Prof. Dr. Marcus Greferath Dept. of Mathematics and Systems Analysis School of Sciences Aalto University

Spring 2023

MS-EV0011: Codes over nonstandard alphabets

Problem Set I

Problem 1:

- (a) Find 8 distinct points in \mathbb{F}_2^6 that pairwise differ in at least 3 coordinates.
- (b) Show that there are no 9 distinct points in \mathbb{F}_2^6 , that have this property. Do this by grouping such a set of points according to their first entry and then applying the pigeonhole principle.

Problem 2: We generalise the situation in problem 1 in the following way: Denote by $A_q(n, d)$ the maximal number of points in \mathbb{F}_q^n that pairwise differ in at least d positions. Prove that

$$A_q(n,d) \leq q A_q(n-1,d).$$

Problem 3: Prove the Singleton bound, which says: If $C \subseteq F^n$ is a q-ary block code of Hamming minimum distance d, then $|C| \leq q^{n+1-d}$.

Problem 4: Prove the Gilbert-Varshamov bound, which says, that

$$A_q(n,d) \geq \frac{q^n}{\sum\limits_{j=0}^{d-1} \binom{n}{j} (q-1)^j}.$$

Do this by assuming a code C that has $M = A_q(n, d)$ words, and concluding that the (Hamming) disks with radius d-1 centered in the codewords then must cover the ambient space.

Problem 5:

- (a) Factorize the polynomial $x^9 + 1$ over \mathbb{F}_2 .
- (b) Determine all *distinct* cyclic binary linear codes of length 9, and find their parameters.
- (c) Calling two codes equivalent, if they result from each other by a co-ordinate permutation, determine all *inequivalent* cyclic binary linear codes of length 9.