multiplication define 

(x, y)k («> ν)μ = (min {x, u}9 y + ν*)λμ 

where λμ is as in Exercise 23.1 and v* denotes the greatest multiple of a given fixed 
integer N > 1 which is less than or equal tot?; i.e. v* = kN < v < (k + 1) N. Establish 
the properties d* = (N - 1 + d*)*, b* + d* = (b + d*)*, b < b* + N - 1 and 
deduce that G is residuated with 

I (erf)* \(a,6)* 

l(c,d)*.-(a,b)» 

(09d-b*)*'n if ß < c ; 

(ο,</-Ζ>*)Α'." if α > c, 

(0,(rf-o)* + JV- 1)*.'" if a < c ; 

(c, (d - 6)* 4- JV - 1)A··" if a > c. 

23.3. Consider the following Hasse diagram and Cayley table: 

a 
o d 

O 

o 
C 

a 
b 
c 
d 
e 

a b c d e 
b b c e e 
c c c e e 
c c c e e 
d d e c c 
e e e c c 

Show that these define a non-abelian ordered semigroup S. Show that S is residuated by 
compiling tables of residuals. 

23.4. Modify Exercise 23.1 by taking for G/Zany group of order 6. Show that this 
yields a non-abelian residuated semigroup of type two with analogous formulae for 
residuals. 
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23.5. Modify Exercise 23.2 by taking G/Z to be any group of order 6. Show that 
this yields a non-abelian residuated semigroup of the third type. 

23.6. Consider the ordered set defined by 
| G = {at; A = 0 ,1 , . . · , 5; / = 1,2,3,...}; 
I af <α?ολ = μ, i>j. 

Endow G with the following multiplication: 
(a) for G/Z take the quasigroup (*) of Exercise 23.1 ; 
0» *?< = *&. 

Show that this defines a residuated c-groupoid in which 

Λ . μ Κ'μ if ' < / + i ; 
\a£t if / 2 > / + 1 , 

with similar formulae for left residuals. 
23.7. Consider the ordered set defined by 

j G= {αΐ„4;λ = 0,1,...,5;η = 0, ± 1 , ± 2 , . . . ; / = 1,2,3,...}; 

I a%nj < a^jol = μ,η< m9i < j . 

Endowing G with the following multiplication: 
(a) G/Z: the quasigroup of Exercise 23.1; 
( b ) a2n,i Q2*n,j = ^2n + m,i+j9 

show that G becomes a residuated c-groupoid and determine formulae for the residuals. 
23.8. Consider the ordered set given by 

G = {af; A = 0 , 1 , . . . , 5; / = 0, ± 1 , ±2 , . . . } ; 

at < af o λ = μ, i < j . 

Endow G with the following multiplication: 
(a) G/Z: the quasigroup of Exercise 23.1 ; 

!

A it A it Ji Ll yt it 

a2nßlm~l = ^ 2 / i - l 02 m - l = ^2n—la2m = 0,2n-2a2m\ 

ata? = ^ . 
Show that G becomes a residuated ^-groupoid and determine formulae for the residuals. 

23.9. Modify Exercise 23.6 by taking for G/Z the dihedral group of order 6 (the 
smallest non-abelian group); show that the resulting structure is a residuated c-semi-
group. 

23.10. Modify Exercise 23.7 as in the previous exercise; show that the resulting 
structure is a residuated c-semigroup. 

23.11. Modify Exercise 23.7 by allowing the suffix / to take also the values 0 , - 1 , 
— 2,. . . Show that the resulting structure is that of a residuated quasigroup. Determine 
how the formulae for residuals change in respect of those found in Exercise 23.7. 
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23.12. Prove that an ordered group G is reticulated if and only if, for each x e G, 

x v 1 exists. 
23.13. If G is an ordered group, prove that for all a, be G the principal filters 

[a, -►], [6, -*] are isomorphic. 
23.14. An element a of a residuated groupoid is said to be: 
(1) equiresidual if (Vx e G) a .' x = a '. x; 
(2) of type a if (Vx e G) x . ' a — x ' . a; 
(3) ο/ίκρβ β if (Vx 6 G) a . ' x = x ' . a; 
(4) <?/ 0 ^ 7 if (V* eG) x .' a = a'. x; 
(5) o/f^pe <3 if (V* e G) ß . ' x = x . * a; 
(6) <?/ij/7^ ε if (Vx e G) A ' . Λ: = je *. e. 

Refer to Exercise 22.7 for a characterization of elements of type oc. Prove that if a 
residuated groupoid G contains an element of one of the types β, y, δ, ε then each class 
modulo Z contains a maximum element and a minimum element. Let G be a residuated 
groupoid and let a e G be in the class $4 modulo Z. Prove that a is of type β if and 
only if: 

(1) each class modulo Z has a maximum element and a minimum element; 
(2) for all &9 % e G{Z such that ^ <€ =jf we have Vjf = 8\ 
(3) βγ < a for all maximal elements /?, y such that /fy e s/; 
(4) (VA* e G) ΧΛ is minimal in G. 

Deduce in a similar way characterizations of elements of types y, <5, ε. By means of 
examples, show that the above six types of elements are in general distinct. 

23.15. Let G be a residuated groupoid such that G/Z is a group with neutral ele-
ment S. If a e G is of type β, prove that : 

(1) G/Z is involutive [in that (VJ^G G/Z) sé2 = fl; 
(2) Ö is also equiresidual and of type e; 
(3) each element of [a, ->] is equiresidual. 
23.16. If G is a residuated groupoid with a neutral element and if a G G is of one 

of the types β, y, <5, ε show that the class of a modulo Z is {a). 

23.17. Let S be a residuated semigroup with neutral element 1. An element a e S 
is said to be of order n if a smallest positive integer w exists such that an = 1. Let Ö G 5 
be of order «. Prove that, ifp is any positive integer and x = ap, the equivalences Fx, 
XF9 BX9XB reduce to equality. Deduce that if s91 are positive integers then the following 
conditions concerning a e S are equivalent: 

(1)11»+'= 1; 
{2)(VxeS)x .' af = asx; 
(3) (V* eS)x· .a* = xas. 

23.18. Prove that in a residuated semigroup with neutral element 1 the following 
conditions concerning a e S are equivalent: 

d)Afl
+ =Λα; 
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Q)(VxeS)x . * α = αχ; 
(4)(VxeS)x ' .a = xa; 
(5)a2 = l. 

23.19. Prove that in a residuated semigroup with neutral element 1 the following 
conditions concerning a e S are equivalent: 

( D A ; =ρα; 
(2)ρΖ =λα; 
(3) (Vx G S) axa = x; 
(4)(VXES)X .' a = xa; 
(5)(VxeS)x \a = ax; 
(6) a2 = 1 and (Vx G S) ax = xa. 

23.20. Consider the four element set G = {a, 6, c, d}. Show that there are four 
ways in which G can be endowed with a multiplication and an ordering in such a way 
that it becomes a non-abelian residuated groupoid (or semigroup) in which: 

(1) a is equiresidual; 
(2) b is of all six types in Exercise 23.14; 
(3) c is equiresidual and of types γ, ô; 
(4) d is of type a. 

23.21. Let G be an abelian residuated groupoid. For each x e G let λΧ9 ζχ be the 
mappings described by (V> e G) λχ{γ) = xy and ζχ(γ) — x : y. We say that G satisfies the 
property : 

Ri if (VJC e G) λχ is residuated; 
R2 if (VJC e G) λχ is dually residuated; 
R3 if (Vx e G) ζχ is residuated; 
i?4 if (VA- G G) C* is dually residuated. 

Prove that in G the properties R2 and R3 are equivalent and are satisfied if and only if 
G is a quasigroup in which Z reduces to equality. 

We shall say that G is super-residuated on the right (left) if it satisfies ^ι(/?4). If G 
is super-residuated on the right (left) prove that each equivalence of type A(B) is both 
a closure and a dual closure equivalence and is strongly regular. If G is super-residuated 
on the right prove that either Z reduces to equality or each class modulo Z contains no 
maximal elements and no minimal elements. 

Now let G be an abelian residuated groupoid in which each class modulo Z is 
totally ordered. Prove that G is super-residuated (on the left and right) if and only if: 

(1) each class modulo Z contains no maximal elements and no minimal elements; 
(2) all equivalences of types A> B are both closure equivalences and dual closure 

equivalences. 
Consider the ordered set described by 

| G= {aPti;p = 0,±l,±29...,i= 1,2 JV}; 

l αρΛ< aqjO either p < q or p — q and i > / . 
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Endow G with the following multiplication: 

Qp,i ' 0q,J = Op + q, min {i,j} . 

Show that G is a residuated semigroup which is also super-residuated. 

24. Group homomorphic images of ordered semigroups; 
Querré semigroups 

As we have seen in Theorem 23.14, for any residuated semigroup S 
the quotient semigroup SjZ is a (trivially ordered) group which is an 
isotone homomorphic image of S. It is natural to ask the general question 
as to just when an ordered semigroup admits an isotone homomorphic 
image which is a group. In this section we shall obtain an answer to this 
question. 

We begin by asking the reader to refer back to Example 22.4 where we 
observed that for each semigroup S the power set P(S) can be considered 
as a residuated semigroup. It is precisely in this residuated semigroup that 
we shall be working and, for this purpose, we recall that residuals are 
given by 

X.' Y= {zeS;(yyeY)yzeX}, X'. Y= {ze S; (Vye Y) zyeX}. 

If H is a non-empty subset of S we shall say that H is reflexive if 
xy e Hoyx e H; i.e. if (Vx e S) H .' {x} = H ' . {x}, in which case we 
shall use the notation H : {x}. Such a subset will be called neat if (V* e S) 
H: {x} Φ 0 . Suppose now that His a reflexive neat subset of S. Define 
an equivalence relation RH on S by 

a = b(RH)oH: {a} = H: {b}. 

We call JRH the Dubreil equivalence associated with H. This equivalence is 
compatible with multiplication since if a = b(RH) then, for each xe S, 

yeH: {xa}oyxae HoyxeH: {a} = H: {b} oyxbeH 

oyeH: {xb}, 

so that H: {xa} = H: {xb} and hence xa = xb(RH); and in a similar 
9 BRT 
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way we can show that ax = bx (RH). We can thus form the quotient semi-
group SIRH. Define a relation < on SIRH by 

XIRH < ylRHoH: {y} s H: {x}. 

Clearly < is an ordering. Moreover, 

a\RH < b\RH =>H:{b} ^H:{a} 

=> Q/x eS)H: {bx} = (H: {b}) . · {x} 

S( i ï :{û}) . · {x} = H:{ax}9 

from which we deduce that SjRH is an ordered semigroup. 
If we now impose on H the property that it be an order ideal of S then 

the canonical epimorphism tjH : S-> SjRH becomes isotone; for if a < b 
in S9 then xa < xb implies, if xb e H, that xa e H so that we obtain 
H:{b) £ H : {a}. Thus, if i/is a reflexive neat order ideal of S we can con-
struct a semigroup SjRH which is an isotone homomorphic image of S. 
Let us now examine under what conditions SIRH becomes a group. 

For this purpose, consider the set 

EH = {yeS; H:{y} = H}. 

Supposing for a moment that this set is not empty, we note that any ele-
ment of S which is equivalent modulo RH to an element of EH is itself an 
element of EH; and any two elements in EH are equivalent modulo RH. 
Hence EH forms one of the classes modulo RH. Moreover, from the fact 
that if yeEH then 

H:{xy} = (H:{y})'.{x} = H:{x}, 

H:{yx] = {H:{y}) .- {x} = H:{x) 

we see immediately that EH becomes the neutral element of S\RH. Thus, 
if EH φ 0 , S\RH is a semigroup with a neutral element. In order to have 
S\Rn a group, we require the following concept. 

Definition. We shall say that a subset H of an ordered semigroup S 
is strongly neat if both H and EH are non-empty reflexive neat subsets 
ofS. 
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If now in the above H is strongly neat then for each x G S the set 
EH - {*} is not empty; and for any element yeEH: {x} we have xy e EH 

so that xyjRH = EH and likewise yx\RH = EH. This shows that for each 
x G S the class x\RH has an inverse in S\RH whence S/RH becomes a group. 
[Note that 

y e (X/RH)'1 oylRH = ( * / # Η ) _ 1 oyxlRH = EHoyxeEH 

oyeEH: {x} 

and so the inverse class of xjRH is none other than EH : {x}.] 
In summary, therefore, if H is a reflexive strongly neat order ideal 

of S, then SlRH is an isotone homomorphic group image of S. We shall 
now occupy ourselves with the converse and show that every isotone 
homomorphic group image of S arises in this manner. 

For this purpose, let G be an ordered group and let h : S -> G be an 
isotone epimorphism. Consider the negative cone of G, defined to be the 
subset N = {xeG; x < 1}. Let H = h+~(N). If y e H with x < y then, 
h being isotone, h(x) < h(y) < 1 and so x G H. Hence His an order ideal 
of S. That H is reflexive follows from the observation that 

xye Hoh(x) h(y) = h (xy) < 1 

oh(x) < [h(y)]-i 

o h (yx) = h(y) h(x) < 1 

oyxe H. 

That H is neat follows from the fact that h is surjective; for, given any 
xe S, there exists y e S such that h(y) = [h(x)]~x and h (xy) = h(x) h(y) 
= 1 so that xyeH. Now xeH: {y} o h (xy) < 1 oh(x) < [A(j)]"1 

and so, h being surjective, 

EH = {ye S; H: {y} = H} = {yeS; h(x) < [h(y)]-1 oh(x) < 1} 

= {yeS;h(y)=l}. 

Consequently, the argument used above to show that His neat also shows 
that EH is neat. Thus üTis strongly neat. Finally, we note that since h is 
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surjective 

H: {a} = H: {b} o (h (xa) < 1 oh(xb) < 1) 

o(h(x) < [h(a)]-1oh(x) < [Kb)]-1) 

oh(a) = h(b), 

and so we can define a mapping ζΗ : SlRH -> G by the prescription 
ζΗ (x\RH) = A(*)· Clearly ζΗ is an isomorphism and so S\RH cz G. 

The following result summarizes the situation: 

THEOREM 24.1. Let S be an ordered semigroup. If H is a reflexive 
strongly neat order ideal of S and RH is the associated Dubreil equivalence, 
then SjRjj is an isotone homomorphic group image of S. Moreover, every 
isotone homomorphic group image of S arises in this manner. 

Definition. By an anticone of an ordered semigroup S we shall mean 
a reflexive strongly neat order ideal Hof S which is also a subsemigroup 
of S containing EH. 

With this terminology we have the following. 

COROLLARY. The set of isotone homomorphisms which map S onto an 
ordered group is equipotent to the set of anticones of S. 

Proof For each isotone homomorphism h of S onto an ordered group 
G let H = h*~(N) where Nis the negative cone of G. We know that H is 
a reflexive strongly neat order ideal of S. It is in fact an anticone since 
if h(x) < 1 and h(y) < 1 then h (xy) = h(x) h(y) < 1 so His also a sub-
semigroup of S which clearly contains EH = {x e S; h(x) = 1}. Since as 
was shown above h is completely determined by H, and conversely, it 
suffices to show that if H is an anticone of S then H = b H(N) where iVis 
the negative cone of SIRH. Now 

^H(N) = {xeS; xlRH ^ EH) = {xe S; H s H: {x}} 

and since His a semigroup we have, for each xe H, {x} H £ H and so 
H s H : {x} whence H s ^(JV). On the other hand, if x e ^(N) then 
{x} H Ç H and so for all y e H we have xy e H. In particular, let 
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yeEH^H; then we obtain x e H: {y} = H. Hence %H(N) ^ H and 
we have the desired equality. 

Remark. It follows from the above that, if H is an anticone, then 
H:H=H: (J {*} = Ç) H:{x}= Ç) H:{x} = H. 

xeH xeH X
^

E
H 

In what follows, we shall denote by A the set of Dubreil equivalences 
associated with the set Γ of anticones of S. 

Definition. An ordered semigroup S will be called a Querré semigroup 
if and only if there is associated with S an ordered group G and an isotone 
epimorphism/: S -> G such that, for any ordered group K and isotone 
epimorphism g : S -► K, there is a unique epimorphism (not necessarily 
isotone) h: G-+ K such that the commutativity relation hof=g holds 
in the triangle 

K 

Such a group G we shall call the greatest isotone homomorphic group image 
ofS. 

THEOREM 24.2. Let S be an ordered semigroup. Then the following are 
equivalent: 

(1) S is a Querré semigroup; 
(2) Δ has a minimum element; 
(3) {Ej\ JeT} has a minimum element. 

Proof. (1) => (2): Let G = SjRH be the greatest isotone homomorphic 
group image of S. Then in any diagram of the form 
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there is a unique homomorphism A : SlRH -> SlRj such that A o \\H = fcij. 
Clearly A is given by A (xlRH) = * /^ j whence it follows that X/JRH = ÏIRH 

=> xjRj = y\Rj\ in other words, RH < Rj. Since this holds for each 
JeT, RH is the minimum element of Δ. 

(2) => (1) : Let RH be the minimum element of J . Let K be any ordered 
group which is an isotone homomorphic image of S. By Theorem 24.1, 
Xis of the form SjRj and, by hypothesis, RH < Rj. Now the latter gives 

XJRH = y\RH =>X = y(RH) =>X = y(Rj) => x\R3 = y\Rj9 

and so we can define a mapping A : S\RH -+ S/i^j by the prescription 
A (XJRH) = * / ü j . This mapping is clearly an epimorphism and is unique 
with respect to the property A o fciH = fcij. Hence G/-RH is the greatest 
isotone homomorphic group image of S and so S is a Querré semigroup. 

(2) => (3) : If RH < Rj for each JeT, then from j / i ? H = x/RH => y/Äj 
= x/i?j we have j ; G X / R H =» jex / i ? j so that xjRH £ X/JRJ whence in 
particular EH ^ E3. 

(3) => (2) : If EH < Ej for each J e Γ, then for any x e S we have 
1?H : {x} £ ^ j : {x}. But as observed previously EH : {x} = (X/RH)'1· It 
therefore follows that, for all xe S, X[RH £ x/i?j and hence that RH<Rj. 

Definition. We shall say that a Querré semigroup is normatif and only 
if each unique epimorphism A of the previous definition is isotone. 

THEOREM 24.3. Let S be a Querré semigroup. Then S is normal if and 
only if Γ admits a minimum element. 

Proof Let us recall first that if RH is any element of Δ and EH is the 
neutral element of the group SjRH, then 

xeHoxlRH < EHoH £ H:{x). 

This being the case, suppose that the epimorphism A : S/RH -> S/Rj is 
isotone; then 

x e i/=> x\RH < EH=> xjRj = A (xlRH) < h(EH) = Ej=>xeJ, 

and so if £ J . Conversely, if # i s the minimum element of P, then for any 
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J e Γ we have 
x\RH < EH=> xeH=> xeJ=> xjRj < E3. 

We thus have a group homomorphism h which is such that x < 1 => h{x) 
< 1. It follows from this that h is isotone; for h(y~ *) = \h(y)Y * and so 

x < y=> xy'1 < 1 

=> h(x) [Ky)]-1 = h(x) hiy-1) = h (xy-1) < 1 

=>h(x)<h(y). 

Definitions. If 5 is an ordered semigroup then for each û , i e S w e 
define the quasi-residuals of a by b to be the sets 

<tf . · b} = {x e S; bx < a}, (a '. by = {x e S; xb < a}. 

If these sets are not empty whatever the choice of a, be S, then we say 
that Sis quasi-residuated [cf. § 2]. By a principal subsemigroup of 5we shall 
mean any quasi-residual of the form <a *. ay or (a . * a>. [It is readily 
seen that the latter quasi-residuals are subsemigroups and order ideals 
ofSJ 

THEOREM 24.4. If H is any anticone of the ordered semigroup S then 

(J <a · . ay c H and (J <e . · e> s /J. 

iVtfo/. Suppose that <a ". ûf> =̂  0 ? for example, and let t e <α ". Λ>. 
Then from ta < a we have tjRH - a\RH < a\RH and so t\RH < ί ^ whence 
teH. 

Definition. By the core of an ordered semigroup S we shall mean the 
set-theoretic union of all its principal subsemigroups. We shall use the 
notation )S( to denote the core of S. 

THEOREM 24.5. If)S(^ 0 then )S( is a reflexive order ideal ofS. 

Proof If xye)S(, then for some te S either xyt < t or txy < t 
whence either yxyt < yt or txyx < tx so that either yx e (yt ". yty or 
yx e <Jx . ' txy. In either case yx e )S{ and so )S( is reflexive. Being the 
set-theoretic union of order ideals of S, )S( is also an order ideal of S. 
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We shall make use of the following result in obtaining an example of 
a normal Querré semigroup. 

THEOREM 24.6. If )S( is an anticone and E)S( coincides with the set 
T = {x e S; (3y e S) xy = y = y x], then S is anormal Querré semigroup, 

Proof If )S( is an anticone then it is the smallest anticone by virtue of 
Theorem 24.4. For each x e T we have, for some y e S, xy = y = yx, 
and so, on passing to quotients, we see that xeEj for each anticone J. 
Thus if E)S( = Twe have E)S( £ Ej for each anticone/. It therefore fol-
lows by Theorem 24.2 that S is a Quené semigroup and, )S( being the 
smallest anticone, the result follows by Theorem 24.3. 

EXAMPLE 24.1. An element a of a semigroup S is said to be regular if 
and only if there exists an element x e S such that a = axa. We say that 
S itself is regular if every element of S is regular. Elements a, bin S are 
said to be inverses of each other if and only if a = aba and b = bab. We 
note first that a e S is regular if and only if it has an inverse. [In fact, if 
there exists b such that a = aba then a is regular. Conversely, if a = axa 
then, writing xax = b, we have aba = a (xax) a = ax (axa) = axa = a 
and also bab = (xax) a (xax) = x (axa) (xax) = xa (xax) = x (axa) x 
= xax = b, so that b is an inverse of a.] By an inverse semigroup we mean 
a semigroup S every element of which admits a unique inverse. The follow-
ing conditions are equivalent and are necessary and sufficient for a semi-
group S to be an inverse semigroup : 

(1) S is regular and any two idempotents of S commute; 
(2) every principal right [resp. left] ideal of S has a unique idempotent 

generator. 

[In fact, if S is an inverse semigroup then clearly S is regular. The set 
of idempotents in S is not empty; for from a = axa we deduce that 
ax = axax. Let, therefore, e,fbs idempotents in S. Let a be the (unique) 
inverse of ^ s o that (ef) a (ef) = efaxid a (ef) a = a. Let b = ae; then 
(ef) b (ef) = efae2f = efaef = efmd b (ef) b = ae2fae = βς/ϋι = ae = b, 
so that by the uniqueness of inverses we have a = b = ae. In a similar way 
we can show that fa = a. Consequently, a2 = (fle) (fa) = a (e/) a = a. 
It follows that a is an inverse of itself and so, by the uniqueness, a = ef 
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Thus e/is also an idempotent. In a similar way we can show that je is 
idempotent. Now efandfe are inverses of each other; for (ef) (fe) (ef) 
= ef2e2f = efef = ef and, by symmetry, (fe) (ef) (fe) = fe. Thus ef&nd 

fe are each inverses of a = ef, and since inverses are unique we deduce 
that ef = fe. The condition (1) is therefore necessary. Now let us show 
that (1) => (2). If (1) holds then each a e S is regular so that, for some 
x e S, a = axa; and as we have seen the element e = ax is an idempotent 
of S such that ea = a. Now in general S has no neutral element so the 
right ideal generated by a non-empty subset T of S is T u TS; in particular, 
the principal right ideal generated by {t} is {i} u {t}S. It follows from the 
above that we have {a} u {#}£ = {e} u {e}*S, whence every principal 
right ideal admits an idempotent generator. Suppose now that e , / a r e 
idempotents which generate the same principal right ideal: {e} u {e}S 
= {/} u {f}S. Then there exists y e S such that ey =ff = f and so 
ef = e(ey) = ey =f. Similarly, we have/e = e. By the hypothesis (1) 
we deduce that e = / and property (2) follows. Now suppose that (2) 
holds and let us show that this implies that S is an inverse semigroup. 
If e is an idempotent then from {a} u {a} S = {e} u {e} S = {e} S we 
deduce that there exists x e S such that a = ex, so that eu = e2x = ex 
= a; and there exists jyetf such that ay = ee = e. It follows that 
aya = ea = a and so a is regular. Since a is arbitrary, it follows that S is 
regular. It remains, therefore, to show that inverses are unique. For this 
purpose, let b, c be inverses of a so that aba = a, bab = b, aca = a, 
cac = c. Since ab and ac are idempotents, these conditions give 

{ab} u {ab}S = {ab}S = {a}S = {ac}S = {ac} u {ac}S. 

The standing hypothesis (2) then yields ab = ac. In a similar way, we 
have &« = ca and consequently Z> = bab = £<zc = cac = c as required.] 

In an inverse semigroup the unique inverse of a is written a"1. In 
such a semigroup we have (a'1)"1 = a and (ab)'1 = b~1a~1. [In fact 
the first is clear by the uniqueness of inverses. As for the second, the fact 
that idempotents commute gives ab(b~1a~1) ab = a(bb~1)(a~1a) b 
= aa-^abb-^b = ab and A"1«"1 (ab)b-1a~1 = b'1(a~1a)(bb'1)a-1 

= b"1bb~1a~1aa~1 = b~1a~1
i whence b~1a~1 is the (unique) inverse 

of ob.] 

9a BRT 
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Having established these preliminaries, let us now show how an in-
verse semigroup can be ordered. Let us observe first that the following 
conditions are equivalent in such a semigroup: 

(oc) aa'1 = ab"1', (ß) a'1 a = a~1b; (γ) ab'1 a = a; 

(oc*) aa'1 = ba-1; (β*) a'xa = b~la; (y*) a'^a'1 = a'1. 

[In fact, each condition (x*) is equivalent to (x), as may be seen by taking 
inverses. We shall show that (oc) => (y), (y*) => (β), (β*) => (a), whence 
the result will follow. That (oc) => (y) is immediate on multiplying the 
equality (oc) on the right by a. Now (y*) implies that a~ xb is an idempotent. 
As idempotentscommute,(y*) then implies a"1 a = a~1ba~1a = a~1aa~1b 
= a_1b, which is (β). Finally, if (/?*) holds then ab'1 is idempotent 
since (ab'1) (ab'1) = a(b~1a)b~1 = a(a~1)b~1 = ab'1, from which 
it follows that aa'1 = a (a'1 a) a'1 = a(b'1a)a'1 = (ab'1)(aa'1) 
= aa'1ab~1 — ab'1 and hence (oc) holds.] 

This being the case, define the relation < on S by setting 
a < boaa'1 = ab'1. 

It is clear that < is reflexive on 5. It is also anti-symmetric; for from 
a < b and b < a we have a = ab"1a, ab'1 = bb'1 and b~xa — b_1b, 
whence a = (ab'1) a = (bb~x)a = b(b~1a) = bb~~lb = b. Finally, < is 
transitive; for from a < b and b < c we have ac~1a = aa~~1ac"1a 
= aa'1bc~1a = aa"1bb~1a = aa~1aa'1a = 0, whence a < c. Thus 
< is an ordering on S. Now S is an ordered semigroup since if a < b 
then, for any x e S, 

(xa)(xb)'1 = xab'1x~1 — xaa~1x~1 = (xa)(xa)'1; 

(ax)~1(bx) = x'1a~1bx = x~1a~1ax = (ax)~1(ax), 

so that xa < xb and ax < bx. 
This ordered semigroup is quasi-residuated since, given any a,beS, 

ab'1 e^a ' .by and b~1ae(a.'by. [For example, ab~1b(ab"1b)'1 

= ab'1bb'1ba~1 = ab'^a'1 = a(ab'1b)'1 and so ab'xb < a.] 
Now let / be the set of idempotents in S. Every element of / is of the 

form j " 1 ^ ; in fact, if x G I then from x2 = x we deduce x = xxx and so 
x = x"1 giving x = xx = x~ xx; and conversely we have seen that every 
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element of the form y~ *y is idempotent. From the inequalities ab~1b < a 
and bb" 1a < c w e then deduce that 

(Vx e /) (Vfl e S) ax < a and xa < a, 

so that / i s a lower bound for the set of principal subsemigroups of S. 
Consider now the set 

/* = {xeS; (ßeel) e < x}. 

