MS-EV0011: Codes over nonstandard alphabets

Problem Set V

Problem 1: Find the Hamming weight enumerator of the binary [7, 4, 3] Hamming code and compute the weight enumerator of its dual code. Verify that this code is a $[7,3,4]$ code.

Problem 2: Extend the binary [7, 4, 3] Hamming code by a parity check bit, and write down its Hamming weight enumerator. Compute the MacWilliams' transform of this enumerator. What do you observe? Verify your conjecture about self-duality of the extended Hamming code.

Problem 3: The Gaussian binomial coefficients $\left[\begin{array}{c}n \\ k\end{array}\right]_{q}$ describe the number of k-dimensional subspaces in an n-dimensional vector space over the q-element field.
(a) Show that $\left[\begin{array}{c}n \\ k\end{array}\right]_{q}=\frac{\left(1-q^{n}\right)\left(1-q^{n-1}\right) \cdots\left(1-q^{n+1-k}\right)}{\left(1-q^{k}\right)\left(1-q^{k-1}\right) \cdots(1-q)}$.
(b) Verify that $\lim _{q \rightarrow 1}\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=\binom{n}{k}$.

Problem 4: Feel encouraged to use the book by Blyth and Janowitz, which you find in the assignments folder.
(a) Show that if K and L are complete lattices, then a mapping $f: K \longrightarrow L$ is residuated if and only if $f\left(\sum X\right)=\sum f(X)$ for all $X \subseteq K$.
(b) Show that in this case the residual g of f is given by $g(y)=\sum\{x \in L \mid f(x) \leq y\}$.

As usual, please feel free to collaborate, but submit individual write-ups.

