Prof. Dr. Marcus Greferath
Dept. of Mathematics and Systems Analysis
School of Sciences
Aalto University
Spring 2023

MS-EV0011: Codes over nonstandard alphabets

Problem Set II

Problem 1: Let C be the smallest cyclic code of length n that contains a given codeword a, where a is a polynomial of degree at most $n-1$ over the base field. Show that the generator polynomial of C is given by $g=\operatorname{gcd}\left(a, x^{n}-1\right)$.

Problem 2: Let C be a q-ary cyclic code of length n where $\operatorname{gcd}(q, n)=1$. Assume $g \in \mathbb{F}_{q}[x]$ is the generator polynomial, and $h \in \mathbb{F}_{q}[x]$ is its check polynomial, and hence $g h=x^{n}-1$. Since $\operatorname{gcd}(g, h)=1$ (why?) we have $a, b \in \mathbb{F}_{q}[x]$ with $a g+b h=1$. Define $i=a g=1-b h$.
(a) Show that i is a codeword, and that $i c \equiv c\left(\bmod x^{n}-1\right)$ for all $c \in C$.
(b) Show that i is an idempotent element, that means $i^{2} \equiv i\left(\bmod x^{n}-1\right)$.
(c) Show that a polyomial having the properties in (a) is unique modulo $x^{n}-1$. It is called the generating idempotent for C.

Problem 3:

(a) Using suitable existence bounds, determine whether or not binary linear codes with the following parameters exist. If you feel that such a code exists, then provide an example.

- $[15,11,3]$
- $[11,7,6]$
- $[10,3,6]$
- $[16,5,8]$
(b) Compare the Gilbert with the Varshamov bound: using these, determine lower bounds on $A_{2}(16,6)$. Conclusion?
Recall: $A_{q}(n, d)=\max \left\{M \mid\right.$ there exists an $(n, M, d)_{q}$-code. $\}$

Problem 4: Let R be a finite Frobenius ring and assume χ is a generating character for R which means $\widehat{R}=R \chi$. Show that the pair of transforms ${ }^{\wedge}$ and ${ }^{\sim}: \mathbb{C}^{R} \longrightarrow \mathbb{C}^{R}$ where

$$
\hat{f}(x)=\sum_{r \in R} f(r) \chi(x r) \quad \text { and } \quad \tilde{f}(x)=\frac{1}{|R|} \sum_{r \in R} f(r) \chi(-r x)
$$

indeed satisfies $\tilde{\hat{f}}=\hat{\tilde{f}}=f$ for all $f \in \mathbb{C}^{R}$.