Since, as was shown earlier, / i s a subsemigroup of S, so also is /*; in 
fact, from e < x, f < y (e,fe I) we have ef < xy and since efe I we 
deduce that xy e /*. The semigroup /* is reflexive; for 

xy e I* => (3e e I) e < xy 

=> (3eel) yey~x < yxyy'1 < yx 

=> yxe I* since yey~1 e / . 
Let us now show that /* is an order ideal of 5. Suppose that x e /* and 
y < x. From x e I* we have, for some e e I, e < x so that ee~x = ex'1. 
Taking inverses and using the fact that e is idempotent (and hence is its 
own inverse) we obtain e = xe~x = xe. Thus from y < x V/Q deduce 
that y~xy — y~1x so that y~~1ye = y"1xe = y"1e < y~x. Now 

a < boa = ab"1a^>a'1 = a~1ba~1 oa"1 < b'1, 

and so it follows from the above that ey~xy < y. But ey~xyel and so 
we have y el* as required. 

To show that /* is strongly neat we observe that for each x e S we 
have xx"1 el ç /* and so /* is neat. Since xx"1 e /* and /* is clearly 
a subsemigroup of 5, we have {xx-1} J* c /* and so, on the one hand, 
/ * £ / * : {χχ-1}. But if y el* : {xx-1} then jxx*"1 e I* and so there 
is an idempotent e such that e < yxx"1 < y whence y el*. We have 
thus shown that/* : {xx"1} ç /*. The resulting equality/* : {xx-1} = /* 
now shows that E^ is neat. Hence /* is strongly neat. 

Now , , _ 
/* :/* = /*: (J {Λ:} = η /* : {χ} = /* 

xel* xel* 

since for all xel* we have, /* being a subsemigroup, /* ^ /* : {x} and 
for each idempotent xx~1 we have xx'1 el* with /* : {xx"1} = /*. We 
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thus have x e E» => I* : {x} = I* => x e P : /* = J* so that £,* c /*. 
This completes the proof that /* is an anticone of S. 

We now show that in fact E^ = /*. For this, let x e / * and let 
y e /* : {x}. Then yx e I* and so there is an idempotent/such that /<x 
whence xf = /and so ef < yxf = yf < y. Thus y e /* and we have shown 
in this way that if x e I* then I* : {x} £ j * . But the converse inclusion 
clearly holds since J* is an anticone. Hence if x e I* then x e Ε^ and so 
/* £ Ej* and the desired equality follows. 

Now since /* is an anticone we have )S{ c /* by Theorem 24.4. But 
if x e /* then e = xe for some e e / , whence xe)S{. Hence J* = )£(. 

Finally, let us consider the set T = {x e »S; (3j e S) xy = j> = yx}. 
If jc e Γ, then, on passing to quotients, we see that x e E^ = I* = )S(. 
Conversely, if x e )S( then xel* whence there exists an idempotent e 
such that e = ex = xe and so xeT. Thus Γ = )S( = /* = E^ and by 
applying Theorem 24.6 we obtain finally the fact that S is a normal 
Querré semigroup. 

Let us now continue the thread of this example by characterizing the 
equivalence which yields the greatest isotone homomorphic group image. 

THEOREM 24.7. If S is an inverse semigroup and I is its set ofidempotents 
then the following three relations are equivalent and are each responsible 
for the greatest isotone homomorphic group image of S: 

(1) x = y(M)o(3eel) ex = ey; 
(2) x = y(H)*>xy-1eI*; 
(3) the zigzag equivalence Z. 

Proof Suppose first that x = y{M). Then for some e e I we have 
ex = ey whence xy"1 > exy"1 = eyy~1eIa,ndsoxy~1eI* a.ndx = y(H). 
Conversely, if x = y(H), then xy"1 e/*, and so there exists fe I such 
that /< xj>-^ It follows t h a t / x j - 1 ^ / [ for / - 1 /= / - 1 x < y- 1 and/=/ - 1 ] . 
Now let e =fxy~1yx~1; then e = fxy'1 (xy1)"1 e I and, as idem-
potents commute, ef = e. Now 

ex = e2x = efxy~1yx~1x = efxx~1xy~1y = efxy1y = efy = ey 

and so x = y(M). This then shows that M and H are equivalent. 
Let us now show that Rr* = H. From the identity y = yy~xy we 
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have yy"1!^* = E^ = J* and so 
x = y(Ri*)oxy"1 = yy~x (Ri*)oxy1 el*. 

This then shows that JRJ* = H and consequently S/H is the greatest iso-
tone homomorphic group image of S. 

Now let us show that H = Z. We begin by observing that 
x ΞΞ X#) => (3e e /) e < ;cy_1 

=> (3e e /) ey < xy~ xy < x, ey < y 

=>x = y(Z). 

On the other hand, we have 
(i) * < a.b^tr1 < ab-1^>ab-ieI*=>a = b(H); 

(ii) t > a9b^>arxb = aa~1b < b9 ar1b = ab'lb < a 

=> at~1b < a9b 

=>a=b(H) [by©], 
so that if x = y(Z) then, by applying (i) and (ii) to any zig-zag chain 
joining x and y9 we obtain x s X-ff). This then shows that ϋΓ and Z 
coincide and completes the proof. 

EXERCISES 

24.1· Let S be an ordered semigroup with a neutral element. In this exercise we 
show that S can be embedded in a normal Querré semigroup with a neutral element. 
For each integer/?, let 

p if p > 0; 

0 otherwise, 
and let fp : S x S -» S be given by 

Î
jc if p > 0; 

*y if p = 0; 

^ if /> < 0. 

Verify the identities 
[m] + [/* - [-w]] = [m + [«]]; 

ΛΗ-Μ(Λ(* .^ )»* ) = / Π -[-mlC .̂/ìnO'» z)) 

and use these to show that N x S x N is a semigroup under the law of composition 
defined by 

(w, x9 ti) (m*, χ+, η*) = (m + [m* - H],/„_„,* (*, x*)9 n* + [n - m*]). 

[/>] = 
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Show that (0,1,0) is the neutral element of this semigroup. Define the relation < on 
N x S x N b r 

(m, x, it) < (m*9 x*9 n*) o m = m*9 x < x*9 n = n*. 

Show that (N x S x N, <) is an ordered semigroup. For each n e N define the mapping 
C r S - ^ N x S x N b y ζη(χ) = (n, x, n). Show that ζη is an isotone monomorphism. Let 
S* = {(n9 x, n); n e N, x e S). Show that S* is an anticone of N x S x N and that 5* 
coincides with the core of N x S x N . Conclude that N x 5 x N is a normal Querré 
semigroup which contains an isomorphic copy of S. 

24.2. Let G be any ordered group. In this exercise we show how to construct a 
normal Querré semigroup whose greatest isotone homomorphic group image is iso-
morphic to G, Let L be any idempotent semigroup. Show that L can be ordered by 
x < yo xy = x = yx. Endow GxL with the following ordering and multiplication: 

(g,x) < (h9y)og <h,x<y; 

(g,x)(h9y) = (gh9x). 

Show that G xL is an ordered semigroup. Show also that the map / : G xL -*> G de-
scribed by/((#, x)) = g is an isotone epimorphism. If JVis the negative cone of G prove 
that f*~(N) = )GxL( and deduce that GxL is a normal Querré semigroup. Show 
further that (g, x) = Qt9 y) (Rf<-(N\) o g = h and deduce that (GxL)IRf+-{N) ^ G. 

24.3. Consider the set R x Z ordered in the usual cartesian manner and made into 
an ordered semigroup by the law of composition 

(x, m) ®(y,n) = (x + y + m + n9 0). 

Determine the core of this semigroup and show that it is an anticone. Hence show that 
the semigroup is a normal Querré semigroup the greatest isotone homomorphic group 
image of which is the additive group R ordered in the usual way. 

25* Dubreil-Jacotin semigroups; ̂ -nomal semigroups 

Definition. We shall say that an anticone H of an ordered semigroup 
is principal if and only if it is of the form H = [*-, h]. 

THEOREM 25.1. If an ordered semigroup S admits a principal anticone 
[<-, h] then this is the only principal anticone in S and [«-, h] = )S(. 

Proof. From the proof of Theorem 24.1 we have, for any anticone H, 

xeHoH^H:{x}. 
Setting H = [<-, h], this translates into 

x e [«-, h] o [*-, h] £ [<-, h] : {x} = (h : x} 

ohe (h: xy 

oxe<Jh:K) 
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whence we have, by Theorem 24.4, 

)S( £[«-,-A] = <A:A>E)S( 
and so [«-, A] = )S(. This also establishes uniqueness. 

Definition. By a Dubreil-Jacotin semigroup we shall mean an ordered 
semigroup which admits a (necessarily unique) principal anticone. 

THEOREM 25.2. An ordered semigroup is a Dubreil-Jacotin semigroup 
if and only if it satisfies the properties 

(1) )S( is strongly neat; 
(2)(3feS) [<-,!] = )S(. 

Proof The conditions are necessary by Theorem 25.1. Conversely, 
suppose that (1) and (2) hold. From (2) we have, for some t e S for ex-
ample , ξ e <f *. t}. It follows that [<-, ξ] £ <ί · . t} and hence, by (2), that 
[<-, £] = <*". />· Now from | i < * we have | 2 / < ξί < t and so 
I2 e <ί · . ty = [<-, | ] . Thus | 2 < | and so ξ e <f · . |> and { e <f . · |>. 
It follows from this that )S( = [<-,£] = <l ' . I> =<£. ' f > and is a sub-
semigroup of 5. Adding to these results that of Theorem 24.6 we see that 
)S( is a reflexive strongly neat order ideal of S which is a subsemigroup 
of S. Since )S( = [<-, I] is reflexive we have 

(VxeS) <f . · x> = [ - , £ ] . · {x} = [<-,f] · . {*} = <l · . *>. 

We express this by saying that ξ is equi-quasiresidual and in this case write 
<f · . JC> = <f . · JC> = <f : x>. Now 

X 6 ^ ( ^ < f : ^ ) = [«-,£]:{*} = [<-,*] 

o I : Λ: exists and is ξ. 

ThusXG JE^ => | : x = ξ => χξ < ξ => xe <| : |> = [<-,|] = )5(. Hence 
i^sc £ )S( and so )S{ is indeed an anticone of S. Since )S( is principal, 
S is then a Dubreil-Jacotin semigroup. 

Definition. If 5 is an ordered semigroup and G is an ordered group 
then we shall say that an epimorphism / : S -» G is principal if and only 
if it is isotone and such that the pre-image of the negative cone of G is a 
principal order ideal of S. 
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The following result summarizes what has gone before: 

THEOREM 25.3. An ordered semigroup S is a Dubreil-Jacotin semigroup 
if and only if it admits a principal epimorphic image which is a group. Such 
a group is necessarily unique up to isomorphism. If S is a Dubreil-Jacotin 
semigroup then )S{ has a maximum element ξ which is equi-quasiresidual 
in the sense that 

(VxeS) < £ . · * > = < { · . * > 

and the unique principal homomorphic group of S is given by S\s^^ where 
£#ξ is the equivalence given by 

χ = γ(^/ξ)ο{ξ:χ} = (ξ-.y}. 

EXAMPLE 25.1. Consider the set 

= {θ,,-Ι; p,ne Z , n > 2 J , 
The relation < defined on S by 

1 1 p < q <> p = q^ n < m; 
n m 

p < 0 o / ? = 0, 
n 

is an ordering on S. Define a law of composition ® on S by 

\ nj \ m) mm {w, m) 

(P ~~ ~n~) ® ° = P " ^ = ° ® (P " ï) ; 

0 0 0 = 0 . 
It is clear that φ is commutative, associative and isotone, so that (S, ©) 
is an ordered semigroup. Now in this ordered semigroup we have certain 
residuals existing, namely 

0:0-0; (,-Ι):.-,-Ι: (, - I) : (, - I) - 0. 
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We also have 

\ n' I [<-,0] if /7 = 0. 
It follows from these observations that )S( = [<-, 0]. Now 

£)S( = {xeS; <0:x> = [<-,0]} 
= {xeS; 0: x exists and is 0} 

= {0}u {-—; n > 2I 

= hoj. 
Since for each/? we have Ip ).©(—/* 1 = 

n \ nj \ t) min{n,i} 
< 0 it follows that )S( is strongly neat. Applying Theorem 25.2 we now see 
that S is a Dubreil-Jacotin semigroup. The unique principal homomorphic 
group image of S is Sjsf0 and, as is readily seen, Sjs/0 ^ Z where Z is 
trivially ordered. 

It is clear that a particular case of a principal homomorphism is 
exhibited by a residuated mapping/: S -> G. Our next result shows how 
this arises in a simple way. 

THEOREM 25.4. Let S be an ordered semigroup and let f:S-+G be a 
principal epimorphism of S onto an ordered group G. The following condi-
tions are then equivalent: 

(1) fis residuated; 
(2) the greatest element ξ of)S( is residuated. 

Proof Suppose that (2) holds and let y be any element of G. Since/is 
surjective, there exists te S such that f{t) = y1. Thus 

fix) * y of (pet) = /(*)/(0 =f(x)y-1 < 1 
OXt < ξ 

ox < ξ: t 

whence it follows that/is residuated with f+(y) = ξ : t. 
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Conversely, suppose that fis residuated. Then,/being surjective, 

xt < ξοf(x) f(t) =fixt) </(f) = 1 

o/ix) * i/wr1 

ox<ruit)Y\ 
whence ξ : t exists and i s / + [fit)]"1. 

Definition. We shall say that a Dubreil-Jacotin semigroup is strong if 
the element ξ is residuated. 

Before giving a convenient characterization of strong Dubreil-Jacotin 
semigroups, we prove a preliminary result which will also be of use to us 
later. 

THEOREM25.5. Let S be an ordered semigroup. If te S is residuated 
then each right residual oft is residuated on the right and each left residual 
of t is residuated on the left. 

Proof We give the proof for left residuals. Since t is residuated on the 
left, given any x, y e S the set of elements ze S satisfying zy < t ' . x 
is not empty; for it '. yx)yx < t and so it ' . yx)y < t '. x. Now for 
any z satisfying zy < t *. x we have zyx < t and so z < t ' . yx. This 
then shows that it ' . x) ' . y exists and is t '. yx. 

THEOREM 25.6. An ordered semigroup S is a strong Dubreil-Jacotin 
semigroup if and only if it satisfies the property 

(3? e S) ξ is residuated and [<-, ξ] = )5(. 

Proof. The condition is clearly necessary. Conversely, suppose that it 
is satisfied and let us show that [<-,ξ] is strongly qpat. For each xe S 
we have, ξ being residuated, (£ : x) x e [«-, ξ] and so [<-, ξ] is neat. Now, 
as observed in the proof of Theorem 25.2, x e E)S( if and only if ξ : x 
exists and is ξ. Thus by Theorem 25.5 we have 
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and so ξ : (ξ : x) x = ξ whence {ξ : x) x e E)Si. Hence E)Si is also neat. 
The result now follows from Theorem 25.2. 

The situation so far may be summarized as follows: 

THEOREM 25.7. An ordered semigroup S is a strong Dubreil-Jacotin 
semigroup if and only if it admits an ordered group as an image under a 
residuated epimorphism. Such a group is necessarily unique up to iso-
morphism. If S is a strong Dubreil-Jacotin semigroup, then )S( has a maxi-
mum element ξ which is equiresidual and the unique residuated homo-
morphic group image of S is given by the closure equivalence Αξ. 

THEOREM 25.8. Let S be an ordered semigroup and let R be an equi-
valence relation on S such that S/R is an isotone homomorphic group image 
ofS. The following conditions are then equivalent: 

(1) S is a strong Dubreil-Jacotin semigroup and R is responsible for the 
unique residuated homomorphic group image of S; 

(2) one of the classes modulo R admits a maximum element which is 
residuated. 

Proof. That (1) => (2) is immediate from Theorem 25.7. To show that 
(2) => (1), let one of the classes modulo R admit a maximum element t 
which is residuated. Let e be any element of the unit class modulo R. 
From et = t(R) we deduce that et < t and hence that e < t *. t. It fol-
lows that et < (t '. t)t < t. Now the classes modulo R are convex (for 
R is regular) ; we therefore deduce that et s (t ' . t) t(R) and so, SjR being 
cancellative, e = t · . t(R). In a similar way we can show that e=t.' t(R). 
This then shows that the unit class modulo R admits a maximum element, 
namely the element ξ = t. · t = t# .t. The element! is also residuated by 
virtue of Theorem 25.5. Now let x be any element of S9 let its class modulo 
R be 2£ and let x* be any element of X"1. From xx* == ξ(Κ) we have 
xx* < ξ so x* < ξ . * x, giving xx* < x (ξ. · x) < ξ. From the convexity 
of the classes we then deduce that xx* = x (ξ . * x) (R). This then shows 
that if x e 9C then ξ .' xe X"1. Similarly, we can show that ξ '. xe X"1. 
It follows from this that x (ξ . ' x) e XX"1 = S, the unit class, and 
that ξ ". x (ξ . ' x) e ê~χ = ê. Now let p e <x ". x>. We have px < x 



266 RESIDUATION THEORY 

< ξ '. (ξ .' x) whence it follows that 

But ξ is the maximum element of S. Thus p < ξ and hence <x *. x) 
£ [«-» fj. Since we have ξ2 = f(R) and hence ξ2 < ξ and so ξ < ξ ' . ξ, 
we conclude that )£( = [<-, f ] and hence that 5 is a strong Dubreil-
Jacotin semigroup. That R coincides with Αξ is shown as follows. R being 
compatible with multiplication, we have 

x = y(R)=>x(£:x) = ξ = j,(f : x)(R) 

=> y (I : x) < ξ 

=>ξ:χ <ξ:γ 

and, similarly, ξ:γ < ξ:χ. Thus x = y(R) => x = >>C45) and so j? < Λ .̂ 
Since we have seen that xe 3£ =>ξ:χβ 9C~1, we have £: (£: x) e £Γ. 
It follows that x = J C ^ ) =*► x = ξ : ( | : x) = ξ:(ξ: y) = y(R) and so 
Αξ < R. 

EXAMPLE 25.2. Let R_ denote the set of real numbers which are <0, 
and consider the set S = R_ x Z ordered in the usual cartesian manner. 
Define a multiplication on S by 

(AO(?J ) = ( - M + . / ) . 

It is readily seen that S is an (abelian) ordered semigroup. In this ordered 
semigroup we have 

(0 if r < - 1 ; 
<(r, *):(/>,*)> = 

U- , ( < U - 1)] if r> - 1 . 
It follows that for each (r, Â:) we have <(r, k) : (r, k)} = 0 or [«-, (0, 0)]. 
Thus )S( = [<-, (0,0)]. Moreover, (0,0) is residuated. By Theorem 25.6, 
S is a strong Dubreil-Jacotin semigroup. It is readily seen that β\Αξ cz Z. 

THEOREM 25.9. Let S be a residuated semigroup and let 

S' = {x . * x; xeS}9 S={x'.x;xeS}. 

Then S' and S ' admit the same set of upper bounds. 
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Proof Let t e S be an upper bound of S' . Then we have 
(Vx,yeS) (y.x) .'(y.x)<t. 

But, using Theorem 22.3(5), we have (y ' . x) (x '. x) < (y ' . x) x ' . x 
< y *. x and so 

(Vx,yeS) x '. x < (y '. x) .' (y '. x). 

It therefore follows that t is also an upper bound for S '. In a similar way 
we can establish the converse. 

Definition. We shall say that a residuated semigroup S admits a bi-
maximum element ξ if and only if ξ = max S' = max S \ 

THEOREM 25.10. /n Ö residuated semigroup S the following conditions 
are equivalent: 

(1) S is a (strong) Dubreil-Jacotin semigroup; 
(2) S admits a bimaximum element; 
(3) {x e S; x2 < x} admits a maximum element. 

Moreover, if S has a neutral element then each of the above conditions is 
equivalent to 

(4) S admits a greatest idempotent. 

Proof. Since residuals exist, we have 
)S(=U[+-,x.'x]u{J[+-,x-.x]. (*) 

If (1) holds then )5( = [<-,£] and so (Vx e S) x .' x < £andx · . x < ξ 
with! = ξ ' . ξ = ξ . ' ξ. It follows that £is the bimaximum element of S. 
Conversely, it is clear from (*) that if a bimaximum element ξ exists then 
)S( = [<-, ξ] and (1) follows by Theorem 25.6. 

Now let J = {x e S; x2 < x}. For each x e S we have 
(x ' . x) (x '. x) < (x '. x) x ' . x < x ' . x 

and so x ' . x e J. Thus S '^ J and likewise S ^ J. If now / has a 
maximum element e then from e2 < e we have e < e ' . e e S'* * ç J 
whence e = e ' . e and likewise e = e .' e.lt follows from this that e is 
the bimaximum element of S. Conversely, if! is the bimaximum element, 
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then ξ e S' n S'' £ / ; and for every x e /we havex < x '. x < max*S ' 
= ξ. Thus ξ is the maximum element of J. 

Finally, suppose that S has a neutral element 1. From lx < x we 
deduce 1 < x ' . x and hence that x *. x < (x ' . x)2. But we have seen 
above that x m. xeJ. Hence x '. x is idempotent. Denoting the set of 
idempotents in S by 7, we thus have S''* £ I and likewise S'' ^ L Now 
if S admits a greatest idempotent e we have e < e *. e whence e = e '. e 
and likewise e = e . * e. It follows that e is the bimaximum element of S. 
Conversely, if ξ is the bimaximum element of S, then ξβS ' n S' ^ I 
and so ξ is idempotent. Since ξ is the greatest element of / and since 
I c J5 it follows that f is also the greatest element of I. 

For the remainder of this section we shall restrict our attention to 
residuated Dubreil-Jacotin semigroups. As we have seen, in such a semi-
group, the unique residuated homomorphic group image is given by the 
equivalence of type A associated with the (equiresidual) bimaximum ele-
ment ξ. This equivalence is thus cancellative with respect to multiplica-
tion in the sense that 

xa = y a (Αξ) => x = )>(Αξ). 

For the purpose of obtaining useful alternative characterizations of resi-
duated Dubreil-Jacotin semigroups, we shall now investigate cancellative 
closure equivalences on a residuated semigroup. We shall make use of the 
following notation. The set of closure equivalences on S which are com-
patible on the right [resp. left] with multiplication will be denoted by Ω. 
[resp. .Ω] and the set of closure equivalences on S which are cancellative 
on the right [resp. left] with multiplication will be denoted by χ. [resp. .χ], 

THEOREM 25.11. Let S be a residuated semigroup, IfR is a closure equi-
valence on S with associated closure mapping f then the following conditions 
are equivalent: 

(1) Re.% [resp. Rex.]; 
(2) (VU, xe S) a = f(xa) . · x(R) [resp. a = f(ax) '. x(R)]; 
( 3 ) / M <f(cb)^f(a) <f{b) [resp.f(ac) <f(bc)^f(a) <f(b)]. 

Proof. Suppose that (1) holds. From xa <f(xa) we deduce that 
a < f(xa) .# x and so xa < x[f(xa) . ' x] <f(xa). The classes modulo/? 
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being convex, it follows that xa = x [f(xa) . * x] (R). Applying (1), we 
then obtain (2). Conversely, suppose that (2) holds and let xa = xb (R). 
Then f(xd) = f(xb) and S O Û = f(xa) . * x = f(xb) . · x s b(R), show-
ing that (1) holds. 

To show that (2) => (3), we observe that from f{ca) < f(cb) we have, 
using (2),/(a) =f[f(ca) . · c] <f[f(cb) . · c] =/(6) . Conversely, since 
x U(xa) -' x] ^ f(xa) we have/{x [/(xa) . ' x]} < f[f(xa)] = f(xd) so 
that, by (3), f[f(xd) . " x] </(a) . But a <f(xa) . ' x and so /(a) 
< f[f(xa) . · x]. It follows that/(a) = f[f(xd) . · x] and this estab-
lishes (2). 

COROLLARY. R e ,χ => (Vx e 5) Fx < R. 

Proof. If Re .χ then by the above result we have 
(Va, x e S) a = f(xa) . * x(R) 

and the convexity of the classes modulo R gives 
(Va, x e 5) α = xa .# x(if)> 

which may be expressed in the form / = / o φΧ9 where ç>x is the closure 
mapping associated with Fx. It follows by Theorem 4.4 that Fx < R. 

THEOREM 25.12. If S is a residuated semigroup and R is a closure equi-
valence on S with associated closure mapping / , the following conditions are 
equivalent: 

(1) Re.Q n .% [resp. ReQ. n χ.]; 
(2) (Va, xeS) f(a) = f(xa) . · x [resp. f(a) = /(ax) · . x]. 
Pröo/. Suppose that (1) holds. Then from Re .χ we deduce, using 

Theorem 25.11, that 
(Va, x e S) a = /(xa) . · x(Ä). 

But from i?e.i3we deduce, using Theorem 22.10, that / (xa) . ' x belongs 
to the closure subset associated with R, so that 

(Va,xeS) /(a) = / [ / (xa ) . · x] = /(xa) . · x. 
Conversely, suppose that (2) holds. The equality/(a) = / (xa ) . * x implies, 
on the one hand, that x/(a) < /(xa), so that, by Theorem 22.9, Re.Q; 
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and on the other it implies that a = f(xa) . " x(R) so that, by Theo-
rem 25.11, we also have Re.%. 

THEOREM 25.13. If S is a residuateci semigroup and x is an arbitrary 
element ofS, the following conditions are equivalent: 

(1) ΑΧΕ.Ω ηΩ. n .% [resp. XA e ,Ω n Ω . n %.]; 
(2) QfteS) Ax = Ax/t [resp.xA = x.tA], 

Proof Note that by Theorem 22.12 we have ΑΧ€Ω. for each xe S. 
Applying Theorem 25.12, we have Axe .Ω n .% if and only if 

(Va, te S) x ' . (x . * a) = [x ' . (x . ' ta)] . * t. 

Now the right-hand side of the above is, by Theorem 22.3, none other than 

(x ." t) · . [(x . · t) .' a]. 

Fixing momentarily x91 the equality 

(VÖ e S) x · . (x . · a) = (x . · t) ' . [(x . ' t) . * a] 

is clearly equivalent to the statement Ax = Ax .t. Hence (1) and (2) are 
equivalent. 

THEOREM 25.14. A residuated semigroup S is a Dubreil-Jacotin semi-
group if and only if ' #. u .χΦ 0 . 

Proof If S is a Dubreil-Jacotin semigroup, then clearly A^e.%. Con-
versely, suppose that R e ,χ. Then, just as in the proof of the corollary 
to Theorem 25.11, we have 

(Va, xe S) a = xa .' x(R), 
so that 

(V*,*eS) f(b) = xf(b).'x(R). 

But f(b) is maximum in its class modulo R and/(Z>) < xf(b) . * x. It fol-
lows that 

0fb,xeS) f(b) = xf(b).'x, 
and so 

(y*, x € s) m ·. Ab) = [xf(b). ■ x] ·. m 
= Wib)-.fib)}.-x 
> x . · x. 
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Thus S' (and likewise S ) is bounded above. Now from the proof of 
Theorem 25.9, 

1Kb) '.fib)] . · [f{b) '.f(b)) >f(b)'.f(b), 

and so a bimaximum element exists, namely ξ = [fib) ' . f(b)] . * [fib) 
• .f(b)]. It follows by Theorem 25.10 that S is a Dubreil-Jacotin semi-
group. 

