Prof. Dr. Marcus Greferath
Dept. of Mathematics and Systems Analysis
School of Sciences
Aalto University
Spring 2023

MS-EV0011: Codes over nonstandard alphabets

Problem Set I

Problem 1:

(a) Find 8 distinct points in \mathbb{F}_{2}^{6} that pairwise differ in at least 3 coordinates.
(b) Show that there are no 9 distinct points in \mathbb{F}_{2}^{6}, that have this property. Do this by grouping such a set of points according to their first entry and then applying the pigeonhole principle.

Problem 2: We generalise the situation in problem 1 in the following way: Denote by $A_{q}(n, d)$ the maximal number of points in \mathbb{F}_{q}^{n} that pairwise differ in at least d positions. Prove that

$$
A_{q}(n, d) \leq q A_{q}(n-1, d) .
$$

Problem 3: Prove the Singleton bound, which says: If $C \subseteq F^{n}$ is a q-ary block code of Hamming minimum distance d, then $|C| \leq q^{n+1-d}$.

Problem 4: Prove the Gilbert-Varshamov bound, which says, that

$$
A_{q}(n, d) \geq \frac{q^{n}}{\sum_{j=0}^{d-1}\binom{n}{j}(q-1)^{j}}
$$

Do this by assuming a code C that has $M=A_{q}(n, d)$ words, and concluding that the (Hamming) disks with radius $d-1$ centered in the codewords then must cover the ambient space.

Problem 5:

(a) Factorize the polynomial $x^{9}+1$ over \mathbb{F}_{2}.
(b) Determine all distinct cyclic binary linear codes of length 9 , and find their parameters.
(c) Calling two codes equivalent, if they result from each other by a co-ordinate permutation, determine all inequivalent cyclic binary linear codes of length 9 .

