Prof. Dr. Marcus Greferath Dept. of Mathematics and Systems Analysis School of Sciences Aalto University

Spring 2023

MS-EV0011: Codes over nonstandard alphabets

Problem Set II

Problem 1: Let *C* be the smallest cyclic code of length *n* that contains a given codeword *a*, where *a* is a polynomial of degree at most n - 1 over the base field. Show that the generator polynomial of *C* is given by $g = \gcd(a, x^n - 1)$.

Problem 2: Let *C* be a *q*-ary cyclic code of length *n* where gcd(q, n) = 1. Assume $g \in \mathbb{F}_q[x]$ is the generator polynomial, and $h \in \mathbb{F}_q[x]$ is its check polynomial, and hence $gh = x^n - 1$. Since gcd(g, h) = 1 (why?) we have $a, b \in \mathbb{F}_q[x]$ with ag + bh = 1. Define i = ag = 1 - bh.

- (a) Show that i is a codeword, and that $ic \equiv c \pmod{x^n 1}$ for all $c \in C$.
- (b) Show that i is an idempotent element, that means $i^2 \equiv i \pmod{x^n 1}$.
- (c) Show that a polyomial having the properties in (a) is unique modulo $x^n 1$. It is called the generating idempotent for C.

Problem 3:

- (a) Using suitable existence bounds, determine whether or not binary linear codes with the following parameters exist. If you feel that such a code exists, then provide an example.
 - $\begin{array}{rrrr} & [15,11,3] \\ & [11,7,6] \\ & [10,3,6] \\ & [16,5,8] \end{array}$
- (b) Compare the Gilbert with the Varshamov bound: using these, determine lower bounds on $A_2(16,6)$. Conclusion?

<u>Recall</u>: $A_q(n,d) = \max\{M \mid \text{there exists an } (n, M, d)_q \text{-code.}\}$

Problem 4: Let R be a finite Frobenius ring and assume χ is a generating character for R which means $\hat{R} = R\chi$. Show that the pair of transforms \hat{A} and $\tilde{C}: \mathbb{C}^R \longrightarrow \mathbb{C}^R$ where

$$\hat{f}(x) = \sum_{r \in R} f(r) \chi(xr)$$
 and $\tilde{f}(x) = \frac{1}{|R|} \sum_{r \in R} f(r) \chi(-rx)$

indeed satisfies $\tilde{f} = \hat{f} = f$ for all $f \in \mathbb{C}^R$.