Definition. If S is a residuated semigroup we say that x e S is right 
A-nomaloid [resp. left A-nomaloid] if and only if SjAx [resp. S/XA] is a 
group. We say that x is A-nomaloid if it is ^4-nomaloid on both the right 
and the left. These notions coincide when x is Asymmetric in the sense 
that Ax = XA and, more particularly, when x is equiresidual or S is 
abelian. 

THEOREM 25.15. If S is a residuated semigroup then the following condi-
tions concerning xe S are equivalent: 

(1) x is A-nomaloid on the right [resp. left]; 
(2) S is a Dubreil-Jacotin semigroup and Ax = Αξ [resp. XA = ξΑ]; 
(3) (VieS) Ax = Ax.t = Ax.tt [resp.XA = xrtA = x.tA]. 

Proof. The equivalence of (1) and (2) follows immediately from the 
result of Theorem 25.8. Suppose now that (2) holds. From Ax = Αξ we 
deduce that every left residual of x is a residual of ξ and conversely, so 
that (W e S) (βρ e S) x · . t = ξ : p. Now by Theorem 25.13 we have 
Αξ:ρ = Αξ and by the hypothesis Αξ = Ax. It follows that (Vi e S) Ax. t 

= Ax. Moreover, since Ax = Αξ we have ^ e , û n f i , n . % and so, 
again by Theorem25.13, (yteS) Ax = Axrt. This then shows that 
(2) => (3). Conversely, if (3) holds, then by Theorems 25.13 and 25.14 it 
follows that S is a Dubreil-Jacotin semigroup and therefore admits a 
bimaximum element ξ. Since by hypothesis Ax. ^ = Ax e ,Ω η Ω. π .χ, 
we have, by Theorem 25.13,̂ 4*. ξ= Aix. ξ} .(x. ^.Now(x ". ξ) . * (x · . ξ) 
= [x . ' (x ' . ξ)] ' . ξ > ξ '. ξ = ξandso,|beingthebimaximumelement, 
we deduce that ix ' . ξ) . " (x · . ξ) = ^. Combining the above observations, 
we obtain Ax = Αξ. This then establishes (2) and completes the proof. 

Definition. If S is a residuated semigroup then we shall say that xe S 
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is right [resp. left] A-nomal if it is right [resp. left] ^-nomaloid and is the 
greatest element in its class modulo Ax [resp. XA], 

THEOREM 25.16. In a residuated semigroup S the following conditions 
are equivalent: 

(1) xeS is right A-nomal; 
(2) x e S is left A-nomaL 

Proof We show first that the condition (2) is equivalent to the condi-
tions 

(a) (3k e S) x = x . · xk; 

(b) (W e S) x . · x = (x . * 0 *. (x . ' 0 · 
In fact, suppose that (a) and (b) hold. From (b) we deduce that 

(VteS) x . · x = [x *. (x . ' t)] . · t > t . ' t 

and so a bimaximum element exists, namely ξ = x . * x. Now by Theo-
rem 22.10 we have XA < x /XA. It therefore follows from (a) that 
XA = Xm-XA; for (a) implies that every right residual of x (which is maxi-
mum in its class modulo XA) is a right residual of x . * x and so is maximum 
in its class modulo xrxA. It follows from the above observations that 
XA = ξΑ and so, by Theorem 25.15, x is ^f-nomaloid on the left. Using (a) 
again, we see that x is ^4-nomal on the left. Conversely, suppose that x is 
.4-nomal on the left. Then in the first place we have 

(W e S) XA = xrtA = x.mtA. 

Since x is maximum in its class modulo XA it is also maximum in its class 
modulo* rxA. Consequently there exists k e S such that x = (x . * x) . · k 
= x . * xk, so that (a) holds. Now x is also maximum in its class modulo 
every x. tA and so, for each te S, 

x . * x = {(x *. t) .■ · [(x *. t) '. x]} . ' x 

= (X: " . t) . · [(X ' . 0 · . X] X 

> (x '. t). · (x · . 0 

= [x . · (x · . t)] · . t 
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It follows that x . · x is an upper bound for S · and indeed that x . · x = ξ. 
Using (a) and the fact that ξ is equiresidual, we then have 

(V* eS) (x . " 0 ". (x . ' t) = (f : to) ' . (f : to) 

= f ·.({ *.to)to 

from which it follows that 

(Vi e S) (x . * 0 · . (x . * 0 = ξ = x . " x, 
which is (b). 

This being the case, we see that if x is ^4-nomal on the left then 
x . · x = ξ and (3k e S) x = ξ : k. Consequently 

x ' . x - ({: *) · . (I : k) = £ · . (I · . k)k > ξ · . f = I , 

so that we also have x *. x = f. Thus, for each teS, 

(x-.t).-(x-.t)=[G:k)-.t].-[(£:k)-.t] 

= (g:tk).-Q£:tk) 

= ξ .-tk(S.- tk) 

>ξ.'ξ 

= 1, 
whence 

(Vf e S) (x '. t) . · (* · . 0 = ξ = x · . x. 

Since this is the condition which is dual to (b), we conclude that x is also 
^4-nomal on the right. A similar proof shows that (1) => (2). 

Remark. Because of the previous result, we shall use the term A-nomal 
to describe an element which is Λί-nomal on the left or on the right. 

Definition. We shall say that a semigroup is A-nomalif it is residuated 
and admits an ^4-nomal element. It is clear from Theorem 25.15 that the 
notions of v4-nomal semigroup and residuated Dubreil-Jacotin semigroup 



274 RESIDUATION THEORY 

coincide. For the purpose of later classifications of residuated semigroups, 
we shall use the term ^4-nomal henceforth. 

THEOREM 25.17. Let S be an A-nomal semigroup. Then xeS is A-nomal 
if and only if it is a residual of the bimaximum element ξ. Moreover, the set 
of A-nomal elements of S forms a group with respect to the law of composi-
tion (ξ: χ) ο(ξ: y) — ξ: yx. This group is isomorphic to S/Αξ and an 
A-nomal element is equiresidual if and only if its class modulo Αξ belongs to 
the centre ofSjAç. 

Proof It is clear from the proof of the previous result that if x e S 
is ^4-nomal then x is a residual of ξ. Conversely, if x = ξ : y then we 
have Ax = Αξ:γ = Αξ and so, by Theorem 25.15, x is ^4-nomaloid on the 
right. Being a residual off, x is maximum in its class modulo Αξ, hence 
maximum in its class modulo Ax and consequently ^4-nomal. 

Now since Αξ is compatible with multiplication we have no trouble in 
verifying that the assignment (ξ : x) o (f : y) = ξ : yx yields a law of com-
position on the set G° of ^4-nomal elements. Consider now the mapping 
/ : G° -» S/Αξ described by setting / (£ : x) = (xjA^1. This mapping is 
clearly a bijection. Now S/Αξ is ordered to the prescription 

x^<ylA^)S(:{y}^)S(:{x} 

oS:y < ξ:χ, 

whence it follows that/is isotone. Moreover, 

f[(Ç:x) o(|:y)] = f(£:yx) = Ö*M4)-* = (x /^)" 1 ( j / ^ ) " 1 

= / ( f : x ) / ( f : j » 

and so / i s also a hojnomorphism. It follows that/is an isomorphism and 
so G° is a group with neutral element ξ. 

Finally, the ,4-nomal element ξ : x is equiresidual if and only if 

ÇiyeS) {S:x).-y = iS:x)'.y. 
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Now using the fact that ξ is equiresidual, the left hand side of the above 
is ξ . · xy and the right-hand side is ξ '. xy. The condition that ξ : x be 
equiresidual is therefore 

(YyeS) (S:x)o(S:y) = (S:y)oQ:x), 

in other words that ξ : x belong to the centre of G°. By virtue of the above 
isomorphism, this is equivalent to saying that {xjA^"1 belongs to the 
centre of S/Αξ. The proof is completed by remarking that the class of 
ξ : x modulo Αξ is none other than (χ!Αξ)~

1, a point which was observed 
in the proof of Theorem 25.8. 

EXAMPLE 25.3. Consider the residuated semigroup as described in 
Exercise 23.5. The unit class modulo Z of this semigroup is a residuated 
subsemigroup and is given by 

( E = {(x, y); x,y integers with x < 0} ; 

I (x, y) < (χ', y') o x < χ', y < y', 

the multiplication being given by 

(x, y) (u, v) = (min {x, u}, y + v*), 

where v* = kN < v < (k + l)N with N a fixed integer > 1. The resi-
duals are given by the formulae 

l(c,d- è*) if a > c, 

\(c,(d-b)* + N-l) if a>c. 

In this residuated semigroup we have 

(c, d) ' . (c, d) = (0,d- rf*), (c, d) . · (c, d) = (0, N - 1) 

and so S has a bimaximum element, namely (0, N — 1). By Theorem 25.17 
the ^4-nomal elements are those of the form (0, N — 1) : (a, b) 
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= (0, N - 1 - è*). The classes modulo Αξ with N = 4 for example are 
as follows : 

{ l l l l l l l l l l 
4 11 M I M 1 1 1 

EXAMPLE 25.4. Let /be a commutative integral domain and let K be its 
field of fractions (so that we can consider the elements of K as of the 
form a\b where a, be I with b Φ 0). By a fractionary ideal of / we mean 
any i-submodule a of the /-module K such that the elements of a admit 
a common denominator d φ 0 in / ; more precisely, if a has the property 
(3d e I\ {0}) Ja £ / . Thus if a is a fractionary ideal we have a = (1 \d) b 
where b is an ordinary ideal of /. For example, every ordinary ideal of / 
is a fractionary ideal (take d = 1). Every finitely generated /-submodule a 
ofÄ^is also a fractionary ideal; for if {al9..., an} is a system of generators 
of a then each at can be written in the form at = bt\di9 where bt9diel 
with dt Φ 0, and if we define d = d1d2...dn then clearly d ^ 0 and 
a Ç (lid) I. In particular, if a has but one generator, say x = α\ά(άΦ 0), 
then /x is a fractionary ideal called the principalfractionary ideal generated 
by x. It is clear that the set of all fractionary ideals of /, ordered by set 
inclusion, forms a lattice-ordered semigroup under the laws 

(a, b) -> a + b [union], (a, b ) - > a n b , (a, b) -> ab. 

In particular the set PF* (I) of all non-zero principal fractionary ideals 
forms an ordered group (the neutral element being / l = / and the inverse 
of Ix being Ix~1). This ordered group is dually isomorphic to the quotient 
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group K*jU where X* = # \{0} and U is the group of invertible ele-
ments of /. [To be more explicit, if we let /* = / \{0} and write x\y 
o (3p G /*) xp = y then the relation = defined by 

x = yox\y and y\x 

is an equivalence relation which is none other than the relation xy~1 e U. 
We can thus order K*\U by setting 

x\U < ylUox\y; 

and since x\y olx ^ Iy9 the dual isomorphism follows.] Now let F*(7) 
denote the set of non-zero fractionary ideals oil. We note that F*(7) is a 
residuated semigroup. [To see this, it is sufficient to show that if 
a, b e F*(I) then a : b = {x e K; xb ç a} is also an element of F*(7). For 
this purpose, let d Φ 0 be such that a £ (lid) I and let b e b\{0}; then 
db ( a : b ) ç à ç / . Moreover, if a e a\{0} and d'b ç / then ad'b ç a 
so that a : b φ 0.] Since for each a e F*(7) there exists d Φ 0 such that 
a £ W"1, the set of principal fractionary ideals which contain a is not 
empty. Define a relation R on F*(7) by setting 

aE=bCR)<^>Pr(a) = Pr(b) 

where Pr (a) denotes the set of principal fractionary ideals of / which 
contain a. Since F*(7) is residuated, we observe that 

/xePr (a)<^x -1a £ I ox'1 e I: a 

and so it follows that the relation R defined above is none other than 
jR = Aj. We say that a e F*(I) is a divisorial ideal if and only if a = a° 
where by a° we mean the intersection of all the principal fractionary ideals 
which contain a. It is clear that for each a e F*(/) we have a ^ a° and 
a = a°(if). It follows that the divisorial ideals are none other than the 
greatest elements in the classes modulo Ατ. Let us now show that the 
following conditions are equivalent: 

(1) F*(/)Mi is a group (whence, by Theorem 25.8, F*(i) is an^-nomal 
semigroup in which the ̂ f-nomal elements are the divisorial ideals) ; 
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(2) 7 is completely integrally closed in the sense that if x e K is such 
that all the powers xn (n > 0) are contained in a finitely generated 
/-submodule of K then xel. 

Suppose first that F*(I)lAj is a group. Let s e K be such that I[x] is 
contained in a finitely generated /-submodule M of K. Since M is an 
element of F*(7), so also is I[x], Let I[x] = a; then we have xa £ a 
and IXSL c a s o that, F*(/)/^j being a group with neutral element IljAI 

= 7/^4j, we have 7*/>4j < 7/^4j. It follows that 

Ix = (Ix)° c 7° = (71)° = 71 = 7 

and hence that x = lxel. We have thus shown that if F*(J)\Ai is a 
group, then 7 is completely integrally closed. Conversely, suppose that 7 
satisfies (2). To show that T^T)/^/ is a group, it is sufficient to establish 
the following identity in the case where a is divisorial: 

and since a (7: a) s 7 it is sufficient, in view of the fact that ΑΣ = R, 
to show that every principal fractionary ideal which contains a (7 : a) also 
contains 7. Suppose then that a (7: a) £ Ix'1 and let yeK* be such 
that a £ Iy. Then j - 1 a £ (7: a) a £ 7x_ 1 and so xa ^ Iy. Thus every 
principal fractionary ideal which contains a also contains xa. Since, by 
hypothesis, a is divisorial, we deduce that xa £ a. Consequently, for 
each positive integer n, we have xna £ a. Now let xl9x2 be elements 
of K* such that ^ e a ç / ^ · Then for each positive integer n we have 
xnx1 elx2 which gives x?elx2xî1. Applying the standing hypothesis, 
we deduce that xel so that Ix £ 7 and I ^ Ix'1. This then establishes 
the required property. 

EXAMPLE 25.5. Let S be a semigroup and define a multiplication on 
P(S) by X F = {xj; * 6 X, j> e F} , X 0 = 0 = 0X. Ordering P(S) by 
set inclusion, we obtain an ordered semigroup which is residuated ; for 
example, we have X .' Y = {ZG S; Ci y GY) zyeX}, though this may 
be 0 . It is clear that P(S) is an ^4-nomal semigroup with bimaximum 
element ξ = S. In this case P(S)/-4{ is trivial in the sense that it consists of 
a single element. We shall therefore consider a residuated subsemigroup 
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of Ρ(5) which contains neither S nor 0 . Given non-empty X, D e P(S) 
we shall say that X is 

D-transportable if D . · XΦ 0 and D '. ΧΦ 0; 

and that X is 

D-neat if X , ' D ^ 0 , X · . D # 0 and (X . * D) · . D Φ 0 . 

Finally, we shall say that X is a D-complex if it is non-empty and both 
D-transportable and D-neat. 

We begin by observing that: 
If D is a subsemigroup of S which is equiresidual in P(S) then for any 

D-transportable subset X of P(S) the subsets XD, DXand DXD are D-com-
plexes, 

In fact, from i ) 2 g ] ) w e have D e D:D and so 

( l ) 0 c D M ç ( D : i ) ) M = i ) : DX; 
( 2 ) 0 c ( I , « i ) ) i ) c i i ) . · ] ) ; 
( 3 ) 0 c I g I D ' , i ) ; 
(4) 0 cz X .· D c (X m- D) D '. D c (XD .· D) *. D, 

which shows that XD is a D-complex; similarly, so also are DXand DXD. 
Let us now show that: 
If D is a subsemigroup of S which is equiresidual in P(S) and such that 

D: S = 0 , then the set C(D) of D-complexes is a residuated subsemigroup 
ofP(S) in which residuals coincide with the corresponding residuals in P(S). 
Moreover, 0 φ C(D) and S φ C(D). 

It is clear that neither 0 nor S can be D-complexes. Moreover, 
C(D) Φ 0; for D2 ^ D gives D s D:D and hence D ^(D:D):D 
so that D e C(D). Now let X9 Y e C(D); then 

( l ) 0 c (D: 7 ) ( D : r > ç ( D : 7) [(D:D) · . X] = (D: 7)[(D:Z). ' D] 
<= D [(D : X) . ' D] . ' 7 £ (D : X) . * Y= D:XY; 

( 2 ) 0 c I ( y , D ) ç J F ' . Z ) ; 
( 3 ) 0 c ( I , ' i ) ) 7 ç I 7 / i ) ; 
(4) 0 e (X . · D) (7 · . D) s X ( 7 · . D) . · D s (X7 ' . D) . · D, 

10 BRT 
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whence it follows that XYe C(D) and hence that C(D) is a subsemigroup 
of P(S).Also, 

( 5 ) 0 c ( D : 7 ) ( I , ' i ) ) ç i ) ( I / i ) ) / r ç I / 7 ; 
( 6 ) 0 c ( / ) : I ) F g ( i ) : I ) [ I ' . ( I . ' 7 ) ] ç ( / ) : J ) I \ ( I , ' r ) 

< = / > : ( * . · Y); 
(7 )0cz (Z) : F) [ (Z . · D)· .D] g=(D: Y) (X . ' D) '. D 

ç [ D ( I . ' D ) ' . y ] ' , i ) ç ( I . ' r ) ' . i ) ; 
(8) 0 c (D : Y) (X . · D) s [(D : D) · . 7] (JT. ·/)) = ( /) : FD)(Z. ■ Z>) 

s D (X . · / ) ) . · y » s (X . · y ) . · D; 
(9) 0 c (D: Y)[(X ·. D) .· D] ç (D: YD) [(X'.D).· D] 

ç=(X'.D) .' YD=[(X.' Y) .' D]'.D, 

whence it follows that X.' YeC(D). Similarly, we can show that 
X *. Y e C(D) and so C(D) is a residuated subsemigroup of P(S) in which 
residuals coincide with the corresponding residuals in P(S). 

By a principal D-transportable subset we shall mean a D-transportable 
subset of the form X = (x) = {x, x2, x 3 , . . . , xn,...}. Let us now prove: 

If D is a subsemigroup of S which is equiresidual in P(S) and such 
that D : S = 0 then the following conditions are equivalent: 

(a) C(D) is an A-nomal semigroup with bimaximum element D; 
(b) every principal D-transportable subset ofP(S) is contained in D. 

Suppose that (b) holds. Let M be anyD-complex and let x e M . * M. 
Then Mx £ M and so, for each positive integer n, Mxn ^ M. It follows 
that X = {x9 x

2,..., xn,...} ^ M .' M and hence that X is D-trans-
portable; for 0 <z D : (M . * M) c D : X. By the hypothesis (b) we de-
duce that xeD and hence that M . * M ç D s D : D. The statement (a) 
then follows from Theorem 25.10. Conversely, suppose that (a) holds 
and let X = {x, x2,..., xn, . . .} be any principal .D-transportable subset. 
Since xX ç l w e have xXD £ ZD. But, as was shown previously, XD is 
a D-complex. It follows by (a) that xe XD '. XD ^ D and so X ^ D 
as required. 

Finally, let us note that C(D) is ^4-nomal in the case where D is 
unitary in the sense that it satisfies the property 

if dxeD with deD then xeD. (*) 
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For, given any D-transportable subset of the form X = {x, x2,..., xn,...} 
we have D : X φ 0 , and so there exists an element a such that aX £ D. 
For any positive integer p we therefore have axp = deD and hence 
dx = axp+1 e aX e D. We deduce from (*) that x e D and hence that 
X e D. It then follows from the equivalence of (a), (b) above that C(D) 
is ^4-nomal with bimaximum element D. 

E X E R C I S E S 

25.1. Let T be the subset of R x R given by 

Γ = {(0,0)} u{(x,y);x<0,yeZ}. 

Show that, under the ordering inherited from R x R and the multiplication defined by 

(P, i) (qj) = (min [p, q}, i +j), 

T forms an ordered semigroup in which 

Ì
{ ( f , i - j ) ; f < 0 } if q<p and i # y ; 

[<-,(0,0)] if q<p and i = j ; 

[*-,(P, *"- / ) ! if q>P-

Deduce that r i s a Dubreil-Jacotin semigroup, but is not strong. 
25.2. Endow the ordered set TOf the previous exercise with the following multipli-

cation: 
0>,0 (<?,/) = ( - M + 7 ) . 

Show that T becomes an ordered semigroup in which 

Î
0 if p < - 1 ; 

[4-, (0,0)] if p> - 1 and / = / ; 
{(', * - / ) ; * < 0} if p>-~l and / # / . 

Deduce that r is a Dubreil-Jacotin semigroup, but is not strong. Now consider the set 
5 = Γ υ ( ( 0 , « ) ; « = ±1, ±2, . . .} and endow S with the same multiplication as 
defined above. Show that S is a strong Dubreil-Jacotin semigroup. 

25.3. Prove that an inverse semigroup is a Dubreil-Jacotin semigroup if and only 
if the unit class modulo Z admits a maximum element. 

25.4. Let S be an ^4-nomal semigroup. Prove that the following conditions con-
cerning x e S are equivalent: 

(1) Ax < Αξ; 
( 2 ) | = * · . ( * . · | ) . 
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Writing ** = x . ' ξ, show that if x . * ** = x '. x* then Ax< Αξ. Deduce that in an 
abelian /i-nomal semigroup every equivalence of type A is finer that Αξ. By referring 
back to Example 25.1, show that this is not necessarily the case when S is non-abelian. 
More precisely, show that in that example <C,<Î)4 ^ ξΑ for all (c, d)eS but that 
AiCtd) < A if and only if d s JV — 1 (mod iV). 

25.5. Let 5 be an Λ-nomal semigroup and let E = {JC e 5; * Ξ ξ(Αξ)}. Prove that 
>4ξ may be described by 

a ΞΞ ο(Αξ) o (3*, >> e E) ax = yb. 

25.6. If S is a residuated semigroup which admits a maximal element, prove that S 
is an Λ-nomal semigroup in which Αξ = Z. 

25.7. In this exercise we give a method of constructing, for any given ordered 
group G, an ̂ 4-nomal semigroup S such that εΐΑξ osi. G. Let L be an n-semilattice which 
is residuated with respect to n [e.g. any Boolean algebra]. Show that L has a maximum 
element nL. Endow GxL with the following ordering and multiplication: 

j (gtx)<(h9y)og<htx<y; 

I (g,x)(Ky) = (gh,x ny). 
Show that GxL forms in this way an Λ-nomal semigroup with bimaximum element 
(IG, ^L)· Show that the Λ-nomal elements are precisely those of the form (g, nL) where 
g e G and deduce that 

(GxL)M« ^ G . 

25.8. Let G be an ordered group and let N be its negative cone. Prove that 

(VxeG) x-1N=Nx~1 

and deduce that N is equiresidual in P(G). Show also that N:G = 0 . Prove that for 
any subset AOf G the following conditions are equivalent: 

(1) JTis bounded above in G; 
(2) Jf is ΛΓ-transportable. 

An ordered group G is said to be completely integrally closed if whenever any subset of 
the form X = {x, JC2, ..., JCB, ...} admits an upper bound then it admits 1G as an upper 
bound. Prove that the following conditions are equivalent: 

(3) G is completely integrally closed; 
(4) the set C(N) of JV-complexes is an Λ-nomal semigroup with bimaximum ele-

ment N. 

26· Particular types of ,4-nomal semigroups 

In this and the following two sections we shall be concerned with a 
systematic classification of particular types of ^4-nomal semigroups. We 
shall use the notation Ω .x [resp. Ω. x] to denote the set of closure equi-
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valences on a residuated semigroup S which are compatible on the right 
with respect to residuation on the right [resp. left]; and the notation%rx 

[resp. χ. x] to denote the set of closure equivalences which are cancellative 
on the right with respect to residuation on the right [resp. left]. 

THEOREM 26.1. Let S be an A-nomal semigroup with bimaximum ele-
ment ξ. The following conditions on ξ are equivalent: 

( 1 ) ^ 6 ΰ , , η ΰ , , ; 
(2)(V*eS) x.· ξ=Ξχ = χ·.ξ(Αξ); 
(3) Αξβχ..χηχ.χ. 

Proof. Suppose that (1) holds. If/denotes the closure mapping asso-
ciated with Αξ we have, by Theorem 22.11, 

(Vx,yeS) f(x).'y = f(x.-y), fix) '. y = / ( * ■. y). 

In particular, 

(Vxe 5f) /(*) . · ξ = / ( * . · f) s x . · ξ(Α$. 

Nowsince/(x) . · ξ = [ξ: (£: x)] . · ξ = (f :f) · . ( | :x) = | : ( | : x ) =/(x) 
we deduce that (Vx e S) x ΞΞ x . ' £iA£. Similarly, we can show that 
x = x ' . £04$) and this shows that (1) => (2). 

Now suppose that (2) holds. Then we make the following five observa-
tions: 

(*) <V»eS) ΑΧ<Αζ; ΧΑ < Αξ; 

[In fact, if x . ' ξ = x*, then ξ < x · . (x . · ξ) = x · . x*. But by (2) we 
have, modulo ^ , χ ' . x* ΞΞ (χ · . x*). · £ = [x *. (x. ' £)]. ' ξ = (x . · ξ) 
•. (x . ' ξ) < ξ. Thus x *. x* = ξ and so, by Exercise 25.4, Ax < Αξ. 
Similarly, we can show that XA < Αξ.] 

iß) {VxeS)(ßgl9s2 = S{Ad) χ.·ξ1 = χ-.ξ2=Λχ); 

[In fact, let * be any ̂ 4-nomal element. Since by (oc) we have Ax < Αξ = At, 
it follows that t is maximum in its class modulo Ax and so x · . (x . · t) = t. 
Consequently, x* .t(x .' t) = t ' .t = ξ = x '. ix .' I), and so t (x. ' t) 
= x . · ξ(χΑ). Using (<x) again, we have t (x . " t) = x . · ξ = χ ( ^ ) . In par-
ticular, consider * = /(*) = I : (I : x)l we obtain/(x) [x . ' f(x)] = x 
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= f(x) (Αξ) whence it follows that x . */(x) = ξ(Αξ). Writing £2 = x . ' / W , 
the equality x ' . ξ2 —fix) then follows from the fact that/(x) is maximum 
in its class modulo Ax. The statement concerning ξλ is proved similarly.] 

(β) (Vx e S) (Vf, I" s ί (^ ) ) x . · ξ' = χ M " = χ(Αξ) ; 

[We note first that if y . * ξί = /(x), then j ; = x (^ ) , for >> . * iif(x) 
= / (x) . # f(x) = |since/(x) is ̂ ί-nomai, so thatj ' . f = j> *. [y . ' £χ/(χ)] 
= f ifix) i^y) a n d (*) gives, together with (2), x = f(x) = Stf(x) = y .' ξ 
= y(A^. Now by (β) there exists ξχ such that x . * ξ 1 = f(x), and since 

/(x) is Λ-nomal we have (Vf" = ξ(Αξ)) f(x) · . Γ = /(*) ". I = f(x) ; con-
sequently (x · . |") *. fi = (* #. £i)# . Γ =/(*) ". Γ =/(*) and so, by the 
previous remark, x *. ξ" = χ(Αξ).] 

(à) x . ' y ΞΞ f ( ^ ) οχ ΈΞ γ(Αξ); 

Let χ . " y = l i = £(Λξ). Then by (&) and (y) we have;; = x '. (x .' y) 
= χ·.ξ1 = χ(Αξ).] 

(ε) (Vx e S) x . " x = ξ = x · . χ(ν4ξ). 

[By (<x) we have 

(Vx e S) (x · . x) · . [(x ". x) . * ξ] = I = x · . (x . · f ) 

so that, by (oc) and (2), 

(Vx 6 S) [(x ' . x) . * ξ] x = x . ' ξ = χ(Αξ) 

which in turn gives 

(VxeS) (χ-.χ).'ξ = ξ(Αξ) 

and the result follows on applying (δ).] 

Combining the above observations, we see first that, by (e), 

(Vx,j;eS) C P . - x ) . - ( y . - x ) s f ( 4 ) . 

Now the left-hand side of this is y . · x (y . ' x), and so, by (<5), 

Q/x,yeS) x(y .· x) = γ{Αξ). (*) 
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It follows from this that y .· x = z ,' x=>y = ζ(Αξ),$ο that each equi-
valence XB is contained in Αξ. Furthermore, from (*) we also have 

y . ' x ΞΞ z . ' x(A£ => y = ζ(Αξ) 

which shows that Αξ e χ .x. Similarly, we can show that Αξ e χ. x and this 
concludes the proof of (2) => (3). 

Finally, suppose that (3) holds. From the identityx(j. ' x). ' x = y. * x 
we have x (y . · x) . ' x = y . * χ(Αξ) and so (*) holds. Consequently, 

y = ζ(Αξ) => (Vx e S) x (y . ' x) = x (z . · x) (Αξ) 

=> (Vx e5) y . · x ΞΞ z . ' :φ4ξ), 

i.e. ̂ 4ξ e 13 x. Similarly, we can show that Αξ e Ω. x and this establishes (1). 

Definition. We shall say that a semigroup is A-nomally closed if it is 
an ^4-nomal semigroup which satisfies any of the equivalent properties 
given in the previous theorem. Let us remark that this notion can be split 
into the (non-equivalent) notions of ̂ 4-nomal closure on the left [ΑξΕΩ. x] 
and ^4-nomal closure on the right [Αξ e ß . J . Whilst we shall discuss only 
those semigroups which are bilaterally >4-nomally closed, we shall give an 
example later of a semigroup which is y4-nomally closed on one side only. 

THEOREM 26.2. A residuateci semigroup is A-nomally closed if and only 
if there is an Asymmetric element te S which is maximum in its class 
modulo At and such that Ate% x n χ. x. 

Proof If S is ^4-nomally closed, then clearly the element ξ has the 
stated properties. Conversely, from Ate% .x n χ. x we deduce that 

Çïx,yeS) x(y.-x) = y = (y '. x) x(At). 

In particular let y = t ' . t ; then we have x [(t ' . t) . * x] = t ' . t(At) and so 
(* . ·* ) . " [(t. * x) *. t] = t. · x[(f . t). · x] = t. * (t ' . t) = iwhenceevery 
right residual of t is a right residual of t . * x. Since the converse clearly 
holds, we deduce that (VxeS) tA = trxA. Choosing y = t we also ob-
tain 

(Vx e S) t . · t = t . ' (ί · . x) x = [t.# (t · . x)] . ' x > x . ' x9 
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and so S is an;4-nomal semigroup withbimaximumelement t . * t. It fol-
lows that At = tA = t,-χΛ. = ξΑ = Αξ and the result follows from Theo-
rem 26.1. 

EXAMPLE 26.1. Every residuated semigroup having a maximal element 
(in particular, every finite residuated semigroup) is ,4-nomally closed. In 
fact Αξ is none other than Z in this case and, as was shown in Theo-
rem 23.1, Z e f i . x n f i . x 5 

EXAMPLE 26.2. The A-nomal semigroup of Example 25.1 is not A-
nomally closed since it does not satisfy the condition (2) of Theorem26.1. 
[In fact (0, N - 1) : (a, b) = (0, N - 1 - b*) and so we have 

(a,b) = (*,ß)(Ad<>b*=ß*. 

Now (a, b) . · (0, N - 1) = (a, b); and (a, b) · . (0, N - 1) = (a, (b - N 
+ 1)* + N — 1), this being equivalent to (a, b) modulo Αξ if and only if 

b* = [(b - N + 1)* + N - 1]* = (b - N + 1)*. 

This equality does not hold for all è; for example, take b = 0.] However, 
this semigroup is v4-nomally closed on the left since Αξ e ß . x . [In fact, 
let (a, b) = (pc9ß) (Αξ); then è* = β* and since 

(b - >>*)* = b* - j * = β* - j * = (β - j * ) * 

it follows that (#, b) ' . (x, y) = (a, ß) *. (x, >>) 04,*).] 

Definition. We shall say that a semigroup S is A-totally closed if it is 
an ^-nomal semigroup in which (Vx eS)x.'x = £ = x'.x. 

THEOREM 26.3. Every A-totally closed semigroup is A-nomally closed. 

Proof. If S is v4-totally closed then clearly 
(Vx G 5) ( * . · * ) · . f = f = (x · . x) . ' f. 

The first of these equalities gives ξ = ix '. ξ) .' xso thatxl < y ' . land 
hence χξ2 < (x *. ξ) ξ < x. Now clearly x = χξ2 iA£ and so, the classes 
being convex, we have x = (x ". ξ) ξ = x ' . ξ(Αξ). In a similar way we 
can show that x = x . ' SiA£. Since this holds for all x e S we conclude 
by Theorem 26.1 that S is ;4-nomally closed. 
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Remark. The converse of Theorem 26.3 does not hold in general. To 
see this, all we have to do is exhibit an v4-nomally closed semigroup which 
is not >4-totally closed. Such a semigroup is that of Exercises 23.3 ; for it 
is clearly ^-nomally closed (Example 26.1) but is not ^-totally closed 
since b.'b = b^£ = a. 

THEOREM 26.4. Every A-nomal semigroup contains an A-totally closed 
subsemigroup. 

Proof. Let S be A-nomdX and consider the subset 
T = {xe S; χ.'χ = ξ = χ·.χ}. 

We observe first that T Φ 0 since it clearly contains every ^4-nomal ele-
ment. Now T is a subsemigroup of S, since if x, y e T then 

ξ = y . · y < (xy . ' x). * y = xy . ' xy < f ; 

ξ = x '. x < (xy · . y) '. x = xy *. xy < ξ, 

and so xy e T. That r i s residuated follows from the fact that if x, y e T, 
then we have 

I = y . ' y < [x *. (x . * y)] . ' y = (x . · y) '. (x . ' y) < ξ; 

ξ = x . * x < x . · y (x . * y) = (x . * y) . " (x . ' y) < £; 

from which it follows that x .' yeT. Similarly, we can show that x' .yeT. 
Thus T is a residuated subsemigroup of S. By its definition, T is clearly 
^-totally closed since ξ : ξ = ξ and so ξ e T. 

Definition. We shall say that a semigroup is A-integrally closed if it is 
an ^4-nomal semigroup in which (Vx eS)x.'£ = x = x'.£. 

THEOREM 26.5. A residuated semigroup S is A-integrally closed if and 
only if 

(1) S has a neutral element 1 ; 

(2) (Vx e S) x . ' x = 1 [resp. x ' . x = 1]. 

Proof. Suppose that S is ^-integrally closed. Then 

x = y(B4) =>χ = x .· ξ = y .· ξ = y, 
lOa BRT 
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so that the equivalence Βξ reduces to equality. It follows that 
(VjceS) χ = ξ(χ .' ξ) = ξχ. 

In a similar way we can show that χξ = x and so it follows that ξ is the 
neutral element 1. Moreover, since 1 < x . * x < ξ we have x . · x = 1. 

Conversely, suppose that (1) and (2) hold. By (1) we have, for each 
xe S, x .' I = x = x %. 1 and by (2) we have ;c . # :x ;=l = l . ' l s o i t 
follows that 1 is the bimaximum element of S and hence that S is ̂ -inte-
grally closed. 

COROLLARY 1. Every A-integrally closed semigroup is A-totally closed. 
Proof. This is immediate from the definition and Theorem 26.1. 

COROLLARY 2. An A-totally closed semigroup is A-integrally closed if 
and only if it has a neutral element. 

Proof Necessity is obvious. If S is ^[-totally closed with a 1 then 
1 *= 1 . * 1 = ξ and so S is ^-integrally closed. 

Definition. By an r-subsemigroup of a residuated semigroup S we shall 
mean a subsemigroup T which is residuated in such a way that the resi-
duals in T coincide with the corresponding residuals in S. 

THEOREM 26.6. Let S be an A-nomal semigroup with a neutral element 1. 
If S is not A-integrally closed then S admits a greatest A-integrally closed 
r-subsemigroup, namely the subset Κξ = {x . * ξ e S; x . ' ξ — x ' . ξ}. 

Proof Let us note first that, as was shown in the proof of Theo-
rem 25.10, ξ is idempotent. Clearly {£} then forms an ^4-integrally closed 
r-subsemigroup. Now consider^. Let a = x ' . ξ e Κξ. Then a = x '. ξ 
= x '. ξ2 = (x '. ξ) · . ξ = a '. ξ so that αξ <α. But since 1 < ξ we have 
a < αξ and so it follows that a = αξ. Similarly, using right residuals, we 
can show that a = ξα. Thus ξ is the neutral element for Κξ. Now Κξ is 
a subsemigroup of S. In fact, if a = x '. ξ e Κξ and b = y '. ξ e Κξ then 
from αξ — a we have baξ = ba so that ba < ba ' . ξ < ba ' . 1 = ba, 
giving ba = ba '. ξ. Similarly, from Sb = b we have ba — ba .' ξ. It 
follows that bae Κξ. Let us now show that Κξ is an r-subsemigroup of S. 
If a, be Κξ then from ξα = awe have b ' . a = b ' .ξα = (b '. a) '. ξ and 
from αξ = a we have b '. a = b ' . αξ = (b ' . ξ) '. a = (b .' ξ) ' . a 
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= (b · . a) . ' ξ. This shows that b '. a e Κξ, and by a similar method we 
can show that b . · a s Κξ. To show that Κξ is ̂ -integrally closed, we ob-
serve that for each a e Κξ we have a ' . a = ξα ' . ξα = (£α *. a) ' . £ 
^ I *. I = S and so a '. a = ξ. Since £ is the neutral element of Κξ it 
follows by Theorem 26.5 that Κξ is ^[-integrally closed. 

Now let G be any r-subsemigroup of S which has a neutral element 1G 
and which is ̂ -integrally closed. For any x e G we have ls < x . · x = l c 
< | and so £ < £1G < £2 = £ whence ξ = | 1 G and, similarly, £ = 1G£. 
Thus ξ < ξ : 1G < ξ : ls = ξ and so f = ξ : 1G. It follows that 

£ Θ # 1 < ; = {*.· I G G S ; x . · 1G = x · . 1G}. 

Now we can show that ΑΊβ is an ^-integrally closed r-subsemigroup of S 
in exactly the same way as we did for K (the proof being valid since 
ls < 1G). It follows that f :ξ = 1G and hence that ξ = 1G. Consequently, 
G Ç K1Q = Κξ and the result follows. 

EXAMPLE 26.3. If S is a residuated semigroup with neutral element 1, 
then SI Ai is a group if and only if Sis .4-integrally closed. In fact, if SjA ± 

is a group then, by Theorem 25.8, Sis ^4-nomal and At = Αξ. This means 
that 1 is ̂ 4-nomaloid on the right, so that 1 · . 1 = 1 is ,4-nomal. It fol-
lows that 1 = 1 since they are in the same class modulo Αξ. Thus S is 
^(-integrally closed. The converse is obvious. As an illustration of this, 
let us refer back to Example 25.2. There we showed that if / is integrally 
closed, then JF*(7)/^J is a group (and conversely). Since I is the neutral 
element for JF*(/), the previous remark allows us to restate the result in 
the following form: a commutative integral domain I is completely inte-
grally closed if and only if the semigroup F*(I) of non-zero fractionary 
ideals of I is A-integrally closed. 

EXERCISES 

26.1. Prove that an ^-nomal semigroup S is >4-nomally closed if and only if 

(VxeS) (x '. *) . ' ξ s ξ = (χ . ' x) '. ξ(Αξ). 

26.2. An anomal semigroup S is said to be A-totally closed on the left [resp. 
right] if 

(Vx e S) (x . * x) *. ξ = χ '. χ = ξ(Αξ) [resp. (x '. χ) . * ξ = χ .# χ = ξ(Αξ)]. 

If S is ^-totally closed on the left [resp. right], prove that S is ^4-nomally closed. 
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For each integer j let j° be the integer such that j == j° (mod n) and 0 < j° < n, 
where n is a fixed integer > 1. Define a multiplication on Z x Z, ordered in the usual 
way, by 

Show that in this way Z x Z becomes a residuated semigroup in which 

(p,0 *. (g,j) = (p-q9i-j+ y°); 

Cp,0 . ' (qJ) = {p-qJ-J- (i-j)° + « - 1). 

Deduce that this semigroup is ^-totally closed on the left. 
26.3. Let S be an Λ-nomally closed semigroup. Prove that the equivalence Αξ may 

be described by 

Using the property (β) of Theorem 26.1 and the fact that each equivalence of type B is 
contained in Αξ, deduce that 

xeS xeS 

where Π denotes transitive product. 
26.4. If 5 is an abelian ^4-nomal semigroup which is a lattice, prove that Αξ is 

compatible with o. Writing \x, y\ — (x : y) n (j> :x) n | , show that S is y4-nomally 
closed if and only if 

n Ι*Ι,ΛΙ*Ι*,*Ι Ì 

( /= l9...,n)Xi = ^ ( ^ ) J 

26.5. Let S be an ^-nomal semigroup. If S is u-semireticulated, prove that so also 
is the y4-totally closed subsemigroup Tof Theorem 26.4. If S is also a lattice, show that 
so also is T. 

26.6. Prove that every residuated cancellative semigroup with a neutral element is 
^-integrally closed. 

26.7. Prove that every residuated semigroup with a neutral element which is maxi-
mal is /4-integrally closed. 

26.8. Consider the ordered semigroup S described by the following Hasse diagram 
and Cayley table : 

b 

Show that 5 is Λ-nomalIy closed but neither Λ-totally closed nor Λ-integrally closed. 
Show also that the greatest yi-integrally closed r-subsemigroup of S is Ku = {a, b, c, d]. 
[Note that {a, b] is also an ,4-integrally closed r-subsemigroup.] 

a 
1 

J>_ 
c 
d 

a 
a 
a 

_b_ 
c 
d 

1 
a 
1 

c 
d 

b j c d 
b e d 
b e d 
b[_d d 

" d j a b 
d j b b 
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26.9. Let S be an ,4-nomal semigroup with neutral element 1. If S is u-semireti-
culated show that so also is Κς (Theorem 26.6). If S is also a lattice, show that so also 

26.10. Show that the semigroup G xL of Exercise 25.7 is ^-integrally closed. 

27. F-nomality 

In this and the following section we shall consider further particular 
types of ^4-nomal semigroups. 

Definition. An element x of a residuated semigroup S will be called 
F-nomaloid on the right [resp. left] if and only if (W e S) Fx = Fxt [resp. 
XF = txF). We shall say that x e S is F-nomal on the right [resp. left] if it 
is F-nomaloid on the right [resp. left] and maximum in its class modulo Fx 

[resp. XF]. 
Unlike the case of ^4-nomal elements, we shall show later that the 

notions of F-nomal on the right and F-nomal on the left are in general 
distinct. 

THEOREM 27.1. In a residuated semigroup S the following conditions are 
equivalent: 

(1) x e S is F-nomaloid on the right [resp. left]; 
(2) Fxe .Ω ηΩ.η .χ [resp. XF e Ω. n . Ω η χ.]. 

Proof. By Theorem 22.12 we have Fx e Ω. for every xe S. Now, by 
Theorem 25.12, we have FxeM n .χ if and only if 

(Va, be S) xa . * x = (xba . " x) . * b = xba . ' xb, 

which is clearly equivalent to saying that (VZ> e S) Fx = Fxb. 

THEOREM 27.2. If S is a residuated semigroup and xe S is F-nomaloid 
on the right [resp. left], then (Vj e S) Fy < Fx [resp. yF < XF]. 

Proof. By Theorem 22.13 we have (Vj e S) Fy < Fxy = Fx. 

COROLLARY. If xe S is F-nomaloid on the right [resp. left] then we also 
have (W e S) Fx = Ftx [resp. XF = xtF]. 

Proof. This is immediate from Theorem 27.2 and 22.13. 

Definition. We shall say that a semigroup S is F-nomal on the left [resp. 
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right] if it admits an element which is F-nomal on the left [resp. right]. 
A semigroup which isF-nomal on both sides will be called simplyF-nomal. 

THEOREM 27.3. If a semigroup is F-nomal on the right (resp. left) then S 
is A-nomal. 

Proof If x e S is F-nomal on the right for example then by Theo-
rem 27.1 we have Fxe.%. It then follows by Theorem25.14 that S is 
^f-nomal. 

EXAMPLE 27.1. Let S be a residuated cancellative semigroup. Since 
every equivalence of type F reduces to equality, it follows that every ele-
ment of S is F-nomal on the right and on the left. 

EXAMPLE 27.2. If a residuated semigroup contains a minimum ele-
ment m then by Theorem 23.13 every multiple of m coincides with m so 
that m is the zero element (and conversely). Clearly m is F-nomaloid on 
both the left and right. 

EXAMPLE 27.3. Consider the ordered set described by 

S = {(x>y)l x>y integers with x < 0}; 

(x,y) < (x\y')ox < x\ y < y'. 

Endow S with a multiplication as follows: let N,M be fixed integers 
greater than 1 and for each integer p define /?*, ρΛ by the inequalities 
p* = kN < p < (k + 1) N, pA = tM < p < (t + 1) M; now define 

(P, 0 (qJ) = (min {p* + q9p + q*}9i+ j * ) . 
This multiplication makes S into an ordered semigroup. In fact, let 
x = l(P> 0 (qj)i 0% s) a n ( i let kx,k2,k3 be such that k^ = p*9 k2N 
= q*, k3N = r*. Now (kt + k2)N < ktN + q < (kx + k2 + l)N and 
{kx + k2) N < p + k2N < (ki + k2 + 1) N; consequently 

(fci + k2) N < min {p* + q, p + q*} < {kx + k2 + 1) N. 

It follows that x = (λ,μ), where 
λ = min {(kt + k2)N + r, k3N + min {&!# + tf, p + fc2^}}; 
μ = i+jA + fc\ 



RESIDUATED ALGEBRAIC STRUCTURES 293 

Now the expression for λ may be written in the symmetric form 

λ = minftfci + k2)N+ r, (kz + kt)N + q9 (k2 + k3)N + p} 

and that for μ may be written μ = i + (j + fcA)A. It follows from this 
that the above multiplication is associative. It is also clearly isotone. Let 
us now show that S is residuated. From the definition of multiplication 
we have (p, i) (qj) < (r, k) if and only if 

min {/?* + q, p + q*} < r and / + j A < k. 

Let us first see, given q < 0, how min{/?* + q,p + q*) varies with 
p < 0. [We are interested only in negative values of p, q by the definition 
of S.] Define 

Then p° > p* and (p°)* = p* + (q - q*)* = p* + q* - q* = p*. Thus 
p° + q* = p* + qandifp° < x < p* + N - 1 then/?0 + q* < x + q* 
< p* + N - 1 + #* so that min {x* + q, x + g*} = min {p* + #, 
x + q*} z= p* + q. On the other hand, if p* < y < p° — 1, say 
y = p° — t, then min {j* + #, ;y + g*} = min {p* + q, p* + q - q* 
— t + q*} = p* + q — t. The graph of the function 

p -> min {/?* + g, p + 9*} 

restricted to the interval [p*9 p* + N — 1] is therefore 

1 

p* p° p*+N-l 

q« 

. 

p*+q 

P*+q* 

q - q * 
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Having seen this, the graph of the function is as follows: 

| min ip*+q,p+q*} 

· - P 

Suppose now that p and r are given and let us consider the set of ele-
ments q which are such that min {p* + q,p + q*} < r. It is clear from 
the above graph that this set is never empty. There are several cases to 
consider. 

(a) r* > p* : 
(i) r* > p* 

(Ü) r* = p* 

in this case there are two subcases, namely 
(whence r > p); 

with r < p [so that (r, p) is on or below the principal 
diagonal of N _ x N _ ] . 
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It is clear that in each of these cases the maximum value of q which 
is possible is q = 0, the corresponding graph being 

-(p+1)N -pN -(p-1)N 

(b) r* < p* : in this case there are also two subcases, namely 

(iii) r — r* > p — p*; 

(iv) r — r* < p — p*. 

These cases correspond respectively to the cases where the point (/?, r) 
appears (iii) above or on, or (iv) below the diagonal of 
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Now since r* < p* we can choose q such that q* = r* — /?*. By con-
sidering the graph given previously, we see that in case (iii) the maximum 
possible q satisfies q — q* = N — 1. [In fact in this case there are N— 1 
points of the graph along the diagonal.] The greatest value of q in this 
case therefore exists and is r* — p* + N — 1. In the case (iv), con-
sideration of the graph shows that the greatest value of q is such that 
p* + q = r [the point (/?, r) then lying on the appropriate horizontal por-
tion of the graph]. Thus in case (iv) a greatest q exists and is r — p*. 

By recon&idering the definition of multiplication, we can therefore 
assert that right residuals exist and are given by the formulae 

(r, k) . · (p, i) 

/(0, (k - ϊ)Λ + M - 1) if r* > p*; 

= | ( r * - / > * + JVr--l , (fc-i)A + M - 1 ) if r*</?* and #·-#·*>/>-/>*; 

l(r - /?*, (Ä: — /)A + M — 1) if r* </?* and r — r * < ^ — p*. 

Interchanging the rôles of /?, # in the previous discussion, we see that left 
residuals also exist and are given by the formulae 

(r, k) '. (/?, i) 

((0, k - iA) if r* >/?*; 

(r* - />* + JV - 1, k - iA) if r* < /?* and /· - r* > / ? - / ? * ; 

l(r — /?*, fc — /A) if r* < p* and r < r* — p — />*. 

The previous geometric proof of the existence of residuals is very 
useful. In fact, it is clear by the definition of multiplication that in the 
same class modulo FiPii) will appear all the elements (qj) for which 
min (p* + q,p + q*) has the same value and likewise so does yA. We 
therefore deduce, from the previous graphic representation, the following 
representation of the equivalence classes modulo FipJ); in this we have 
written 

( i = - 1 , - 2 , - 3 , . . . ) q? = tN + p-p*. 
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Ή|#Ξ$|Ξ||ρ$ 
. ι ι · ! ! ' ! ■ · ■ · ■ ■ · î 
• S ï i i i ■ i ■ ■ ■ i · · ■ i 

M-1 

-2N - N 

In particular, the elements (p, i) in which p is such that p = p* give the 
following partition modulo FiPtt): 

£Ξ3¥8 
■ : · feiö ΕΞΞ 

♦—*M-1 

-2N 

Consider now those elements of the form (/?*, i). We have 

(/>*, 0 (a,J) = (min {p* + q*, p* + q}9 i + jA) = (/>* + ?*, ι + 7Λ), 
so that every right multiple of (p*9 i) is also of the form (r*, ,s). It follows 
that each element of the form (p*9 i) is F-nomaloid on the right, for the 
partitions relative to F(p*ti) and, for any (q9j)9 F(p*ti)(qfi} are the same 
(namely the immediately preceding one). 
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In a similar way, we see that in the same class modulo (qJ)F will 
appear all the elements (p, i) for which min {p* + q,p + q*} is the same 
and likewise i. We therefore have the following graphic representation of 
the equivalence classes modulo (qjyF; in this we have written 

( /= - 1 , - 2 , - 3 , . . . ) p? = tN+q-q*. 

· - -
·—-
· - -

-2N 

- · · · · 
- # _ -Φ-. 

In particular, the elements (qj) in which q 
partition relative to çqJ)F: 

q* admit the following 

- · m · 
■2.N 

1 

• · 1 
• · Φ 

m · è » 

Again it is readily verified that the elements of the form (q*,j) are F-
nomaloid on the left, the relevant partition being the previous one. This 
then shows that our semigroup is F-nomal on both the left and the right, 
but the jp-nomal equivalences do not coincide (unless we agree to allow 
M = 1 in which case the semigroup is abelian). 

Definitions. We shall say that a semigroup isjp*-nö/na/ifitisF-nomal 
on both the left and the right and such that the JF-nomal equivalences 
coincide. By an F-nomally closed semigroup we shall mean an F*-nomal 
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semigroup which is ^4-nomally closed. Furthermore, we shall say that a 
semigroup isF-totally closedif it is F-nomally closed and ^-totally closed; 
and F-integrally closed if it is F-totally closed and ^-integrally closed. 

These definitions may be remembered by the following scheme : 

* A-nomally closed 
F -nomai ov s°\ 

ft A- totally closed 
F-nomally closed X . 

S A- integrally closed 
F-totally closed" 

F-integrally closed 

The exercises which follow show that in general these types of semi-
group are distinct. 

EXERCISES 

27.1. Let S be the ordered set of Example 27.3. Endow S with the following multi-
plication: 

(A 0 (*,/) = (/>* + **, *+7A). 

Show that S becomes an F*-nomal semigroup in which every element is F-nomaloid on 
both the left and the right. Determine the associated partitions and also that of the 
,4-nomal equivalence Ας. 

27.2. An element x of a residuated semigroup S is said to be F-symmetric if 
Fx = XF. Prove that S is F*-nomal if and only if it contains an F-symmetric element x 
such that Fxex. r\ ,χ. 

27.3. Consider the ordered (abelian) semigroup S defined by the following Hasse 
diagram (see page 300) and multiplication: 

!

CLp,idd,i — bp,ibq,j = ap + q, min{i,j}> 

Clp,ibq,j = bqjap,i ~ bp + q, min{f,J}; 

(W) ex = xc = xbi,i. 

Show that S is residuated and establish formulae for the residuals. Deduce that the 
elements of the form aPtl and bPtl are F-nomal and hence that S is F-nomally closed. 
Show further that S\{c} is an F-totally closed semigroup and that S\[c) u {1} where 1 
is a neutral element >altl is an F-integrally closed semigroup. 

27.4. Let S be an F*-nomal semigroup and consider the subset T = {x e S; 
x . ' x = I = x ' . x}.lî y e S is F-nomal, show that y e T. Deduce that every F*-nomal 
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a1,2° 

a1,3? 

I 
a2,1? 

a2,2? 
32,3? 

I 
a3;i? 

a o o ? °3,3 

semigroup contains an F-totally closed subsemigroup. Illustrate by referring to the 
previous exercise. 

27.5. Show that every residuated cancellative semigroup with a neutral element is 
F-integrally closed. 

28. 5-nomality 

Definitions. An element x of a residuated semigroup S will be called 
B-nomaloid on the right [resp. left] if and only if (V7 e S) Bx = Btx [resp. 
XB = xtB]. We say that x e S is B-nomal on the right [resp. left] if x is 
i?-nomaloid on the right [resp. left] and minimum in its class modulo 

Note that we are dealing with dual closure equivalences here. In order 
to carry out an investigation which is comparable to the case involving 
the equivalences of type A9 we require the following general results. We 
shall use the notation *Ω [·χ] to denote the set of dual closure equivalences 
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on a residuateci semigroup S which are compatible [resp. cancellative] 
on the left with multiplication, etc. 

THEOREM 28.1. If S is a residuated semigroup and K is a dual closure 
equivalence on S with associated dual closure mapping / , then the following 
conditions are equivalent: 

(1) KeX'x[resp.Kexx]; 
(2) (Va, x e S) a = xf(a . · x) (K) [resp. a = f(a \ x) x (K)]. 

Proof If (1) holds then/(ö .# x) < xf(a . · x) . · x < x (a . ' x) . · x 
= a . * x and so the convexity of the classes modulo K gives a . ' x 
= xf(a . * x) .# x (K), whence (2) follows. Conversely, if (2) holds then 
clearly 

a . · Λ: ΞΞ b . * x(K) => a = b(K) 
and so (1) holds. 

THEOREM 28.2. If S is a residuated semigroup and K is a dual closure 
equivalence on S with associated dual closure mapping / , then the following 
conditions are equivalent: 

(1) ΚΕΩ·'Χ η χ'χ [resp. KeQ'x n χ'χ]; 
(2)(Vö,*eS) f(a) = xf(a.*x) [resp.f(a) =f(a-. x)x]. 

Proof Suppose that (1) holds. Then from K e Ω' x we have, using Theo-
rem 22.9 (e),/(a .' x) < f(a) . ' x so that xf(a.'x) < f(a). On the other 
hand, from K e χ' χ we have, by Theorem 28.1 and the fact that/(a) is the 
minimum element in the class of a modulo K,f(a) < xf(a . * x). This, 
then, shows that (1)=>(2). Conversely, if (2) holds, then clearly 
a = xf{a . · x) (AT) and/O . · x) < f(a) . · x. It follows by Theorems 28.1 
and 22.9(e) that (1) holds. 

We can now use these results to characterize 2?-nomaloid elements. 

THEOREM 28.3. Let S be a residuated semigroup. The following condì-
tions concerning y e S are equivalent: 

(1) y is B-nomaloidon the right [resp. left]; 
(2) ByeÜ'xnX'x [resp. yBeQ x n χ'χ]. 
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Proof. By applying Theorem 28.2 we see that (2) holds if and only if 

(Va, xeS) y (a .' y) = xy[(a .' x) . · y] = xy(a . · xy), 

which is equivalent to saying that (Vx e S) By = Bxy; i.e. that y is 2?-no-
maloid on the right. 

Remark. Note that we always have, for any element y of a residuated 
semigroup S, ByeQ x and yB e Ω' x. 

THEOREM 28.4. If a B-nomal equivalence on the right (resp. left) exists 
in a residuated semigroup S then it is unique and contains every equi-
valence of type B on the right (resp. left). Moreover, S is an A-nomal semi-
group. 

Proof. Let ß be 5-nomaloid on the right, so that (V/ e S) Bß = Btß. 
Now by Theorem 22.14 we have (Vi e S) Bt < f] Btx and so in particular 

xeS 

Bt < Βΐβ. It follows that (Vi e S) Bt < Bß and this shows the uniqueness 
of Bß. Now let ß be i?-nomal on the right. Being minimum in its class 
modulo Bß, the element ß is also minimum in its class modulo every 
equivalence Bx, so that 

(VxeS) ß = x(ß.'x). 
It follows that 

Q/xeS) ß'.ß=ßm.x(ß.-x) = \β·.(β.'χ)] '.x > xm.x 

and so a bimaximum element exists, namely ξ = β · . β. 

THEOREM 28.5. Let S be a residuated semigroup which admits a B-nomal 
equivalence on the left and a B-nomal equivalence on the right. Then these 
equivalences coincide. 

Proof. Let x e S be 5-nomaloid on the right and let y e S be 2?-no-
maloid on the left. By Theorem 28.3 we have yBeQ'x. Now the dual 
closure subset associated with yB consists of all the left multiples of y and 
so, by Theorem 22.13, we have yB < Bty for each teS. Since x is l?-no-
maloid on the right, we have Bty < Bx and consequently yB < Bx. A 
dual argument gives Bx < yB whence we have equality. 
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Definition. We shall say that an element x of a residuated semigroup S 
is B-nomal if it is 2?-nomal on the left and l?-nomal on the right. In this 
case we have, by the previous result, Bx = XB and we call this the jB-nomal 
equivalence. [In particular, if y e S is i?-nomaloid on the right and ze S 
is 2?-nomaloid on the left then yz is 2?-nomal.] 

THEOREM 28.6. If the residuated semigroup S contains a B-nomal equi-
valence Bß on the right (resp. left) then 

(1) every class modulo Αξ contains one and only one B-nomal element 
on the right (resp. left) ; 

(2) every class modulo Ββ contains one and only one A-nomal element. 

Proof. (1) Since (Vx e S) Αξ = Αξ:χ, every residual of ξ is a left [resp. 
right] residual of ξ: x. Let ßeSbe anomal on the right. Every right 
multiple of ß is 2?-nomal on the right and given any λ e S there exists 
με S such that ξ : λ = (ξ : β) . * μ. Thus for each λ e S there exists^ e S 
such that λ = βμ (Αξ). It follows that each class modulo Αξ contains at 
least one 2?-nomal element on the right. To show that each class modulo 
Αξ contains at most one such element, we observe that if oc^ is ^4-nomal 
and βφ is 5-nomal on the right, then 

£.= ".(4)=*/*. 3 «.(*,). (*) 

In fact if β^ = (*^(Αξ) then since ΑΛ^ = Αξ we have oc^ . * β^ = α^ . · <x^ 
= ξ = β^ . · β^ [Theorem 28.4] so that α^ = ßjßßj. Since Bßm = Bß it 
follows that oc^ = ßjßß). Suppose then that β^, β^ are 2?-nomal on the 
right with β^ s β^(Αξ). Let <x^ be the maximum element in this class 
modulo Αξ. From the previous observation, we have ß^ = oc^ = ß**(Bß) 
and so we conclude that β^ = β^ since each class modulo Ββ contains 
only one 2?-nomal element on the right. 

(2) Let us note first that every class modulo Ββ contains at least one 
^4-nomal element. In fact by (*) to each 5-nomal element on the right β^ 
there corresponds an ^4-nomal element <%# such that oc^ = ß^(Bß); oc^ is 
the greatest element in the class of β^ modulo Αξ. To show that each 
class modulo Ββ contains at most one anomal element, we observe that 
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if j8# is anoma l on the right and oc^ is a n o m a l then 

In fact if β^ = <%#(1̂ ) then since Ββ = 2?^ we have βφ . · βφ = oc^ . * /9φ. 
Now α^ . * ^ = ξ = oc^ . ' oc^ and so it follows that oc^ .' β^ = oc^ .' oc^ 
and so /?# = oc^ (ΑΛ* = Αξ). It then follows from this that every class 
modulo Ββ contains precisely one ^4-nomal element. 

THEOREM28.7. If ßeS isB-nomalon the right then Αξ = Fß. 

Proof. From x = y(A£) we have ßx = ßy (Αξ) so that, βχ and ßy 
being l?-nomal on the right we have, by Theorem 28.6, ßx = ßy whence 
x = y(Fß). Thus Αξ < Fß. Conversely, Fß < Αξ since Αξ e.%. 

COROLLARY. If β e S is B-nomal on the right then β is F-nomaloid on 
the right. If S is B-nomal then S is F*-nomai. 

Proof This follows from the equality Αξ = Fß and Theorems 27.1 
and 25.13. 

THEOREM 28.8. If S admits an element ß which is B-nomal on the right, 
then S is a group if and only if S is left cancellative. 

Proof. The condition is clearly necessary. To show that it is also suffi-
cient, we observe from the above that Αξ = Fß and since Fß reduces to 
equality so also does Αξ whence S is a group. 

Denoting by Cen (S) the centre of S we now have : 

THEOREM 28.9. Let S be an A-nomal semigroup. A necessary and suffi-
cient condition that S be B-nomal is 

<ßßeCen{S))W* = t(A$) βξ*=β. 

Proof LetßeS be 5-nomal. By Theorem 28.7 we have Αξ = Fß= ßF 
and so 

(Vf* s ξ(Αξ)) βξ*=βξ = β(β.'β) = β. 

In particular, this holds for the 5-nomal element β^ which is in the class 
off modulo Αξ (cf. Theorem 28.6). Now every left and right multiple of β^ 
is i?-nomal and so, since β^χ == χβ^ (Αξ), we deduce from Theorem 28.6 
that (VJC G S) β^χ = χβ^ whence β^ e Cen (S). 
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Conversely, suppose that the condition holds. From the equality 
βξ = β = ξβ we deduce that ξ < β . · ßand£ < ß '.ßso thatß .' ß = ξ 
= ß · . ß. Now for each* e S we have ί(£ . · t) = f = (f " - 0 ^ ^ ) a n d s o 

(WeS) t(ß.-ßt) = S = (ß-.tß)t(Ad. 

Applying the hypothesis, we deduce that 

(VreS) t(ß.'ßt)ß = ß = ß(ß-.tß)t. 

It follows that every multiple of ß is both a left and a right multiple of 
every element of S. Consequently, every equivalence of type B is con-
tained in Bß = ßB [cf. Ex. 22.7]. Since we always have (W e S) Bß < Bßt 

it follows that (W e S) Bß = 2^t = Btß and hence that ß is 2?-nomaloid. 
It is in fact J?-nomal since ß = βξ = β (β . · β). 

COROLLARY. If Cen (S) = 0 fAen no ßeS can be B-nomal. 

EXAMPLE 28.1. Let N be a fixed positive integer and consider the 
ordered set S described by 

S={(p,i)eZxZ; pe[-N,0]}; 

XPJ) ^ (qJ)op ^ q, * ^j-

Endow S with the following multiplication 

(P> 0 (qJ) = (min {p9 q}9 i + jA) 

where jΛ = fcM <j<(k+ 1) M, M being a fixed integer greater than 1. 
It is readily verified that S becomes a residuated semigroup with residuals 
given as follows: 

) if p< q; 

+ M - 1) if p > q; 
+ M - 1) if p< q. 
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Consider now the elements of the form (—N,tA). We have 

O , 0 = (r9s)Q^Nft^B)oi - tA = s - tA oi = s, 

so the corresponding partition is 

i 

t 
• · · 1 

• · · 1 

9 · ' φ"·"Α 

i 

> 

Now for any (qj) e S we have 

and so each equivalence of type B on the left associated with (—N,tA)(q9 i) 
also gives rise to the above partition. It follows that the elements ( - N, tΛ ) 
are 2?-nomaloid on the left. Being minimal in their respective classes, they 
are thus 2?-nomal on the left. However, S is not 5-nomal on the right. In 
fact, the partition relative to BiqJ) is 

- N 

T T n 
1 1 1 
1 1 1 
• I i 

ti h LLL 

rr 
1 

! 

LL 

M-1 

and since M > 1 this can never coincide with the left 2?-nomal equi-
valence. It follows by Theorem 28.5 that S is not 2?-nomal on the right. 
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Alternatively, one could remark that in this example Cen (S) = 0 , so 
the result follows by the corollary to Theorem 28.9. 

THEOREM28.10. Let S be a residuateci semigroup and let ßeS be 
B-nomal. Then the following conditions are equivalent: 

(1) Αζ = Ββ; 
(2) S is F-nomally closed. 

Proof. Suppose first that S is F-nomally closed. Then S is ^(-nomally 
closed and Ββ < Αξ [cf. the proof of Theorem 26.1]. Let x = γ(Αξ); 
then by Exercises 26.3 there exist ξχ, ξ2 in the class of ξ modulo Αξ such 
that x . · ξ1 =y.· ξ2. Thus* . · ξχβ = y . ' ξ2β. ButßF = Αξαηάξ1β= ξβ 
= (β · . β) β = β and likewise ξ 2β = β. Thusx .' β = y .'ßandx = y(Bß). 
This then shows that Αξ < Ββ and (1) follows. 

Conversely, suppose that (1) holds. By Theorem 28.3 we have 

ΑξθΩ''χηχ''*ηΩ·'χηχ·χ 

and so S is ^4-nomally closed by Theorem 26.1. Being F*-nomal by the 
corollary to Theorem 28.7, S is then F-nomally closed. 

This result allows us to define particular types of anomal semigroup 
just as we defined particular types of F-nomal semigroup. We define these 
by means of the following scheme: 

B-nomal o^ ^ovF-nomally closed 

\> F-totally closed 
B-nomaily closed 

B-totally c l o s I X ' ^ ° F- inteerally closed 

B-integrally closed* 

The examples which follow in the exercises show that these types of 
semigroup are, in general, distinct. 
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EXERCISES 

28.1. Let S be the ordered set of Example 28.1. Define a multiplication on S by the 
prescription (p, i) (q,j) = (min {p, q], i + j). Show that S becomes an abelian U-nomal 
semigroup. 

28.2. Prove that every residuated semigroup with a minimal element (in particular 
every finite residuated semigroup) is 2?-nomal and that in this case the Λΐ-nomal, F-
nomal and i?-nomal equivalences all coincide with the zigzag equivalence Z. Deduce 
that such a semigroup is 2?-nomally closed. 

28.3.Let 5be a2?-nomalsemigroup. Let T = {x e S; x . ' x = ξ = x '. x}. Prove 
that Tis a ^-totally closed subsemigroup of S. 

28.4. If S is a JB-nomal semigroup with neutral element and ßeSis l?-nomal, prove 
that ßeK$, where Κξ is defined as in Theorem 26.6. Deduce that every i?-nomal semi-
group with a neutral element admits a greatest ^-integrally closed subsemigroup. 

28.5. Show that every ordered group is 5-integrally closed. 
28.6. Show that in a Boolean algebra B the only Λ-nomaloid element is πΒ and the 

only l?-nomaloid element is 0B. What about the F-nomaloid elements? 
28.7. Let S be a residuated semigroup with a neutral element 1. Show that S is an 

ordered group if and only if 1 is jB-nomal. 
28.8. Let S be a residuated semigroup with a maximal element. Prove that S has a 

minimal element if and only if S is B-nomal. 

28.9. If S is a JB-nomal semigroup with β e S anomal, prove that S is 2?-nomally 
closed if and only if 

(Vx9yeS) y = yx'.x{ßB). 

28.10. Referring back to Exercise 23.14 for notation, prove that an element a of a 
residuated semigroup S is of type ß if and only if 

(1) a is ^4-nomaloid and right i?-nomaloid; 
(2) the group S/Αζ is involutive. 

Deduce similar characterizations of elements of types γ, δ, ε and hence show that in the 
semigroup case type β = type ε and type γ = type ô. 

28.11. Prove that in an ,4-nomal semigroup S the following conditions are equi-
valent: 

(1) aß = <x . * β(Αξ) for all ^4-nomal elements oc, β; 
(2) ξ : β = β for all Λ-nomal elements β; 
(3) <x ' . β = β . ' oc for all ^4-nomal elements α, β; 
(4) S contains a maximal element and 5/Z is involutive. 

Deduce that if 5 is 2?-nomal and S/Αξ is involutive then S contains a maximal element 
and a minimal element and hence is 2?-nomally closed. 

28.12. Consider in turn all of the residuated semigroups discussed in the text and 
classify them in terms of nomality. 
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29. Isotone homomorphic Boolean images of ordered semigroups 

In § 25 we began a discussion of the conditions under which an ordered 
semigroup could be mapped onto an ordered group by an isotone homo-
morphism. A natural analogue of this is the following: under what condi-
tions does an ordered semigroup admit an isotone epimorphic image which 
is a Boolean algebra? Our goal in this section will be to provide an answer 
to this question. We shall therefore now be concerned with configurations 
of the form f:S-+B, where S is an ordered semigroup, B is a Boolean 
algebra and/is an isotone epimorphism [in that (Vx, y e S) f{xy) = f(x) 
n/( j ) ] . 

Definition. By a double ideal of an ordered semigroup S we shall mean 
a non-empty subset H of S which is an order ideal of S and a semigroup 
ideal of S [the latter being expressed by HS ç H and SH c H or, equi-
valent^, Hr H= S = H-.H]. 

Let us begin by considering a double ideal H which is reflexive and 
such that (Vx e S) H : {x} — H : {x2}. In this case we have 

x e H : {ab} => abx e H => abxb e H=> xbab e H 

=> axbab e H 

=> babax e H 

^>xeH:{(ba)2} = H:{ba} 

from which it follows immediately that 

(Va, be S) H: {ab} = H: {ba}. (1) 

Now suppose that x = y(RH), where RH is the Dubreil equivalence asso-
ciated with H. If z is any element of *S, we have 

peH: {zx} opzeH: {x} = if: {y}ope H: {zy}. 

This, together with (1), shows that RH is compatible with multiplication 
and that S/RH is an abelian semigroup. Now define the relation < on 
SjRH by 

xlRH<y\RHoH:{y}^H:{x}. 
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It is clear that < is an ordering and, H being an order ideal, the canonical 
surjection %H is isotone. Since H is also a semigroup ideal, we also have 

peH:{x}=>(VyeS) pxyeH=>QfyeS) peH:{xy} 

from which it follows that (Vx, yeS) xy\RH ^ * / ^ H · Since SjRH is 
abelian xyjRH is then a lower bound for x\RH, y\RH in SjRH. Now let 
z\RH be any such lower bound. Then H:{x] £ JJ: {z} and H: {y} 
^ H: {z} and so 

p e H: {xy}=>px e H: {y} s H: {z} =>zpeH: {x} s # : {2} 
=>/?ei/:{z2} = jff:{z}. 

We deduce from this that zjRH < xylRH- This then proves that S/RH 

is an A-semilattice in which xlRH AylRii — xyl^H- It is immediate 
that bH is now an epimorphism. 

Now this semilattice contains aminimum element. For, consider the set 

GH = {xeS; H:{x} = S}. 

Since His a semigroup ideal we have, for any he H, {h} S ^ H and so 
S = H: {h} whence GH Φ 0 . Moreover, GH is a class modulo RH since 
any element of S which is equivalent modulo RH to an element of GH is 
also an element of GH and all the elements in GH are equivalent modulo RH. 
Since for all y e S we have H: {y} £ £ it follows that GH is indeed the 
minimum element of SjRH. It is also clear that GH = H: S. 

Now let us impose on H the condition that it satisfy 

(V* e S) (3x° e S) H:(H:{x}) = H:{x°}. (2) 

In this case we can define a mapping i : *S/JRH -► S\RH by the prescription 
i(x\RH) = x°lRH- NOW 

=> # : {x°} = # : (Jï: {x}) s ff: (ff: {j}) = i / : {/} 
=> i(y/Äfl) = y°lRH < X°IRH = 1 (*/Än) 

and so the mapping i is antitone. Furthermore, from the fact that 
H:{x} = H:[H:(H:{x})] 
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we deduce that i o i = id and so i is an involution on SlRH, an immediate 
consequence of which is that SjRH is a bounded lattice. 

Since from (2) we have x e H : {x°} we see that xx° G H and therefore 
x\RH Λ i(xlRH) = XX°\RH = GH- Consequently i is in fact an ortho-
complementation on S/RH. 

Suppose now that x\RH and y\RH are complements in S\RH, Then 
xylRii = GH and so H : {*>>} = S whence in particular x2y e H so that 
yeH: {x2} = i / : {*}. Thus # : {x°} = H: (H: {x}) s i / : {j>}. Now 
/ (X/RH) and i (ylRH) are also complements so in a similar way we have 
y° e H : {x°} and hence H: {x} = H: (H: {x°}) s # : {/} so that 
H:{x°} = H:(H:{x})^H:(H:{y°}) = H:{y}. We deduce that 
H: {y} = H: {x°} and hence that complements in SlRH are unique. An 
application of Theorem 18.12 now shows that SlRH is a Boolean algebra. 

In summary so far, therefore, if we define a base of S to be a non-
empty subset H satisfying the properties 

(1) H is a reflexive double ideal of S; 
(2) Q/xeS) H:{x} = H:{x2}; 
(3) (VJC G 5) (3x° G 5) if: ( # : {x}) = H: {x°}, 

then for each base H the Dubreil equivalence RH is such that SjRH is an 
isotone homomorphic Boolean image of S. We shall now prove the con-
verse, namely that every isotone homomorphic Boolean image of S arises 
in this manner. For this purpose, let S be an ordered semigroup and let 
/ : S -* B be an isotone epimorphism of S onto a Boolean algebra B. 
Define Ker/ = { x e S;f(x) = 0} and note that since/is surjective Ker/ 
is not empty. We show as follows that Ker/ is a base of S. First, if 
x e Ker/ and y G S, then f(xy) = f(x) r\f(y) = 0 nf(y) = 0 and so 
xy G Ker/. In a similar way we have yx e Ker/, and so Ker/ is a semi-
group ideal of S. Clearly x G Ker/ and y < x imply that y G Ker/ and 
so Ker/ is a double ideal. Now 

p e Ker / · . {x} of(p) n/(*) = /(/>*) = 0 o / ( p ) < [/(*)]' (f) 

and it follows immediately from this that Ker / is reflexive. Since 
f(x2) = f(x) r\f{x) =/(*) for each x G S we also have Ker/: {x} 
11 BRT 
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= K e r / : {x2} for each xe S. Writing K e r / = / we see from (f) that 

I:{x} = {peS;f(p)<[f(x)]'} 

whence, making use of (f) again and the fact t h a t / i s surjective, 

/ : ( / : {*}) = {zeS; Q/p e I: {*}) f(z) < [/(/>)]'} 

= {z e S; Cip e / : {x}) f(p) < [/(*)]'} 

= {zeS; [f(x)Y < [/(z)]'} 

= {zeS;f(z)<f(x)} 

= / : {t} where t is such that f{t) = [/(*)]'. 

This then shows that K e r / is a base of S. 
Now, again from (t) and the fact t ha t / i s surjective, we have 

K e r / : {x} = Ker / : {y}o{f(P) < [f(x)Y *>f(p) < [f(y)]'} 

o[f(x)Y = [f(y)Y 

of(x)=f(y)· 

We can therefore define a mapping ζ : B -> SlRKerf by the prescription 
C [/fr)] = * / * * „ / - Since 

K e r / : {*} ç= Ker / : {>>} o / ( x ) > /(>;), 

it follows that ζ is an isomorphism. 
We can now summarize the above as follows: 

THEOREM 29.1. Let S be an ordered semigroup. If H is a base of S 
and RH is the associated Dubreil equivalence, then S\RH is an isotone homo-
morphic Boolean image ofS. Moreover, every isotone homomorphic Boolean 
image of S arises in this manner. 

Definition. We shall say that a base H is strong if it is such that 
H = H . · S = H '. S. 

With this terminology, we have the following: 

COROLLARY. The set of isotone homomorphisms which map S onto a 
Boolean algebra is equipotent to the set of strong bases ofS. 
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Proof. For each isotone homomorphism/of S onto a Boolean algebra 
B the base Ker/is strong since, on the one hand, 

peKsrfiSoQfyeS) pyeKerf 

o(VyeS) f(p)<[f(y)Y 

and, on the other,/being surjective, there exists }> 6 S such that/(j) = π, 
the maximum element of B. Consequently peKerf: Sof(p) = 0 
op e Ker/ and so Ker/: 5 = Ker/. 

Since, as was shown above,/is completely determined by Ker/(and 
conversely), it suffices to show that if H is a base then ^ : 5 i s a strong 
base and RH = RH:s- Now 

Ker HH = {x e S; x\RH = GH] = GH = H:S 

and so H: S is indeed a strong base. That RH = RH:S follows the fact 
that 

x\RH = y\RH o ïH(x) = ïH(y) o Ker ÏH : {x} = Ker He : {j} 

o ( # : S ) : {*} = ( # : £ ) : M 

oxlRH:S = yl^H-.s. 

Let us now impose on S the condition that it be a u-semireticulated 
semigroup; i.e. is also a u-semilattice in which multiplication is distri-
butive over union. By a homomorphism in this case we shall mean a 
mapping/: S -+ B such that (Vx, y e S)f(xy) = f(x) nf(y) and/(x uy) 
= f(x) u / ( j ) . In such a semigroup we have, for any u-subsemilattice 
H \yhich is also an order ideal, H: {x KJ y) = H : {x} n H: {y}. 
For pe H: {x v y} opx u py = p(x u y)e Hopx e if and pye H 
op e H: {x} n H: {y}. Thus JRH is compatible with union; for if 
x = y(RH) and 2 is any element of S, then 

H: {x u 2} = # : {x} n if: {z} = H: {y} n H: {z} = H:{yuz}. 

It follows that if H satisfies the properties (1) and (2) of a base and if H is 
both a u-subsemilattice and an order ideal of S, then SlRH is a lattice 
in which x\RH A y\RH = WI^H and xjRH Y y\RH = (x u y)lRH- More-

file:///yhich
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over, from the property x (y u z) = xy u xz we see, on passing to quo-
tients, that S/RH is a distributive lattice. It is natural to inquire under what 
conditions it is a Boolean algebra. Suppose, in fact, that this were the 
case. Then H must also satisfy property (3) of a base and so we have 

yeH:{xux°}oyeH:{x} and yeH:{x0} 

oH:{x°} s H:{y} and H: {x} s H: {y} 

oylRH < x°lRH and y\RH < x\RH 

oy\RH < x°\RH A x\RH = 0H 

oyeGH = H:S. 

Consequently, 

(VJC e S) (3x° e S) H: {x u x°} = H: S. (oc) 

Moreover, 

H: {xx0} = (H: {x°}) ' . {x} = [H: (H: {x})] · . {x} 

= (H:{x})-.(H:{x}) = S. (ß) 

Conversely, if these conditions hold, then EH = {a e S; H: {a} = H:S} 
Φ 0 and, as before, we can show that EH is the maximum element of 
SjRH. It follows from (oc) and (ß) that x°lRH is a complement of xjRH in 
SIRH. Hence SjRH is a Boolean algebra. Remembering that a base His 
strong if and only if H = H: 5, we can sum the situation up in the fol-
lowing theorem: 

THEOREM 29.2. Let S be a u-semireticulatedsemigroup. There is a bijec-
tion between the set of homomorphisms of S onto a Boolean algebra and the 
set of subsets H of S having the properties 

(1) H is a reflexive double ideal of S which is a v-subsemilattice; 
(2) (VxeS) H:{x} = H:{x2}; 
(3) (Vx G S) (3x° e S) H: {xx°} = S and H: {x u x°} = H. 

Proof In view of the previous remarks, it suffices to note that if 
/ : S -> B is a homomorphism then Ker/ satisfies (1) and that if H satisfies 
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the condition (3) then 
H: S = H : \J {x} = f] H: {x} = H. 

xeS xeS 

We shall leave a discussion of maximum homomorphic Boolean 
images to the exercises for this section. The conditions encountered so far 
are in general difficult to handle, so we shall proceed, as we did with group 
images, to consider a particular case obtained by strengthening the notion 
of a homomorphism. The reader will recall that when dealing with group 
images we met with a condition which was a nuisance because of its 
complexity, namely the condition that the core of S be strongly neat. This 
condition disappeared altogether whenever we required the bimaximum 
element to be residuated; and this is equivalent to saying that/is residu-
ated (Theorem 25.4). As the following results show, if we pass directly 
to residuated homomorphisms an equally pleasant state of affairs exists 
for Boolean images. 

THEOREM 29.3. Let S be an ordered semigroup, B a Boolean algebra and 
f: S -* B an isotone epimorphism. The following conditions are equivalent: 

(1) fis residuated; 
(2) Kerf has a maximum element t which is equiresiduaL 

Proof Let/be residuated. Then clearly Ker/admits a maximum ele-
ment. Let this element be t; then we have 

xy < tof(x) nf(y) =f(xy) <f(t) = 0 
ο / ω < [/(*)]' 

Thusi. · jc exists and i s / + [/(x)]'.In a similar way we can show that/ · . x 
exists and is also / + [fix)]'. 

Conversely, if Ker/ = [«-, t] with t equiresidual, then/being surjec-
tive, for each yeB there exists j * e 5 such that f(y*) = y' and so 

/(*) < yofixy*) =/(*) nf(y*) =f(x) n / = 0 
oxy* < t 

ox < t:y*. 
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It follows that / i s residuated. 

Definition. An element t of a residuated semigroup S will be called 
right quasi-integral if <f. * t} = S, left quasi-integral if <i ' . t} = 5 and 
quasi-integral if </ . ' i> = 5 = <i *. t}. 

THEOREM 29.4. If xe S is quasi-integral and residuated, then 

(1) S has a maximum element, namely π = x . · x = x ' . x; 
(2) (Vy e 5 ) x . 7 i , s ng/tf quasi-integral and x' .yis left quasi-integral 

Proof (1) is immediate. As for (2), we observe that ifq = x.'y then 
yq < x and so, for each ze S, yqz < xz < x whence qz < x . * y — q 
and so S = (q . * q}. 

THEOREM 29.5. An ordered semigroup S admits a Boolean algebra as 
image under a residuated homomorphism if and only if it admits an element t 
such that 

(1) t is quasi-integral; 
(2) t is equiresidual; 
(3) (VJC e S) t:x = t: x2. 

Each residuated homomorphic Boolean image of S is of the form SjAtfor 
such an element t and there is a bijection between the set of residuated 
homomorphisms of S onto a Boolean algebra and the set of elements t e S 
satisfying (1), (2), (3), and 

(4) t = t:(t:t). 

Proof Suppose first that S admits a Boolean algebra B as image 
under a residuated homomorphism/. Then K e r / = [<-, t] is a base of S. 
By Theorem 29.3, t is equiresidual. Since [<-, t] is an ideal of S, we have 
(Vx e S) xt < t and tx < t whence t is also quasi-integral. The prop-
erty (2) in the definition of a base then yields property (3) of the theorem. 
The conditions are therefore necessary. 

Conversely, let te S satisfy (1), (2), (3) and consider H = [«-,*]. 
By (1), His an ideal of S. By (2), H is reflexive. Thus (1), (2), (3) imply 
that H satisfies conditions (1), (2) in the definition of a base. Let us now 
show that the condition (3) in the definition of a base is also implied 
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by (1), (2), (3) above. First we note that 

ye<f:Jc> ye<f:jc> 

Now since </ : x> admits a maximum element, namely the element t:x, 
this intersection is none other than <J : (t : x)>. This then shows that 
property (3) is satisfied with x° = t : x. The Theorem now follows by 
Theorem 29.1. All we have to do as far as the last part is concerned is to 
observe that a base of the form [<-, t]9 where t satisfies (1), (2), (3), is 
strong if and only if 

h ( ] = h i ] : 5 = h ( ] : U W = i i<':*)· 
xeS xeS 

But S has a maximum element, namely t : t (Theorem 29.4). This inter-
section therefore reduces to (t : (t : i)> and so the above equality holds if 
and only if t also satisfies (4). 

Taking multiplication in S to be commutative and idempotent, we 
deduce from Theorem 29.5 the following particular case. 

THEOREM 29.6. Let S be an n-semilattice. Then there is a bijection 
between the set of residuateci homomorphisms of S onto a Boolean algebra 
and the set of elements te S which are residuated. Every residuated epi-
morphic Boolean image of S is of the form SlAtfor each such element t. 

Proof Every element of S is idempotent and quasi-integral. More-
over, if x e S is residuated then a maximum element exists, namely 
π = x : x. Since π is then the neutral element we have x : (x : x) = x : π 
= x. It follows from these observations that the conditions in the previous 
theorem are in this case equivalent to t being residuated. 

Let us note that if/ satisfies the conditions (1), (2), (3) of Theorem 29.5, 
then the Boolean algebra S\At is ordered according to the prescription 

x\At < y\At ot:y < t: xot : (t: x) < t:(t: y), 

and since At is a closure equivalence this is equivalent to x < t:(t: y). 
It follows that the set R(t) of residuals of t forms a Boolean algebra which 
is isomorphic to S\At. For our future use, we shall end this section by 
determining explicitly the laws of this Boolean algebra. 

Since t is quasi-integral and equiresidual, it follows by Theorem 29.4 
that every element of R{t) is quasi-integral. [Moreover, by Theorem 25.5, 
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every element of R(t) is also equiresidual.] Thus, given any a, be R(t), 
we have 

t:(t:ab) < t:(t:a) = a and t:(t:ab) < t:(t: b) = b, 

so that t : (t : ab) is a lower bound for {a, b} in R(t). If x e R(t) is any 
such lower bound then from x < a and x < b we have x2 < ab and so, 
using (3), x = t : (t : x) = t : (t : x2) < t : (t : ab). It follows from this 
that intersection in R(t) is given by 

a A b = t : (t : ab) = t : (t : ba). 

In a similar way we have 

t:(t:a)(t:b) > t:(t:a) = a and t:(t:a)(t: b) > t:(t: b) = b. 

If xeR(t) is any upper bound for {a, b} in R(t), then t: x < t: a and 
t:x < t:b so that x = t : (t : x) = t : (t : x)2 > t:(t:a)(t: Z>). We have 
thus shown that unions in .R(i) are given by 

a Y b = t:(t:a)(t:b) = t : (t : b) (t : a). 

Now as was observed in the proof of Theorem 29.5, the element a° = t:a 
satisfies the property (3) in the definition of a base and so it follows from 
the proof of Theorem 29.1 that a° is the complement of a in R(t). This 
fact may also be shown directly using the above formulae; for the reader 
will have no trouble in showing that the maximum element of R(t) is the 
element / : / and the minimum element of R(t) is the element t:(t:t). 

EXERCISES 

29.1. Consider the ordered semigroup described by the following Cayley table and 
Hasse diagram: 

X 

y 

o 

x y o 

y o o 

o o o 

o o o 

x 
o 

yo 

o 
O 
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Show that the subset H = {0} satisfies the properties (1) and (3) of a base but does not 
satisfy (2). Deduce that although SjRH is a Boolean algebra, bH is not an isotone epi-
morphism. Show also that S is residuated and that SjAQ is a residuated homomorphic 
Boolean image of 5. 

29.2. Let B, X be Boolean algebras. Define a Boolean homomorphism to be a 
mapping/: B-> X such that, for all x,yeB, 

(I)fix ny) = / (*) n/fr); (2)/(* u y) = /(JC) u/GO; (3)/(*') = [/(*)]'. 

Show that if/satisfies (1) and (2) then/satisfies (3) if and only if/(0) = 0 and/(rc) = π. 
Show also that if/satisfies (1) and (3) then it also satisfies (2). 

29.3. Define an ordered semigroup S to have a maximum isotone homomorphic 
Boolean image if and only if there is associated with S a Boolean algebra B and an 
isotone epimorphism/: S -> B such that, for any Boolean algebra X and isotone epi-
morphismg:S-+ X, there is a unique n-epimorphism ζ: B-+ Xsuch that C°f=g. 
Show that S admits a maximum isotone homomorphic Boolean image if and only if 
the set A of Dubreil equivalences associated with the bases of S admits a minimum 
element. 

29.4. Define the maximum isotone homomorphic Boolean image of an ordered 
semigroup to be standard if each epimorphism ζ in its definition is a Boolean epi-
morphism. Show that an ordered semigroup S admits a standard isotone homomorphic 
Boolean image if and only if: 

(1) the set Γ of strong bases of S admits a minimum element H; 
(2) (V/e Γ ) H: (H: {x0}) = H:{x}=>J: ( / : {JC0}) = J: {x}. 

29.5. Consider the following Hasse diagram and Cayley table: 

0 

y 
z 
X 
71 

o 

o 
o 

o 
o 
o 

y 
o 

y 
o 

y 
y 

x 
o 
0 

z 
z 
z 

z 

o 

y 
z 
π 
π 

π 

o 

y 
z 

π 
π 

Show that these define an ordered semigroup S whose bases are {0}, [<-,y], [<-9z], 
{0, y, z, π}, S. Which of these bases are strong? Show that S admits a standard maxi-
mum isotone homomorphic Boolean image. 
I la BRT 

/l\ 
V o o 
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29.6. Consider the n-semilattice as suggested by the following diagram: 

remove 

x o 

Show that the bases of S are {0}, [<-, x], [<-, y], {0, x, y), [«-, r] for each r e R, S. 
Deduce that the condition (2) of Exercise 29.4 cannot be removed. 

29.7. Define a u-semireticulated semigroup S to have a maximum homomorphic 
Boolean image if and only if there is associated with S a Boolean algebra B and an 
epimorphism/: S -> B such that, for any Boolean algebra JT and epimorphism g : S -> X, 
there is a unique lattice epimorphism [hence Boolean, by Exercise 29.2] ζ : B -» X such 
that ζ °f= g. Prove that the following are equivalent: 

(1) S admits a maximum homomorphic Boolean image; 
(2) the set A of Dubreil equivalences associated with the bases of S admits a 

minimum element; 
(3) the set Γ of bases of S admits a minimum element H which is such that (V/e Γ) 

H:{x} = # = > / : { * } = / . 
29.8. Consider the set N x N of ordered pairs of natural numbers. Order N x N in 

the usual cartesian way. Observe that we obtain a distributive lattice which we may 
regard as a u-semireticulated semigroup in which multiplication is intersection. Show 
that the bases of N x N are the finite rectangles Hntm = [0, n] x [0, m] and the infinite 
rectangles 

^Ίι,αο = U Hntml Hao,m = U ^n,m> #00,co = N x N . 

Deduce that the second condition in Exercise 29.7 (3) cannot be removed. 
29.9. Define an ordered semigroup S to have a maximum residuated homomorphic 

Boolean image if and only if there is associated with S a Boolean algebra B and a 
residuated epimorphism/: S -> B such that, for every Boolean algebra Jifand residuated 
epimorphism g: S-+ X, there is a unique residuated Boolean epimorphism ζ : B-» X 
such that ζο/z^g. Let S be an o-semilattice. Show that the following are equivalent: 

(1) S admits a maximum residuated homomorphic Boolean image; 
(2) the set of equivalences At associated with the residuated elements of S admits a 

minimum element; 
(3) the set of residuated elements in S admits a minimum element p and the only 

residuated elements in S are the residuals of p. 
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29.10. (a) Show that the lattice 

o 

admits a maximum residuateci homomorphic Boolean image. 
(b) By considering the 3-element chain 0 < x < π9 show that the second condition 

of Exercise 29.9(3) cannot be removed. 

30. Glivenko semigroups 

Definition. By apseudo-residuatedsemigroup we shall mean an ordered 
semigroup S with an equiresidual zero element 0. The residuals of 0 will 
be called the pseudo-residuals ofS. By a Glivenko semigroup we shall mean 
a pseudo-residuated semigroup S which is such that SjA0 is idempotent. 

We note first that if S is a Glivenko semigroup, then the element 0 is 
endowed with the conditions (1), (2), (3) of Theorem 29.5 and hence SjA0 

is a Boolean algebra. If we write 0 : x = x* for each x e S and denote 
by S** the set R(0) of residuals of 0, then, according to the discussion 
given at the end of the previous section, 

(a Yb = 0:(0:a)(0:b) = (a*b*)*; 
(VU, b e S**) 

[a Ab = 0:(0:ab) = (ab)**. 
Moreover, the maximum element of S** is 0: 0 = 0*, the minimum ele-
ment is 0 : (0: 0) = 0** and the complement of a e S** is a*. As men-
tioned previously, every element of S** is equiresidual; by the com-
patibility of A0 with multiplication, we have 

x* : y = (0 : x) : y = 0 : xy = 0 : [0 : (0 : x)] [0 : (0 : y)] 

= (0:x)Y(0:y) 

= x* Y y*. 

We shall require all of these facts in the results which follow. 
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THEOREM 30.1. A pseudo-residuated semigroup is a Boolean algebra if 
and only if it is idempotent and the equivalence A0 reduces to equality. 

Proof A Boolean algebra is clearly a pseudo-residuated semigroup 
under the definition xy = x n y. Moreover, each element is idempotent 
and since 0 : x = x' for each x it is clear that A0 reduces to equality. Con-
versely, if S is a pseudo-residuated semigroup which is idempotent, then 
so also is S)A0. Thus S is a Glivenko semigroup and SjA0 is a Boolean 
algebra. If A0 reduces to equality, it follows that S is a Boolean algebra. 

It should be noted that in a Glivenko semigroup the element 0 need 
not be the minimum element, nor even minimal, as the following example 
shows. 

EXAMPLE 30.1. Consider the set S described by 

S= {n,xi(i= 1,2,3,. . .) ,0+,0,^·Ο·= 1,2,3,...)}. 

Endow S with the following Cayley table and Hasse diagram: 

π 

Xi 

* 2 

X3 

0+ 

0 

J l 

yz 

y3 

π Χι x2 X3 · · · 

π2 = π 

UvJÇ î ~~ « Γ̂ *"— JÇ iJv 

Xixj — Χί+j 

0 

0 

0+ 0 1 j ! y2 y3 

0 | 0 

0 ' 0 

0 . y&j = yi 

\X2 

0 v 
1 *3 

?0+ 

î° 

\y* 
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It is clear that S is an ordered semigroup. The element 0 is equiresidual; 
in fact, for each index /, 

O.-Xi = 0 :π = 0+ and 0 : ^ = 0: 0 = 0: 0+ = π. 

It is readily seen that SfA0 is idempotent, so that S is a Glivenko semi-
group. 

Let us now investigate some of the properties of Glivenko semi-
groups. 

THEOREM 30.2. If S is a Glivenko semigroup, then 
(l)/?e[0,0**]=>(VxeS) px = 0 = xp; 
(2) 0 : x = 0** => (Va e S) 0:xa = 0: a; 
(3) (Vx, y e S) x*y* = x* Λ y*(A0). 

Proof (1) For each x e S we have, 0:0 being the maximum element, 
xO** = x [0 : (0:0)] < x [0 : x] < 0 and so if p e [0,0**] we obtain 
from this 0 = xO < xp < xO** < 0 whence (1) follows. 

(2) Let p = 0 : xa ; then xap < 0 and ap < 0 : x = 0**. Thus, for 
each y e S, yap < y0** = 0 [by (1)]. In particular, let y = a; we obtain 
a2p < 0 and so p < 0 : a2 = 0 : a. Now let q = 0 : a; we have aq < 0 
and so xaq < xO = 0 whence # < 0 : xa. It follows that p = q and this 
gives (2). 

(3) x* A J* = OV)**· 

THEOREM 30.3. T^S z's a Glivenko semigroup then the mapping described 
by x -> x** = 0 : (0 : x) is a closure mapping of S onto £** and the follow-
ing conditions are equivalent: 

(1) (Vd, beS) (ab)** = a**b** ; 
(2) S** fs* of subsemigroup of S; 
(3) etfcA element ofS** is idempotent. 

Furthermore, a** = è** if there exists de S such that d** = 0:0 and 
da = bd. The converse of this is not in general true, but does hold if S is a 
\j~semireticulated semigroup in which (ix,yeS) x2y = xy2. 

Proof It is clear that the mapping x -» x** is a closure mapping of S 
onto 5**. That (1) => (2) is obvious. Conversely, since α**ο** = ab 

file:///j~semireticulated
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= (ab)**(A0), we have (2) => (1). To show that (2) => (3), we observe 
that by Theorem 30.2(3) we have x*y* = x* A y* [for under the hypo-
thesis (2), x*y* must be a pseudo-residual and hence maximum in its 
class modulo A0], Setting y* = x* we obtain (3). Conversely, suppose 
that each element of S** is idempotent. Since x** > (x* Yj*)* and 
y** > (JC* Y y*)*9 we have χ**γ** > [(^* γ j;*)*]2 = (χ* γ y*)*. 
But we know that (x**y**)* = χ* γ y*9 so that x**y** < (x**y**)** 
= (x* Y .y*)*. Thus χ**^** = (χ* Y j*)* = *** A/**. Writings*for 
x and y* for j this becomes x*y* = x* A y* and this shows that S** is a 
subsemigroup of S. 

To prove the next assertion, we suppose that there exists de S such 
that d** = 0: 0 and da = W. Then 

j * = < / * * * = (o : 0)* = 0 : (0:0) = 0**. 

Moreover, since SjA0 is abelian, 0 : db = 0 : bd = 0 : da. It follows by 
Theorem 30.2(2) that 0 : b = 0 : a whence a** = b**. 

That the converse of this does not hold in general may be seen by 
considering Example 30.1. There we have, for instance, Χχ — X2 
and any element d satisfying d** = 0: 0 is either π or one of the xt ; the 
condition dxx = x2d is then never satisfied, for 71X± — Χ^ ^ρ Χ2 — Χ2Ή 
and (1 = 1,2, 3,...) xix1 = xi+1 φ xi+2 = Xi^t-

To show that the converse does hold under the conditions stated, we 
consider, for any pair of elements a,beS which are such that #** = b**9 

the element d = bau 6*0*. Bearing in mind that #** = 6** is equi-
valent to A* = è*, we have 

tf* < (ba)* = 0:ba = (0:a):b = (0:b):b = 0:b2 = 0:6 = b*; 

d* < (b*a*)* = [(è*)2]* = è**, 

whence d* < 6* A &** = 0**. Since 0** is the minimum element of 5** 
it follows that rf* = 0** and so d** = 0*. Furthermore, 

bd = b (ba u Z>*a*) = b2a u 66*a* 
and 

Jo = (feu u δ*β*) a = te2 u 6*0*0. 



RESIDUATED ALGEBRAIC STRUCTURES 325 

Now bb* = b (0 : b) < 0 and so bb*a* < 0a* = 0. But 6* > 0** and 
a* > 0**, so that Z>*û* > 0**0** = 0 [Theorem 30.2(1)] and conse-
quently òè*tf* > 60 = 0. Thus bb*a* = 0 and likewise b*a*a = 0. 
Under the hypothesis that b2a = ba2, we then obtain bd = da as re-
quired. 

Remark. Note that the above converse does not hold if we delete the 
condition x2y = xy2. This may be seen by referring to Example 30.1 
which is u-semireticulated since the Hasse diagram is a chain. 

THEOREM 30.4. The equivalences of type A associated with the pseudo-
residuals of a Glivenko semigroup S from a Boolean algebra which is iso-
morphic to the Boolean algebra S** of pseudo-residuals. 

Proof Denoting by Tthe set of equivalences of type A associated with 
the pseudo-residuals in S, we order T in the usual way, namely 

Ax* < Ay* o (a = b(Ax*) => a == b(Ay*)). 

Now if a = b(Ax*) then 

x* Y 0* = x* : a = x* : b = x* Y b*. 

Thus if x* < y* we have 

y* Y a* = j * Y x* Y a* = j * Y x* Y è* = j * γ è*, 

so that a = ô(̂ 4y*)· This then shows that x* < j * => Ax* < Ay*. To ob-
tain the converse implication, we observe that 

x* : (JC* : 0) = x* Y (x* : 0)* = x* Y (x* Y 0*)* = x* Y 0** = x*. 

Thus, since the greatest element in the class of 0 modulo Ax* is x* : (x* : 0), 
we have Ax* < Ay* => x* < y* ; for from Ax* < Ay* we deduce that the 
greatest element in the class of 0 modulo Ax* is less than or equal to the 
greatest element in the class of 0 modulo Ay*. It follows from the above 
observations that *S** and Tare isomorphic under the mapping x* -► Ax*. 

Definition. If S is a Glivenko semigroup then we shall say that de Sis 
dense if and only if d** = 0*. 
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As we shall see, the set of dense elements plays an important rôle in 
the properties of a particular type of Glivenko semigroup. For the pre-
sent we mention only the following important fact. 

THEOREM 30.5. The set D of dense elements of a Glivenko semigroup S 
is a semigroup filter of S. 

Proof Let x,yeD; then by the compatibility of A0 with multiplica-
tion, (xy)** = (x**y**)** = x** A y** = 0* Λ 0* = 0* andsoxyeZ). 
Also, if x eD with y > x, then j>** > x** = 0* and so j>** = 0* 
whence y e D. Thus D is a subsemigroup of S which is a filter of the 
ordered set S; i.e. a semigroup filter of S. 

Definition. By a Glivenko n-semilattice we shall mean a Glivenko 
semigroup S which is an n-semilattice in which multiplication coincides 
with intersection. 

THEOREM 30.6. If S is a Glivenko n-semilattice then the mapping (**) : S 
-* S** is a closure mapping on S and a surjective homomorphism in the 
sense that it preserves intersections, pseudo-residuals, the zero element and 
(whenever they exist) unions. 

Proof Intersection being the same as multiplication, property (3) of 
Theorem 30.3 holds, whence so also does property (1). Thus (**) preserves 
intersections. Moreover, by Theorem 30.2(1) we have 0** = 0** n 0** 
= 0**0** = 0, so that (**) also preserves the zero element. Finally, if 
x u j exists in S then from x < x u y and y < x u y we obtain 
x* > (x u j;)*, >>* > (x u y)* and so x* n j * > (x u y)*. But x < x** 
< (x* n j>*)* and y < >>** < (x* n >>*)* and so x u y < (x* n y*)* 
whence (x u y)* > (x* n j;*)**. It follows from these observations 
that (x u y)* = (x* n j;*)** = (x*j*)** = x* A J7* and consequently 
(x u y)** = (x* A J*)* = x** Y j * * . 

Definition. By a Glivenko u-semigroup we mean a Glivenko semigroup 
which is also a u-semilattice. 

THEOREM 30.7. If S is a Glivenko u-semigroup then 

(Va,beS) a* u b* = a* Y b*(A0)·. 
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Proof. Since a* Y 6* > a*, 6* we have a* Y b* > a* v b* so that, 
on the one hand, (a* u 6*)* > (#* Y ό*)*. But A*, ό* < ß* u ô* and 
so a**, è** > (a* u ό*)* whence (tf* Y b*)* = a** A b** > (a* uè*)*. 
Thus (a* u b*)* = (a* A **)*. 

THEOREM 30.8. The Boolean algebra of pseudo-residuals of a Glivenko 
u-semigroup S is a u-subsemilattice of S if and only if 

(Ve, be S) a* u b* = (ab)*. 

Proof. Suppose that S** is a u-subsemilattice of S. Then by Theo-
rem 30.7 we have a* u 6* = a* Y 6* = (e**i**)* = (ÛÔ)*. Conversely, 
if the condition holds then since a* Y b* = (ufô)* we obtain a* Y è* 
= (ab)* = a* u Ζ>* and so S** is a u-subsemilattice of 5. 

Definition. By a Stone semigroup we shall mean a Glivenko u-semi-
group S in which (Va e S) a* v a** = 0*. 

Note that not every Glivenko u-semigroup is a Stone semigroup, as 
is shown by the following example. 

EXAMPLE 30.2. Let S = {π, x, a, b, 0} with Hasse diagram 

o x 

a o ob 

o 
O 

and multiplication given by (V#, ß e S) ocß = oc n ß. It is readily seen 
that S is a Glivenko u-semigroup but not a Stone semigroup since, for 
example, a* = b and a** = a so that Ö* u Û** = x τ* π = 0*. 

THEOREM 30.9. If in the Glivenko u-semigroup S, the Boolean algebra 
S** of pseudo-residuals forms a u-subsemilattice, then S is a Stone semi-
group. The converse is not in general true. 
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Proof. If 5** is a u-subsemilattice then, as we have just seen, we have 
the identity û * u J * = a* Y è*. Choosing b = a* we obtain Û*UÛ** 
= Û * Y Ö * * = 0*. 

That the converse does not hold in general may be seen from the fol-
lowing: 

EXAMPLE 30.3. Consider the ordered semigroup S described by the 
following Hasse diagram and multiplication : 

a o 

oa ' 

xy = x n y except that dn = dc' = nd = c'd = dd = c\ 

It is readily verified that S is a Glivenko u-semigroup in which the pseudo-
residuals are given by 

\π if x = 0; 
ιθ if x 

X* = 
π; 

c if x = d; 

x' otherwise, 

where the notation is conveniently chosen such that primes denote com-
plements, so that for x Φ d, π, 0 we have (x')' = x. It follows that for 
each x e 5, x* u x** = π = 0* and so »Sis a Stone semigroup. However, 
the subset S** is not a u-subsemilattice; for a, be S** whereas au b 
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Definition. By a Glivenko lattice we shall mean a Glivenko n-semi-
lattice which is also a u-semilattice. The notion of a Glivenko lattice is 
thus synonymous with that of a pseudo-complemented lattice as defined 
in § 7. By a Stone lattice we shall mean a distributive Glivenko lattice in 
which the identity x* u x** = 0* holds. 

THEOREM 30.10. Let S be a distributive Glivenko lattice. Then the follow-
ing conditions are equivalent: 

(1) S is a Stone lattice; 
(2) (VÄ, ft e S) a* u ft* = {a n ft)*; 
(3) £** ft a sublattice. 

Proof. The equivalence of (2) and (3) follows from Theorem 30.8. That 
(3) => (1) follows from Theorem 30.9. Suppose now that (1) holds. Then 
every element a* of 5** is complemented in the lattice S [for ΰ*ηΰ** 
= tf* A 0** = 0** = 0 and Û* U #** = 0**]. Now S is distributive by 
hypothesis, so the complemented elements of S form a sublattice; for if 
x,ye S are complemented, then so also are x ny and JCUJ;, respec-
tive complements being x' u y' and x ' n / . It therefore follows that 
( l ) - ( 3 ) . 

In the case of a Glivenko lattice which is distributive, we can give an 
interesting characterization of the equivalence relation [**] associated 
with the closure mapping (**). We require a few preliminaries which will 
be of use to us later also. 

Definition. If L is an n-semilattice and J is a filter of L [i.e. a non-
empty subset such that x,yeJ=>xnyeJ and xeJ, y > x=>yeJ]9 

we define the relation (J Ft by 
teJ 

x = y /(J Ft\ o (3t e J) x nt = y nt. 

Remark. It should be noted that if E is an arbitrary ordered set and 
{̂ <x}«<=i is a family of equivalence relations on E, then the relation (J Ra 

defined by ae J 
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is not in general an equivalence relation as transitivity fails (see Exer-
cise 4.14). However, in the case of an abelian semigroup S [in particular, 
a semilattice], [j Ft is an equivalence relation whenever / is a subsemi-

teJ 

group of S. To see that it is transitive in this case, we observe that if 
xh = yh anc* yt2 = zt2 where t1,t2eJ then t = t1t2 e J and xt = zt. 
Thus in this case (J Ft and Y[ Ft coincide. 

teJ teJ 

THEOREM 30.11. If S is a distributive Glivenko lattice with dense filter D, 
then the closure equivalence [**] associated with the mapping (**) is given 
by [**] = (J Ft. 

deD 

Proof. Note that, S being a distributive lattice, it is a u-semireticulated 
semigroup under xy = x n y and that the condition x2y = xy2 holds. 
The result therefore follows immediately from Theorems 30.3 and 30.5. 

EXERCISES 

30.1. Let 5 be a Glivenko semigroup, 5** the Boolean algebra of pseudo-residuals 
and D its dense filter. Consider the equivalence relation R defined on S x 5** by 

(*, a) Ξ (y, b) (R)o(x* = y* and a = b). 

Show that 5 x S** is a semigroup under the law of composition 

( f c e ) , ( y , « ) - * W , e A Ö 

and that i? is compatible with this law. Show that the quotient (5 x S**)/R is pseudo-
residuated and use Theorem 30.1 to show that it is a Boolean algebra. Show further 
that there is an isotone homomorphism/: S -> (S x S**)/R such that I m / ^ 5** and 
Ker* /= £ where K e r * / = {xeS;f(x) = π} . 

30.2. Let L be a u-semilattice and consider the set C(L) of equivalence relations 
on L which are compatible with union. Show that C(L) is a complete lattice in which 
unions are transitive products. If H, Ke C(L) are such that H < K define the relation 
H:Kby 

rrr «rx (forali ÌX,/5GL suchthat α = β(Κ) 
χ — y ν« · -̂ ,) "^ { _ 

[χ u oc = χ Kj ß(H)oy yj(x = y Kj ß(H). 

Show that (ì)H:KeC(L); 
(2)Kn(H:K) = H; 
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(3) if Je C(L) is such that KnJ= H then J<H:K. 
Deduce that C(L) forms a Glivenko lattice. 

30.3. Without appealing to results on congruence relations, prove directly that 
the set 1(B) of ideals of a complete Boolean algebra B forms a Stone lattice. 

31. Loipomorphisms 

Definition. Let S, T be residuated abelian semigroups. We shall say 
that a mapping / : S -> T is a loipomorphism if it is such that 

(1) / i s isotone; 
(2)(Vx,yeS) f(xy)=f(x)f(y); 
(3) (Vx,yeS) f{x : y) = f{x) :f(y). 

Thus a loipomorphism is an isotone homomorphism such that the sub-
semigroup I m / i s stable under residuation with residuals in Im/given 
by (3). 

The reader will note that we have given the above definition with the 
restriction that the semigroups in question were abelian. We shall main-
tain this assumption throughout the present section. 

If S is a residuated abelian semigroup we shall be particularly inter-
ested in the subset S" of S given by 

xeS 

Clearly SA is not empty if and only if S contains an element y suchthat 
("ix G S) xy < x. In particular, this is the case if S has a neutral element. 

For each ae S and each non-empty subset D ç S define 
[a}D = (J <a : d} = {x e S; (3deD) xd < a}. 

deD 

It is clear that the relation RD defined on S by 

a = b(RD) o {a}D = {b}D 

is an equivalence relation. It is equally clear that the relation < defined 
on SjRD by 

a\RD < b\RD o {a}D s {b}D 

is an ordering. 
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THEOREM 31.1. Let S be an abelian residuated semigroup such that 
SA Φ 0 . For each subsemigroup DofSA we have 

(l)alRD < b\RDoae{b}D\ 
(2) RD is compatible with multiplication ; 
(3) the quotient SjRD is a residuated semigroup with a neutral element 

and the canonical surjection %D : S -> SjRD is a loipomorphism. 

Proof. (1) Since D £ SA we have (Vtf e S) (ydeD) ad < a and so 
(Va e S) a e {a}D. It follows that 

a\RD < b\RD =>ae {a}D s {b}D. 

Conversely, if a e {b}D then (3deD) ad < b and so, D being a subsemi-
group of SA, 

x e {a}D => (3d* eD) xd* < a=> (3d, d* e D) xdd* < ad < b 

=>xe {b}D 

whence {a}D £ {b}D and so a\RD < b\RD. 

(2) We observe that 

a\RD < b\RD =>ae {b}D => (3deD) ad < b 

=> Çix e S) (3deD) axd < bx 

=> (Vx e S) axe {bx}D 

=> (Vx e S) ax\RD < bx\RD. 

It follows immediately from this that 

a = b(RD) => (Vx eS) ax = bx (RD). 
(3) It is clear from the proof of (2) that SlRD is an ordered semigroup. 

We show as follows that it has a neutral element. For any deD and any 
a e S we have trivially ad < ad and so a e {ad}D which gives a\RD 

< adjRD. Now for any d,d* eD and any öeSwe also have add* < ad 
< a so that ade {a}D and hence adjRD < a\RD. It follows that 

(Va e S) (We D) a\RD = ad\RD = a\RD · d\RD 
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and so djRD is a neutral element for SjRD. To show that SjRD is residuated, 
we observe that 

a\RD · x\RD < bjRD oaxe {b}D o (3d e D) axd < b 

o(3deD) xd<b:a 

oxe{b: a}D 

oxfRD < (b:ä)jRD. 

It follows from this that residuals exist in SjRD and are given by 

b\RD:alRD = (b:a)\RD. 

This formula also shows that the canonical surjection bD is a loipo-
morphism. 

Under the hypotheses of Theorem 31.1, we can give a complete descrip-
tion of the equivalence classes modulo RD and the pre-image under tip of 
the negative cone of 5/jRp. 

THEOREM 31.2. Under the hypotheses of Theorem 31.1 we have: 

(1) (W e S) tlRD= U [im, tin]; 
n,meD 

(2) 0tdeD)K[+-9l] = {d}D. 

Proof. (1) {x}D = {t}D ox e {t}D and t e {x}D 

o(3n, me D) xn < t, tm < x 

o (3n, meD) tm < x < t:n 

o (3n, meD) xe [tm, tin], 

(2) Since d/RD is the neutral element of SIRD for any de D9 we see 
that 

x e tip" [<-, 1] oxjRjy < djRD ox e {d}D. 

Definition. If T is a semigroup with neutral element 1 we define the 
l-kerneloff:S->Tby Ker x /= {xeS;f(x) = 1}. 

In what follows we shall write Kerx / as simply Ker/unless there is 
some danger of confusion. 
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THEOREM 31.3. If S is a residuated abelian semigroup with the property 
that the subset SA is not empty and is closed under residuation then for any 
subsemigroup DofSA we have: 

(1) Ker kD is a filter of SA containing D; 
(2)(WeD) {d}D = SA; 
(3) RD = RKeTÏD-

Proof (1) Since 

x e Ker ï\D o xjRD = d\RD o {x}D = {d}D o x e djRD 

we see from Theorem 31.2(1) that 

Ker WD= (J [dm, dm]. (*) 
n*meD 

It is clear from the above that D S Ker bD. Now D Ç SA and so, since 
SA is closed under residuation, we have d,ne D=> dine SA. Conse-
quently Ker fcij, c sA. If x e Ker bD and y e S is such that y > x then 
there exist d,meD such that dm < x < y < did and so y e Ker bD. 

(2) Since yd < d for all y e SA and d e D, we have SA c {rf}^. Con-
versely, if x e {</}ρ then (3J* e Z>) x*/* < d so that x < did*. But by 
the hypothesis d:d*eSA. Hence {d}^ c £A and (2) follows. 

(3) Since D £ Ker §D we have 

x e {Ö}D => (3rfe D C Ker tjD) ώ < ΰ = » χ ε {β}κβΓ t|D· 

Conversely, using (*), we have 

x e {a}Ker tjo => (3i e Ker tljn) xt < a 

=> (3d, me D) xdm < xt < a 

=> xe {a}D. 

This shows that {flf}̂  = {ö^Keri^ for each ae S and so RD = i?Kerl îD. 

Let us now examine the converse situation in which we are given 
residuated abelian semigroups S, T with T having a neutral element and a 
loipomorphism/: S-» T. In order to have K e r / a filter of S A it is necessary 
to impose some restrictions. We therefore ask the reader to recall the 



RESIDUATED ALGEBRAIC STRUCTURES 335 

terms A-totally closed and A-integrally closed as applied to a residuated 
semigroup. If S is an abelian ^-totally closed semigroup then clearly 
»SA = [<-, £]. If S is ^-integrally closed then ξ becomes the neutral ele-
ment of S. 

THEOREM 31.4. Let T be an abelian A-integrally closed semigroup. If S 
is an abelian residuated semigroup and f: S^> T is a loipomorphism with 
the property that K e r / ^ SA, then S is A-totally closed, Kerf is a filter 
of SA and there is a unique bijective loipomorphism ζ: SlRKcTf^ I m / 
such that ζ o t|Kcr/ = / . 

Proof Since T is ^-integrally closed, we have 

(VxeS) f(x:x)=f(x):f(x)= 1 

and so it follows from the hypothesis that (Vx e S) x : x e SA. But by 
definition we have S Λ = f] [<-, x : x]. We deduce that there is an element 

jceS 

ξ e S which is such that (Vx e S) x : x = ξ. Thus S is A-totally closed. 
That Ker/is a filter of 5Λ = [<-, | ] then follows from the fact that if 
x e Ker/ and x < y < ξ then 1 = f(x) < f(y) < /(£) = 1 yields 
y e Ker/. Since Ker/is in particular a subsemigroup of SA we can form 
the residuated quotient semigroup SlRKerf as in Theorem 31.1. Since S is 
totally closed and bKeTf is a loipomorphism, SjRKetf is also A-totally 
closed. It is in fact A-integrally closed since it contains a neutral element. 
Now, writing K = Ker/, we have 

{y)K <= {x}K => (3 k e K) yk < x =>f(y) = f(y)f(k) = f(yk) < f(x). 

It follows from this that we can define an isotone mapping ζ : S\RK -» Im / 
by the prescription C(xjRK) =f(x). Clearly ζ is a surjective loipo-
morphism. To show that it is also injective, we note that 

/(*) = f(y) =>fb · y) = fix) -f(y) = /(*) :/(*) = i 
=> x : y e Ker/ = K. 

The inequality (x : y) y < x then shows that y e {x}K and so {y}K £ {χ}κ, 
In a similar way we can show that x e {y}K and hence deduce that 
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{X}K = {j}x· Finally, ζ is clearly unique with respect to the property 
ζο WK=f. 

Remark. In the above proof we have shown in particular that the map ζ 
is a semigroup isomorphism. We note here that it is not in general an 
order isomorphism. For example, suppose that (G, <) is an ordered 
group and let (G, =Q be the same group ordered according to a =̂  b 
oa = b. Both (G, <) and (G, =̂ ) are residuated with residuals in each 
case given by a : b = ab"1. Consider the identity map on G as a mapping 
from (G, =0 to (G, <). It is clearly a loipomorphism whose kernel is 
simply K = {1}. Since we have 

a\RK < bjRK oae {b}K oa = al^boa = b, 

we see that GjRK exists and is a group which is isomorphic to G and order 
isomorphic to (G, =^). It is now clear that the mapping ζ is a bijective 
loipomorphism but is not an order isomorphism unless < is the same 
as ^ . 

THEOREM 31.5. Let S, T,f be as in Theorem 31.4. If T admits a maxi-
mum element π, then: 

(1) π coincides with the neutral element ofT; 
(2) S has a maximal element, namely ξ; 
(3) ζ is also an order isomorphism. 

Proof. (1) For any x e T we have χπ < π and so x < π : π = 1. In 
particular we have π < 1 and so π — 1. 

(2) Since/is isotone and 1 is the maximum element, we deduce from 
/(I) = 1 that [£,-►] s K e r / ç £Λ = [<-,£]. It follows readily from this 
that | is a maximal element of S. 

(3) If f{x) < f(y) then f(y : x) =f(y) :f(x) > 1 and so, since 1 is 
maximum, y : x e Ker/. The inequality (y : x) x < y then shows that 
x e {y}Kerf and so x/i?Ker/ < j/^Ker/· This shows that ζ"1 is also iso-
tone whence ζ is an order isomorphism. 

At this stage we are led to make the following definitions. 
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Definitions. An ordered semigroup S is said to be quasi-integral if and 
only if S = SA ; and negatively ordered if it is quasi-integral and admits 
a neutral element. 

It is clear that a residuated quasi-integral semigroup is the same thing 
as an ^-totally closed semigroup having a maximum element and that a 
residuated negatively ordered semigroup is the same as an ^-integrally 
closed semigroup having a maximum element. These definitions allow us 
to combine all of the previous results in the following way. 

THEOREM 31.6. Let S be a residuated quasi-integral abelian semigroup. 
Then D is a filter of S if and only ifD is the kernel of a loipomorphism of S 
onto a residuated negatively ordered abelian semigroup T. 

Proof The condition is sufficient by virtue of Theorem 31.4. Con-
versely, suppose that D is a filter of S. Clearly SjRD is a residuated nega-
tively ordered semigroup which is a loipomorphic image of S. We show 
that D = Ker tjD. By Theorem 31.3 we have D e Ker bD. To obtain the 
reverse inclusion, we note that since D is a filter of S we have (W, x e D) 
dn < d=> d < d:n=> d:neD and hence 

Ker bD = (J [dm, d: n] Ç D. 
n,meD 

THEOREM 31.7. Let S be a residuated quasi-integral abelian semigroup. 
Then a residuated abelian semigroup Tis a negatively ordered loipomorphic 
image of S if and only if it is of the form SjRD9 where D is a subsemigroup 
of S. Moreover, there is a bijection between the set of negatively ordered 
loipomorphic images of S and the filters of S. 

Proof. By Theorem 31.1 and the fact that S = SA, SIRD is a negative-
ly ordered loipomorphic image of S for each subsemigroup D ofS. Con-
versely, suppose that Tis such an image. Since Tis integrally closed and 
has a maximum element, we deduce from Theorems 31.4 and 31.5 that T 
is of the form SjRD, where D = Ker/ is a subsemigroup of S. 

As for the second part of the theorem, we note that S satisfies the 
conditions of Theorem 31.3 and so, for each subsemigroup D of S, there 
is a filter F [namely, F = Ker bD] such that SjRD = S/RF. Now, as we 
saw in the proof of Theorem 31.6, for any filter G of S we have 
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G = Ker bG. The result therefore follows from the observation that if 
F, G are filters of S such that RF = RG, then F = Ker t]F = Ker t|c = G. 

THEOREM 31.8. Lei S be a residuated quasi-integral abelian semigroup. 
An equivalence relation Ron S is compatible with both multiplication and 
resìduation and is such that SjR has a neutral element if and only ifR is of 
the form 

x = y(R)ox = y(RD) o(x : y) (y : x) e D, 

where D is a filter of S. 

Proof Let D be a filter of S. Then the associated equivalence RD is 
given by 

x = y(RD) <s> {x}D = {y}D 

o (3dx ,d2eD) xdx < y, yd2 < x 

o(3^,d2eD) dl < y: x, d2 < x:y 

o(x:y)(y:x)eD, 

and by Theorem 31.1 the equivalence RD is compatible with both multi-
plication and resìduation and is such that the quotient semigroup has a 
neutral element. 

Conversely, suppose that R is such an equivalence. Then SjR is a 
residuated negatively ordered loipomorphic image of S. By Theorems 31.4 
and 31.5, SjR is then of the form SjRD where D is a subsemigroup of S. 
But by Theorem 31.3(3) we have RD = RKer^D where, by Theorem 31.6, 
Ker tip is a filter of 5. We conclude that 

x = y(R) ox = y(RKer ^ ) o(x : y) (y : x) e Ker \\D. 

Henceforth we shall commit the usual abuse of notation and write SjD 
in place of SIRD. 

We shall now impose on S the condition that it be a Glivenko semi-
group. This has the effect of bringing to light an important example of a 
loipomorphism which we can use to obtain a neat characterization of the 
dense filter. 



RESIDUATED ALGEBRAIC STRUCTURES 339 

THEOREM 31.9. Let S be a Glivenko semigroup. Suppose further that S is 
abelian, residuated and quasi-integral Let S** denote the Boolean algebra 
of pseudo-residuals in S and let D be the dense filter ofS. Then the mapping 
(**) : S -> S** described by x -* x** = 0 : (0 : x) is a loipomorphism and 
S** Ä S\D. 

Proof. We note first that 

(Vx, yeS) (x : y)* = (x** : y)*. (*) 

In fact, since xy < x we have x < x : y and so (x : y)* < x*. Also, since 
j * = 0 : y < x : y and so (x : y)* < >>**, we have (x : y)* < x* Λ y** 
= (x** Y y*)* = (x** : y)*. But, on the other hand, x < x** and so 
x : y < x** : y whence (x** : y)* < (x : y)*. This then establishes (*). 

Consider now the mapping (**). Clearly 5** = Im (**) and (**) is 
a homomorphism since (xy)** = (x**j**)** = χ** Λ y**. Now using 
the identity (*) we have (x : y)** = (x** : y)** = (x** Y j;*)** 
_ χ** y ^*** _ x ** . -p** j t f 0 i i o w s that (**) is a loipomorphism. 
Finally, 

Ker (**) = {x e S; x** = 0*} = D. 

Applying Theorems 31.4 and 31.5, we deduce that 5** ca SjD. 

THEOREM 31.10. Let S be an abelian residuated quasi-integral Glivenko 
semigroup. The dense filter DofS can be characterized as the smallest filter 
of S for which SjD is a Boolean algebra. 

Proof By Theorem 31.9, S ID is indeed a Boolean algebra. Suppose 
then that J is a filter of S such that SjJ is a Boolean algebra. Then every 
element of 5/Jmust be maximum in its class modulo A0!J (Theorem 30.1) 
so, since the canonical mapping \j is a loipomorphism, 

(VJC e S) x\J = 0 / / : [0// : x\J\ = 0/J : x*ft = x**//. 

In particular, this yields x**/J < x / / and so x** e {x}j whence 

( V x e S ) ( 3 / e / ) x**j < x. 

Suppose now that x e S is such that x** e J. Then, J being a filter, we 
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deduce from the above that xeJ. Now for any xe D we have x** = 0* 
and since 0* is the maximum element it belongs to every filter / . We con-
clude from this that x e D => x e J whence D ς J as required. 

EXERCISES 

31.1. Under the hypotheses of Theorem 31.9, S/D is an isotone homomorphic 
Boolean image of S. Prove that the associated base is given by the class of 0 modulo A0. 

31.2. Let L be an n-semilattice which is residuated with respect to intersection. 
[A Brouwer semilattice: see the following section.] If, for each a e l , the translation 
x -> x o ö is denoted by λα, show that each residual map A* is a loipomorphism. Show 
also that if S = {X;;aeL} then (L, n) ~ (5, o). 

31.3. Let A, B be Boolean algebras. By a Boolean homomorphism f: A -> B we 
mean a lattice homomorphism which is such that/(;t') = [f(x)Y for each xeA. Show 
that every Boolean homomorphism is a loipomorphism. 

31.4. If a, 6, x are elements of a Boolean algebra B, prove that 
a v x = b v xo (a u b') n {a' v b) > x': 

(a) by a direct method; 
(b) by noting that [χ', ->] is a filter which is the kernel of the loipomorphism A^. 
31.5. Let A, B be Boolean algebras and let / : /<-> B be a lattice homomorphism. 

Prove that the following are equivalent: 
( l ) / i s a loipomorphism; 
(2)/(πΑ) = nB. 

[Hint. Use Exercise 31.4.] 

32. Brouwer semigroups; Brouwer semilattices 

Definition. By a Brouwer semigroup^ we shall mean a residuated semi-
group S in which every element x is quasi-integral, equiresidual and such 
that S\AX is idempotent (and hence, by Theorem 29.5, a Boolean algebra). 

THEOREM 32.1. All Brouwer semigroups are abelian. 

Proof. Immediate from Theorem 22.2. 

EXAMPLE 32.1. Every n-semilattice L which is residuated with respect 
to n is a Brouwer semigroup under the definition xy = x n y. In fact it is 
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clear that every element is quasi-integral and equiresidual; moreover, 
each quotient semigroup S\AX is idempotent. 

Definition. An n-semilattice which is residuated with respect to n 
will be called a Brouwer semilattice. We shall see that these are very close 
relatives of Brouwer semigroups. 

EXAMPLE 32.2. Consider the ordered abelian semigroup S described by 
the following Cayley table and Hasse diagram: 

*1 X2 X3 ° 

X 1 | X 2 X2 ° ° 

X2 X2 X2 ° ° 

X3 O O O O 

O I O O O O 

This ordered semigroup is residuated; the table of residuals is 

x1 

x2 
X3 

o 

X1 

x1 

X1 

x3 

x3 

x2 
x1 

X1 

X3 

X3 

X3 

x1 

x1 

X1 

X1 

o 
x1 

x1 

x1 

X1 

Now, on the one hand, we see that x\ — x\ = x2 and x\ = 02 = 0, 
and, on the other, (Vy 6 5 ) ^ = x2(Ay) and x3 = 0(Ay). It follows from 
this that (Vx, yeS)x= x2(Ay), so that each quotient semigroup S\Ay 

is idempotent. Every element being quasi-integral, Sis, indeed, a Brouwer 
semigroup. 

THEOREM 32.2. A residuated semigroup S is a Brouwer semigroup if and 
only if it is abelian and such that, for each x e S, 

(oc) Bx = Fx; 
(ß) SIFX is idempotent. 

0 X 1 

o x . 

O X , 

o 
O 
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Proof. Suppose first that S is a Brouwer semigroup. Since each S\AX 

is idempotent, we have 

(Vx, yeS) x : y = x : y2 = (x : y) : y, 

which we can express in the form 

(Vx,yeS) x = x:y(By). (1) 

Now we observe that 

x : y = z : y(By) => x: y2 = z:y2 => x: y = z: y, 

so it follows that each class modulo By contains at most one residual by y. 
Now since every element of S is quasi-integral, we also have (Vx, y e S) 
x < xy:y < x:y and so, by (1) and the convexity of the classes modulo 
By, we deduce that xy:y = x:y(Bx) whence, by the immediately pre-
ceding remark, 

(Vx,yeS) xy:y = x:y (2) 
It follows that 

x == z(Fy) => xy:y = zy:y => x:y = z:y => x = z(By), 

so that (V>> e S) F y < By. But we have shown that each class modulo By 

contains at most one residual by y and we know that each class modulo Fy 

contains precisely one residual by y. Hence we have (Vy e S) Fy = By. 
It follows from this that (2) can be written in the form (Vx,yeS) 
xy = x(Fy) or as (Vx,yeS) y2 s y(Fx)9 whence each quotient semi-
group S/Fx is idempotent. 

Conversely, suppose that S is abelian and that properties (oc) and (ß) 
are satisfied. By (ß) we have (Vx, y e S) xy2 = xy whence, by (oc), we ob-
tain xy = x(Bx). Now since x = y (x : y) (By) the convexity of the classes 
modulo By and the fact that each class modulo By contains precisely one 
multiple of y implies that (Vx, y e S) xy = y (x : y) < x. This shows that 
each element of S is quasi-integral. It remains to show that each quotient 
semigroup SjAx is idempotent. For this purpose, we note that from the 
identity xy2 = xy established above we have in particular (Vy e S)y3 =y2. 
Thus (x:y2) :y — x:y3 = x:y2 = (x:y):y and therefore x:y2 

= x : y(By). But By = Fy by hypothesis and each class modulo Fy has 
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precisely one residual by y. We thus have (Vx, yeS)x:y2 = x : y and so 
each SjAx is indeed idempotent. 

COROLLARY. If S is a Brouwer semigroup then for any x,y, z e S the 
following properties hold: 

(a) x : x = y : y = π (the maximum element of S) ; 
(b) y(x:y) = yx; 
(c) (xy)2 = xy; 
(d) x:yz = (x:z):(y:z); 
(e) xy : z > (x: z)(y: z) = (xy : z)2. 

Proof (a) Since every element of S is quasi-integral, this follows from 
Theorem 29.4. 

(b) By the property (2) established in the theorem we have xy = x(By). 
But the minimum element in the class of x modulo By is y (x : y). Thus 
xy = y (x : y) (By) from which (b) follows since each class modulo By 

contains precisely one multiple of y. 
(c) By property (β) of the theorem we have (Vx,yeS) xy2 = xy. 

Multiplication being commutative, there results (xy)2 — xy2x = xyx 
— x2y = xy. 

(d) By property (b) above, (x : z) : (y : z) = x : z (y : z) = x : zy 
= x\yz. 

(e) Using Theorem 22.3(5) we have 

(x : z) (y : z) < (x: z)y: z < (xy : z): z = xy: z2 = xy: z. 

Thus, by (c) and the fact that each element is quasi-integral, 

(x :z)(y:z) = [(x :z)(y: z)]2 < (xy:z)2 <xy:z. 

But, again since each element is quasi-integral, xy : z < x : z and xy : z 
< y : z, so that (xy : z)2 < (x : z) (y : z). It follows that 

(xy : z)2 = (x : z) (y : z) < xy:z. 

Remark. It should be noted that equality does not hold in general 
in (e). For example, in Example 32.2 we have x\ : x2 = 0 : x2 = x$, 
whereas (x3 : x2) (x3 : X2) = ^3*3 = 0. The equality does hold, however, 
12 BRT 
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whenever S is a Brouwer semilattice; for then (x n y): z < x : z and 
(x n y): z < y: z so that (x n y): z < (x: z) n(y: z). 

The essential difference between a Brouwer semigroup and a Brouwer 
semilattice is the idempotency of the law of composition in the latter. We 
now investigate other manifestations of this difference. 

THEOREM 32.3. For a Brouwer semigroup S the following conditions are 
equivalent; 

(1) S is a Brouwer semilattice; 
(2) S2 = S; 
(3) S has a neutral element. 

Proof. That (1) => (3) is immediate from the fact that the maximum 
element ns is the neutral element for intersection. To show that (3) => (2), 
let l s be the neutral element of S; then since (Vx, y e S) xy2 = xy we 
have (Vy e S) y2 = ìsy

2 = ìsy = y. Finally, to show that (2) => (1) we 
observe that if (2) holds then for each z e S there exist a, be S such that 
z = ab. By virtue of property (c) of the previous corollary, we then have 
z2 = (ab)2 = ab = z and so if z < x and z < y we obtain z = z2 < xy. 
It follows that x n y exists and is none other than xy. 

We can now give another quite natural definition of a Brouwer semi-
group. Let us recap that to begin with we were interested in residuated 
mappings, then we studied algebraic structures in which every translation 
was a residuated mapping. Our next result extends the pattern of this 
general investigation. 

THEOREM 32.4. An ordered semigroup S is a Brouwer semigroup if and 
only if it is abelian and each translation is a residuated dual closure map. 

Proof Suppose that S is a Brouwer semigroup. Then each translation 
is residuated and 

(VA:, y e S) xy2 = xy < x (*) 

from which it follows immediately that each translation is also a dual 
closure mapping. Conversely, if S is abelian and each translation is a 
residuated dual closure map, then clearly S is residuated and (*) holds. 
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From this it follows that each element of S is quasi-integral and that 

(Vx, z e S) x: z = x: z2 

[for zy < x if and only if z2y < x]. Thus for each x e S the quotient 
semigroup SjAx is idempotent and so S is indeed a Brouwer semigroup. 

Our next goal will be to examine very closely the structure of a Brouwer 
semigroup and show in particular that the ordering, except for the natural 
ordering of the idempotents, can be removed. 

Let us note first that if S is an abelian semigroup with non-empty sub-
set / of idempotents then / can be ordered in the following way: 

e <foef= e. 

This is known as the natural order on /. For each eel define 

Se = {xeS; x2 = e). 

Clearly Se Φ 0 since it contains e; and if e,fel are such that e φ f, 
then Se n Sf = 0 . We shall say that S is a semilattice of ^-semigroups if 
and only if S admits the partition 

S=[jSe with (Ve , / e / ) SeSf = {ef}. 
eel 

Note that in this case each Se is a subsemigroup of S in which every pro-
duct is equal to e. Thus each Se is a semigroup with zero element e and 
every product equal to e. This explains the terminology. 

If L is any semilattice and {Se; eeL} is a disjoint collection of non-
empty sets each of which contains a distinguished element 0ee Se9 then 
S = U $e becomes a semilattice of O-semigroups by defining 

eeL 

<yxeSe)<yyeSf) xy = < W 

Note also that if a semigroup obtained in this way admits an ordering 
with respect to which it is quasi-integral then 0e < 0/ o 0β0χ = 0e (so 
that the ordering agrees with the natural order as far as the idempotents 
are concerned) and moreover x e Se => 0e = 0ex < x. 

THEOREM 32.5. Let S be an abelian semigroup. Then S is a semilattice 
of ^-semigroups if and only if each quotient semigroup SjFx is idempotent. 
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Proof. Let S be a semilattice of O-semigroups, say S = (J Se where I 
eel 

is the set of idempotents. Then if x e Se, y e Sf we have 

xy2 e SeSfSf = {ef2} = {ef} and xyeSeSf = {ef} 

whence xy2 = ef = xy. Since this holds for all x,y we have each SjFx 

idempotent. 
Conversely, if each SjFx is idempotent then clearly xy2 = xy for all 

x,ye S and so each product xy is idempotent. Let I denote the set of 
idempotents in S. For each eel define Se = {x e S; x2 = e}. Then 

xeSe=> (Vy e S) jx = jx2 = ye => x = e if] Fy\ 

and conversely 
r x = e(Fx) => xx = xe 

yes I {x = ^(Fe) => ex = ee 

Thus Se is none other than the class of e modulo f] Fy. Now if e, fé I 
yeS 

are such that e = f(f] Fy], then we have in particular e =f(Fe) and 

e = f(Ff) so that e = e2 = ef — f2 = / . Thus each class modulo Q Fy 

contains at most one idempotent. Since xy = x2y we have x = x2 if] Fy] 
and so it follows that each class contains precisely one idempotent. We 
thus have the partition S = (J Se. Now for any e,fel we have, for 

eel 

x e Se and y e Sf, xy = xy2 — xf = x2f = ef and so SeSf = {ç/*}. This 
then shows that S is a semilattice of O-semigroups. 

Definition. We shall say that a semilattice of O-semigroups is Brouwe-
rian if and only if the semilattice of idempotents is Brouwerian. 

THEOREM 32.6. Let S be an abelian semigroup and let I be its set of 
idempotents. Then the following conditions are equivalent: 

(1) S is a Brouwer semigroup; 
(2) S is a Brouwer semilattice of O-semigroups. 
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Proof. Suppose that (1) holds. Then by Theorems 32.2 and 32.5 it fol-
lows that S is a semilattice of O-semigroups. Given e,fgel we have, 
since x G J o x = y2 for some y e S, 

gnf=gf^ eog < e:fog < (e:f)2el. 

It follows from this that I is residuated with residuals given by 

e I / = (e: / ) 2 . 

Conversely, suppose that (2) holds, so that S = (J Se is a partition 
eel 

of 5. For each eel choose an arbitrary element pee Se, distinct from e 
if possible. For x, y e S define the relation < by 

Î
either (a) x = y; 

or (b) x e I and x < y2 in J; 

or (c) y φI, y = py2 and x2< y2 in / . 

We claim that this is an ordering on S. It is clearly reflexive. Suppose now 
that x < y and y < x. If x φ y then we have either x e I and y e I or 
x φ I and y φ I. The first of these gives x = y by the anti-symmetry of 
the natural order on /; and in the second case we have x2 = y2 for the 
same reason, giving x = ρχ2 = pyi ~ y. This contradiction establishes 
antisymmetry. Now suppose that x < y and y < z with x Φ y and 
y Φ z. Since x φ I implies y φ I, there are three possible cases. Firstly, 
if x and y both belong to /, then x < y2 = y < z2 in /and so x < z in S. 
Secondly, if x e I and y φ I then x < y2 < z2 in / and so x < z in S. 
Finally, if x φ I and y φ I, then ζφΐ, z = pz2 and x2 < y2 < z2 in / 
whence x < z in 5. This then establishes transitivity. 

To show that multiplication is isotone, we first note that since SeSf 

= {ef} for all e,fe I, we have xy = x2y2 e I for all x,y e S. Now 

x < y => x2 < y2 in /=> zx = z2x2 < z2y2 in /=> zx < zy in S. 

To show that S is quasi-integral, we note that 

xy = x2y2 = x2 r\y2 < x2 in I=> xy < x in S. 
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Let us now observe that 

(Ve el) x2 < pe=> x < pc. 

In fact if peel this follows from (b); and when pe φ I it follows from (c). 
As a consequence, pe is the greatest element of Se with pi = e. This 
being the case we now have, denoting residuation in I by : , 

xy < zox2y2 < z2 ox2 < z2\y2 

OX2 < PZ2.y2 

<=> X < pz2 : y 2 . 

This then shows that S is residuated with residuals given by 

ZI y =Pz2:y2. 

Using this formula we see that 

(V*, yeS) x : y = pxi:y2 = pX2:V4 = x:y2 

and obtain finally the fact that S is a Brouwer semigroup. 

THEOREM 32.7. Let S be a Brouwer semigroup with semilattice of idem-
potents I. Denoting by Π ' S -> / the map described by (Vx G S) □(*) = x2, 
we have 

(1) □ is a loipomorphism; 
(2) / is a filter of S if and only if J — \3*~(K) where K is a filter of I; 
(3) if L is a Brouwer semilattice then f: S -> L is a loipomorphism if 

and only iff — ψ o □ where ψ : / -> L is a loipomorphism. 

Proof (1) Clearly □ is an isotone homomorphism. Now as was shown 
at the beginning of the proof of Theorem 32.6, residuation in / is given by 
x : y = (χ : y)2. We thus have 

D(x:y) = (x:y)2 = x\y = x \ y2 = x2 i y2 = D(*) : 0(y), 

whence Π is a loipomorphism. 
(2) Let / be a filter of S. Let x, y e □ "*(/); say x = Π (tf) and 7 = Π (fe) 

where a,beJ. Since róe/ we have x ny = Q(a) n D(*) = D {ab) 
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G D"*(«/)· Moreover, if JC e 0~*(J), say x = D(z) where zeJ, and y el 
is such that y > x then since D ° D = D we have DO) = D [DW] 
= DO) where DO) = z2 eJ since zeJ. Thus 

*y = (xy)1 = D Oy) = DO) n DO) = DW e / . 

It follows from xy < y that j> G / and so y = j>2 = DO) G D^O)· 
This then shows that D~*0) is a filter of /. Now let us show that 
J=D*-[n~*(J)]. If x e D ^ D l i ) ] then D W e D l J ) , say DO) 
= DW where j e J. It follows that x > x2 = y2 e J and so x e J. Thus 
D*~ [D ~*(J)] ^ J- The converse inclusion is clear. 

Conversely, if J = \Z\^(K) where AT is a filter of /then 

x,yeJ=> DW, DW e #=> D (xy) = DW n DW e # 

Moreover, if x e J and y > x then x2 < xy = x2y2 < x2 and so Π (xy) 
= D M · Thus D W e ^ ; and D W n DO) = D OJO = D(x) gives 
DO) > DO) so DO) e # and consequently yeQ*~(K) = J. This then 
shows that / is a filter of S. 

(3) If / : S -» L is a loipomorphism then so also is / | 7 : / -> L, the 
restriction of/ to /; for 

f(x2 ; j 2 ) = f[(x2 : y2)2] =f[x2: y2] = fix2) :f(y2). 

Since /(*) = f(x) n/(x) = fix2) we have/ = / | / o Q . 
Conversely, if/ = y o □ where ψ: Ι-* L is a loipomorphism then 

/(-* : y) = fix2 ■ y2) = ψ li*2 ■ y2)2] = v [χ2 \ y2] = ψ(χ2) : wiy2) 

= fix)-Ay)· 

This completes the proof. 
Because of the two previous results, we shall henceforth restrict our 

attention to Brouwer semilattices. It should be noted, however, that many 
of the results which follow may be expressed in terms of Brouwer semi-
groups. 



350 RESIDUATION THEORY 

We now recall the notation (J Ft introduced at the end of § 30 and 
prove: teJ 

THEOREM 32.8. IfL is a Brouwer semilattice then an equivalence rela-
tion Ron L is compatible with both n and : if and only if R is of the form 
R — (J Ft where J is a filter ofL. 

teJ 

Proof. By Theorem 31.6, R satisfies the compatibility conditions if and 
only if, for some filter / , JR is given by 

x = y(R) <=> (x : y) n (y : x) e J. 

Now if (x : y) n (y : x) e / , then using the property x n(y: x) = x n y 
we have 

x n (y : x) n (x : y) = x n y n (x: y) = x n y 

= y n x n(y: x) 

= yn(x:y)n(y:x) 

and so there exists t = (x : y) n (y : x) e J such that x n t = y n t 
whence x = y / ( J Ft\. Thus R < [J Ft. Conversely, 

\teJ J teJ 

x = y (\J Ft\ => (It e J) xnt = ynt 

=> (3t e t) x n t < y, y n t < x 

=>(3teJ) t < (y:x) n(x: y) 

=>(x:y)n(y:x)eJ 

and so [J Ft < R, whence wc have equality. 

Definition. By a Glivenko-Brouwer semilattice we shall mean a Brouwer 
semilattice with a minimum element. 

Suppose now that L i s a Brouwer semilattice and for each aeL con-
sider the filter [a, ->]. This is clearly a Glivenko-Brouwer subsemilattice 
of L relative to which we have: 
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THEOREM 32.9. For each element a of a Brouwer semilattice L define 
(L:a) = {x : a ; x e L}. Then (L : a) is a Brouwer semilattice and 

(L:ä)*Ll[a,->] = LlFa. 

Proof. By Exercise 31.2, each residual map λ£ is a loipomorphism. 
Moreover, 

KerA* — {xeL; χ:α = λα(χ) = π] = {xeL; a = a n π < x) = [a, ->]. 

Applying Theorem31.3 we obtain (L: a) ^ L/[tf, ->]. To establish the 
equality, we remember that by the usual abuse of notation we write 
Lj[a, ->] instead of LjR9 where 

R = U Λ-

Now for any x9yeL we have x < y => Fy < Fx. [For 

« = b(Fy) =>yna=yrib=>xr\a = (xny)na = xn(yna) 

= xri(yrib) = (xriy)nb = xnb=>a = b(Fx).] 

It follows from this that R = Fa and so Lj[a, -*>] = L/Ffl. 

THEOREM 32.10. Let L be a Glivenko-Brouwer semilattice with dense 
filter D. Then the following conditions are equivalent: 

(1) D is a Glivenko-Brouwer subsemilattice ofL; 
(2) there exists meD such thatL\Fm is a Boolean algebra. 

Proof If (1) holds then D has a minimum element, m say. Now as we 
observed above (W e D) Ft < Fm and so (J Ft = Fm. This yields L/£> 

teD 

= L/Fw and so L\Fm is a Boolean algebra (isomorphic to L**). 
Conversely, suppose that there exists w e D such that L/Fm is Boolean. 

Using Theorem 32.9 we see that L\\m, -►] is Boolean. Applying Theo-
rem 31.8 we deduce that D £ [m, ->] whence there results 2) = [m, ->] 
since m e D. It follows that D is a Glivenko-Brouwer semilattice. 

THEOREM 32ΛΙ.Α Glivenko-Brouwer semilattice L is a Boolean algebra 
if and only if its only dense element is π. 
13 BRT 
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Proof We note first that (L:n) = {χ:π; xeL} = L and, by Theo-
rem 32.9, L ~ H{n). Thus if L is a Boolean algebra so also is L\{n}. But 
{π} is a filter of L so by Theorem 31.8 we have D ç {π} whence D = {π}. 
Conversely, if D = {π} then L\D = LjFn ~ L and so L is Boolean. 

Our aim now is to answer the following question: In a Glivenko-
Brouwer semilattice, precisely which filters are such that L\J is Boolean! 
In order to characterize these filters, we require a few facts concerning the 
loipomorphism (**) : L -» L** given by the prescription (**) (x) = x**. 

THEOREM 32.12. Let L be a Glivenko-Brouwer semilattice. If J is a 
filter ofL, then (**)"*(/) is a filter ofL**; and if K is a filter ofL**, then 
(**)- (K) is a filter of L. 

Proof Let J be a filter ofL and let x**, y** e (**)-> (J). Then x,yeJ 
and so, since x n y < x < x** and x n y < y < y**, we have x** n y** 
> x n j e / s o that x** n j * * e / whence x** n j * * = (x** n j * * ) * * 
e (**)"*(/). Also, if x** 6 (**)- (J) and y e L** is such that y > x** then 
y > x e / so that ye / a n d hence y** e (**)"*(/). Thus (**)"*(/) is a filter 
ofL**. 

Now let A: be a filter ofL**. Then 

jc, j e (**)<" (£) => x**, j * * e #=> (x n >>)** = x** n j * * e # 

y > x e (**)- (#) => j * * > x** e #=> >>** e #=> y e (**)- (# ) . 

Thus (**)-(#) is a filter ofL. 

Let us note that by Theorem 32.12 the loipomorphism (**) : L -> L** 
induces a mapping (**)-* from the set of filters ofL to the set of filters 
ofL**. This mapping is clearly a surjective residuated map with residual 
given by (**)*". Note that since (**)-* is surjective then (**)4- is injective 
[Theorem 2.6]. 

THEOREM 32.13. IfL is a Glivenko-Brouwer semilattice and J is an ultra-
filter ofL then (**)"* (/) is an ultrafilter ofL**; and ifK is an ultrafilter of 
L** then (**)- (K) is an ultrafilter ofL. 
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Proof. Suppose that J is an ultrafilter of L and let K be a filter of L** 
such that (**)- (/) s K s L**. Then we have / s (**)- [(**)"* (J)] 
£ (**)*■ (X) where (**)*" (K) # L = (**)" (L**) since (**)- is injective. 
Since (**)<- (#) is a filter of L, the maximality of / gives / = (**)*-
Κ**Γ (J)] = (**)*" (K). Since (**)- is injective, we deduce that (**)- (/) 
= 7£ whence it follows that (**)-* (J) is an ultrafilter of L**. 

Suppose now that Kis an ultrafilter of L** and let H be a filter of L 
such that (**)- (K)^ Ha L. By Theorem 2.6 we have (**)"* o (**)-
= id and so K = (**)- [(**)- (*)] s (**Γ ( # ) s (**)- (L) = L**. 
Now we cannot have (**)-> (/f) = £,**; for, since # is a filter of L, 
(**)■* (# ) = H** = HnL** and so the equality H** = L** would 
yield Z,** £ H whence 0 = 0** e H and consequently H = L, a contra-
diction. We thus have i£ £ (**)-> (/f) c £** and the maximality of Ä' 
yields K = (**)- (#) , from which we deduce that (**)" (K) = (**)-
[(**)■* (if)] 2 # . Hence we have H = (**)- (X) and this shows that 

**)*~ (K) is an ultrafilter of L. 

The following result we give without proof; it follows by a standard 
application of the axiom of Zorn: 

THEOREM 32.14. In a Glivenko-Brouwer semilattice every proper filter 
is contained in an ultrafilter. 

We are now in a position to characterize the filters / of a Glivenko-
Brouwer semilattice L for which L\J is Boolean. 

THEOREM 32.15. Let L be a Glivenko-Brouwer semilattice with dense 
filter D. For a filter J ofL the following conditions are equivalent: 

(1) L\J is a Boolean algebra; 
(2)/ = (**rK**r(j)]; 
(3) J is an intersection of ultrafilter s ; 
(4) £><=/. 

Proof. We shall show that (1) => (4) => (2) => (1) and that (2) <s> (3). 
(1) => (4): this is immediate from Theorem 31.8. 
(4) => (2) : Suppose that D ç / and consider any element 

x e (**)- [(**)- (J)]. 
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We have x** e (**)"*(«/) so that, for some yeJ, x** = y**. Since 
J is a filter it follows that x** e J. Now by the formula (*) of Theo-
rem 31.7 we have (Vx e L) (x: ***)** = (χ** : χ**)** = π** = π a n ( j 
so (Vx G L) x : x** e Z) ç / . Consequently 

x = x** n x = x** n (x : x**) e / . 

This then shows that (**)*"[(**)"*(/)] £ / whence there results equality 
and (2). 

(2) => (1) : If (2) holds then x** e (**)- (J) => x e / . To show that L\J 
is Boolean, it is sufficient to show that the equivalence of type A asso-
ciated with 0 / / reduces to equality [Theorem 30.1]. For this purpose, it is 
enough to show that 

Now 

x**lJ = y**jj=> (3deJ) x** n d = y** n d 

=> (3d eJ) d < (}>** n d) : x** < y** : x** = ( j : x)** 

=>(3deJ) rf** < (y:x)** 

=>(y:x)**e(**y(J) 

=> j : x e J. 

In a similar way we can show that x**/J = j**/ /=> x : j > e / . Using 
Theorem 31.6 we can therefore say that 

x**jj = y**jj=> (x;y)c\(y;x)eJ=>x\J = y\J. 

(2) => (3): It follows by Theorem 21.7* that every filter of a Boolean 
algebra is the intersection of all the maximal filters containing it. Suppose 
that in L** we have (**)"*(/) = f] (**)"* (MÄ) where each (**)- (MJ is 

<xeA 

an ultrafilter of L**. If (2) holds then we have 

j = (**)-[(**)-(j)] = (**r m (**r (M«)ì = Π (**r K**r (M.)], 

the right hand equality resulting from the fact that residual maps preserve 
intersections. Now since (**)"* (Ma) is an ultrafilter of L** the set 
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ΜΛ = (**)<-[(**)->(Ma)] is an ultrafilter ofL. We thus have / = f] ΜΛ; 
i.e. J is an intersection of ultrafilters. ΛΕΑ 

(3) => (2): If / is an intersection of ultrafilters, say / = f] M a , then 
for each oc e A we have / £ Ma and so aeA 

(*r[(*rw] £ (**r Κ**Γ(ΜΑ)] = MÄ 

(the equality resulting from the fact that every ultrafilter is maximal). It 
follows that (**)*- [(**)-> (/)] c pj Ma = / whence we have equality 
and (2). *eA 

Definition. The two-element Boolean algebra has no filters other than 
itself and the set consisting of the greatest element. For this reason we 
call it the simple Boolean algebra. 

THEOREM 32.16. Let J be a filter of the Glivenko-Brouwer semilattice L. 
The following conditions are then equivalent: 

(1) J is an ultrafilter ofL; 
(2) LjJ is the simple Boolean algebra. 

Proof We begin by noting that for any proper filter / of a Boolean 
algebra B the following assertions are equivalent [consider the dual of 
Theorem 21.5]: 

(a) J is an ultrafilter; 
(b) either x e / or x* e J (but not both). 

This being the case, suppose that / is an ultrafilter of L. By Theo-
rem 32.15 we have J = (**)*■ [(**)"*(«/)] and so /satisfies the property 

j * * e (**)"* (/) => y e / . 

If now xeL\J we deduce that x** φ (**)"*(/) so that, by (b), 

x* = x*** e (**)->(/) = / n L** s / . 
Thus, since 

x\J = 0/Jo(3teJ) x n t = 0 n t = 0 
o (3t e J) t < 0 : x = x* 
o Λ;* e / , 

we see that L / / is simple. 
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Conversely, suppose that L\3 is simple. Let K be a filter of L with 
J a K and let x e K\J. Since LjJ is simple we have bj{x) = 0 / / and so 

U**) = * J (o : x) = uo) ; */x) = o// ; o// = n\j, 

whence x* e Ker t|j = J . Consequently, 0 = x n{0: x) = x n x* e K 
and it follows that Kis not proper. This shows that J is an ultrafilter. 

COROLLARY. The dense filter of a Glivenko-Brouwer semilattice L is an 
ultrafilter ofL if and only ifL** is simple. 

As we have seen, the important features of a Glivenko-Brouwer semi-
lattice are (1) the Boolean algebra L** of pseudo-residuals and (2) the 
dense filter D. Our next, and final, goal is to determine all Glivenko-
Brouwer semilattices which have a given Boolean algebra as algebra of 
pseudo-residuals and a given Brouwer semilattice as dense filter. 

Definition. If B is a Boolean algebra and D is a Brouwer semilattice, 
we shall say that a mapping f:BxD->D is admissible if and only if: 

(1) for each a e B the mapping fa :£>->/) described by fa(d) = f{a,d) 
is a loipomorphism with fa > id^; 

( 2 ) / „ = idD and (VrfeD) f0ß{d) = nD; 
(3)(ia,beB) fanb=faofb. 

THEOREM 32.17. Let B be a Boolean algebra, L a Brouwer semilattice 
and f: BxL-+ L an admissible map. Then the relation Rf defined on 
BxLby 

(*, x) = G», y) (*/) <>(oc=ß and f(x) = fa(y)) 

is an equivalence relation which is compatible with intersection. Rf is not 
in general compatible with residuation but the semilattice (B x L)\Rf is a 
Brouwer semilattice in which 

{oc, x)\Rf \ (ß, y)lRf = (ocu ß',fß (x : y))lRf. 

Moreover, (B x L)\Rf is a Glivenko-Brouwer semilattice with algebra of 
pseudo-residuals isomorphic to B and dense filter isomorphic to L. Further-
more, if S is any Glivenko-Brouwer semilattice with dense filter D then the 
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mapping g : S** x 2) -> D defined by g (oc, x) = x : oc is admissible and 

S zi(S**xD)IRg. 

Proof. It is clear that BxL is a Brouwer semilattice and that Rf is an 
equivalence relation. Since each^ is in particular an n-homomorphism 
it follows readily that Rf is compatible with intersection. Thus (B x L)jRj 
forms an n-semilattice in which 

(oc, x)lRf A 09, y)\Rf = (ocnß, xn y)jRf. 

Now from this we have (oc, x)jRf A (ß, y)\Rf ^ (y, z)\Rf if and only if 
(oc n β ηγ, x n y n z)\Rf = (oc n β, x n jO/^r which in turn holds if 
and only iiar\ßc\y = occ\ß and f^ß (x ny c\z) = Xn/J (x r\y). Now 
the first of these holds if and only if oc n ß < γ, i.e. if and only if β < y 
u oc'. On the other hand, the second holds if and only if fnß(x ny) 
^Anß(z) since eachy^ is an n-homomorphism. Since each^ > idL, this 
is in turn equivalent to 

y ^ f«nß(y) ^ fanßtö :f«nß(x) = fanß (Z · * ) = fß IL (* = * ) ] . 

Since fß ofß = fßnß =fß> idx this is equivalent to fß(y) < fß [f (z : x)]. 
Having observed this, we now note that 

(ß,y)lRf<{YU*',fa(z:x))lRf 

o(ß,y)lRf = (β π (γ u *'),ynfa (z:x))\Rf 

οβ < γ υ oc', fß(y) = fß(y) nfß [f (z : x)] 

oß < γ u oc', fß(y) < fß [fa (? : *)]· 

It therefore follows that (γ, z)\Rf : (oc, x)jRf exists and is given by 
(yyjoc',fx(z:x))lRf. 

To show that (B x L)lRf is a Glivenko-Brouwer semilattice it suffices 
to show that it has a minimum element. It is readily seen that such an 
element is (0B,nL)lRf. [Note that for each xeL we have (0B,nL) 
= (Oß, x) (Rf).] We also see that the greatest element of (BxL)\Rf is 
(nB,nL)lRf. 
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Now in (B x L)\Rf we have 

[(ß9y)lRf]* = (pB9nJlRf : (ß,y)\Rf = (ß\fß(*L))lRf = (ß\nL)\Rf 

and so [(ß,y)lRf]** = (ß, nL)jRf. Thus (ß,y)lRf is dense if and only if 
ß = πΒ; and (ß,y)\Rf is a pseudo-residual if and only if (ß,y)\Rf 

= (ß> ™òìRf> Since/πβ is the identity map on L it is clear that the dense 
filter of (B x L)\Rf is isomorphic with L. It is also clear that [(B x L)lRf]** 
is isomorphic with B. 

Let us now consider the situation where S is a Glivenko-Brouwer 
semilattice. Define g : S** x D -> Z> by setting g (oc, x) = x : oc (note that 
this is indeed an element of D since x e D). Writingga(x) = g(oc, x) = x:oc, 
it is readily seen that each ga > idD with gn = id^ and g0(x) = nD for 
all x. Moreover, ga o gß = gan/î and each ga is a loipomorphism since 
(xr\y):oc = (x: <%) n ( j : oc) and (x: >>):<% = x: yoc = x:(y;oc)oc = (x: oc) : 
(y: oc). This then shows that the mapping g is admissible. 

It remains to show that S ^ (S** x D)jRg. For this purpose we wish 
to define a mapping ζ : (S** x D)\Rg -> 5 . Now we note that 

Ox, x) = (β, y) (Rg) =>ocnx = ß ny. 

In fact if (oc, x) = (β, y) (Rg), then oc = β and ga(x) = ga(j); i.e. x : oc 
= y:oc which is the same a s x = y(B0i). But ΒΛ = Fa and so x = j(Fa) 
whence a c n a ^ a c n j ' s ^ n . y . We can therefore define our mapping 
by setting 

ζ ((oc, x)lRg) = oc n x. 

That C is surjective follows from the fact that each ye S can be written 
in the form y = j>** n y = j * * n ( j : >>**), where j * * e 5** and j : j>** 
e D. It is clear that ζ is an n-homomorphism. Let us now show that it is 
a loipomorphism. On the one hand we have 

ζ ((oc, x)jRg : (β, y)lRg) = ζ ((oc Y ß*9 (x:y): ß)\Rg) 

= (*Yß*)n[(x:y):ß]; 
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and, on the other, 

ζ {(oc, x)\Rg) : ζ (09, y)lRg) = (oc n x) : (β n y) 

= [oc:(ßny)]n[x:(ßny)] 

= l"Y(ßny)*]nl(x:y):ß]. 

Now since y e D we have (ß n j>)** = (ß n j;**)** = /?** and so 
(/? n y)* = ß*. It follows that 

and so C is a loipomorphism. Now (#, x)\Rg e Ker f if and only ifocnx 
= ns which holds if and only if oc = π8 = x. Thus Ker C = {(^s^ns)\Rg} 
from which it follows immediately that S ^ (*S** x D)\Rg. 

EXERCISES 

32.1. Let S be a Brouwer semigroup. Call a non-empty subset L of 5 a Brouwer 
subsemilattice of S if it forms an n-semilattice under the ordering on S and is residuated 
with respect to n with residuals relative to n the same as the corresponding residuals 
with respect to multiplication. 

Given any element t of a Brouwer semigroup S show that the set R(t) of residuals 
of t forms a Brouwer subsemilattice of S. Show also that for each t e S the set (5 : t) 
= {x:t;xeS)'\sdi Brouwer subsemilattice of S. 

32.2. Prove that in a Brouwer semigroup Fx — FX2 and that Fx = Fy if and only 
if x2 = j 2 

32.3. If S is a Glivenko-Brouwer semigroup with dense filter D9 prove that S is 
a semilattice if and only if 

(Vy e S) (3x e S**) (3d e D) y = x**d. 

32A. Prove that the following algebraic structures are identical: 
(a) a Glivenko-Brouwer semigroup; 
(b) a residuated inverse semigroup with 0. 
32.5. Prove that the following algebraic structures are identical: 
(a) a Brouwer semilattice; 
(b) a residuated naturally ordered idempotent semigroup; 
(c) a residuated negatively ordered idempotent semigroup. 
32.6. Define a Brouwer algebra to be a Brouwer n-semilattice which is also a 

u-semilattice. Prove that every Brouwer algebra is distributive. [Hint: use Exercise 22.6.] 
13a BRT 
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32.7. Let L be a Glivenko-Brouwer algebra. Prove that the following statements 
are equivalent : 

(1) L is a Boolean algebra; 
(2) (Va,beL) a u{b:a) = π; 
(3) (Va,beQ b:(b:a) = a u 6; 
(4) (Va,beL) a:(b:a) = a. 

32.8. Let F be a bounded totally ordered set. Show that for any ordered set E the 
set of isotone mappings from E to F forms a Glivenko-Brouwer algebra. Show that the 
dense filter of this algebra consists of those mappings/Tor which [xeE; fix) = 0F} = 0 
and that the Boolean algebra of pseudo-residuals consists of those maps h for which 
h(x) is either 0F or nF. 

32.9. Show that a Brouwer semilattice L is weakly distributive in the sense that 
if y u z exists then, for each x e l , (x nj;) u (x n z) exists and equals x r\(y u z). 
Call an element X G L complemented if, for some j e L , ; c n j ; = 0 and ^ υ ; exists and 
equals π. Show that if Λ: e L is complemented then it admits a unique complement, 
namely x* = 0 : x. Deduce that the set of complemented elements forms a subalgebra 
ofL**. 

32.10. Let L be a Brouwer semilattice. Show that the set F(L) of filters of L forms 
a Glivenko-Brouwer algebra in which residuals are given by 

K:J= {xeL; [*,->] n / c # } . 
Deduce that JeF(L) is complemented if and only if / = [*,-►] where x is a comple-
mented element of L. 

32.11. Let L be a complete lattice. Show that L is a Glivenko-Brouwer algebra if 
and only if it satisfies the infinite distributive law (ID). Deduce that the open sets of any 
topological space T form a Glivenko-Brouwer algebra A. Show that the residuals in 
this algebra are given by F: E = Int (F u Ε') where Int denotes interior and ' denotes 
complements in Ρ(Γ). Deduce that the Boolean algebra A** of pseudo-residuals con-
sists of those open sets which are regular (where an open set is said to be regular if and 
only if it coincides with the interior of its closure) and that the dense filter D consists 
of those open sets which are dense in the topological sense. 
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