Prof. Dr. Marcus Greferath
Dept. of Mathematics and Systems Analysis
School of Sciences
Aalto University
Spring 2023

MS-EV0011: Codes over nonstandard alphabets

Problem Set II

Problem 1: Let C be the smallest cyclic code of length n that contains a given codeword a, where a is a polynomial of degree at most $n-1$ over the base field. Show that the generator polynomial of C is given by $g=\operatorname{gcd}\left(a, x^{n}-1\right)$.
Work: First of all, we observe that, by definition, g is a monic divisor of $x^{n}-1$, and hence it is the generator polynomial of a cyclic code. Now that g is at the same time a divisor of a, we conclude that $\mathbb{F}[x] a \subseteq \mathbb{F}[x] g$, and hence $\mathbb{F}[x] a /\left(x^{n}-1\right) \subseteq \mathbb{F}[x] g /\left(x^{n}-1\right)$. Known properties about the gcd include that there exist $s, t \in \mathbb{F}[x]$ such that $g=s a+t\left(x^{n}-1\right)$. This immediately implies $\mathbb{F}[x] g /\left(x^{n}-1\right)=\mathbb{F}[x] s a /\left(x^{n}-1\right) \subseteq \mathbb{F}[x] a /\left(x^{n}-1\right)$ which is the reverse inclusion. Hence, our claim has been proved.

Problem 2: Let C be a q-ary cyclic code of length n where $\operatorname{gcd}(q, n)=1$. Assume $g \in \mathbb{F}_{q}[x]$ is the generator polynomial, and $h \in \mathbb{F}_{q}[x]$ is its check polynomial, and hence $g h=x^{n}-1$. Since $\operatorname{gcd}(g, h)=1$ (why?) we have $a, b \in \mathbb{F}_{q}[x]$ with $a g+b h=1$. Define $i=a g=1-b h$.
(a) Show that i is a codeword, and that $i c \equiv c\left(\bmod x^{n}-1\right)$ for all $c \in C$.
(b) Show that i is an idempotent element, that means $i^{2} \equiv i\left(\bmod x^{n}-1\right)$.
(c) Show that a polyomial having the properties in (a) is unique modulo $x^{n}-1$. It is called the generating idempotent for C.
Work: Using the formal derivative (or otherwise), one can show that the assumption $\operatorname{gcd}(q, n)=1$ leads to the fact that $x^{n}-1$ does not have multiple zeros (in any extension field). This makes the two co-divisors g and h co-prime.
(a) For $c \in C$ we have $\lambda \in \mathbb{F}_{q}[x]$ such that $c \equiv \lambda g\left(\bmod x^{n}-1\right)$. This leads to $i c \equiv$ $(1-b h) \lambda g=\lambda g-\lambda b g h \equiv \lambda g \equiv c \quad\left(\bmod x^{n}-1\right)$.
(b) Observing that $i \in C$, the equality $i^{2}=i$ directly follows from (a).
(c) If $j \in C$ is another candidate for the role of i, we find $i j=j$ and $j i=i$ which by commutativity yields the equality of i and j.

Problem 3:

(a) Using suitable existence bounds, determine whether or not binary linear codes with the following parameters exist. If you feel that such a code exists, then provide an example.

- $[11,7,6]$
- $[10,3,6]$
- $[16,5,8]$
(b) Compare the Gilbert with the Varshamov bound: using these, determine lower bounds on $A_{2}(16,6)$. Conclusion?
Recall: $A_{q}(n, d)=\max \left\{M \mid\right.$ there exists an $(n, M, d)_{q}$-code. $\}$

Work:

(a) The triple $[15,11,3]$ belongs to the binary Hamming code of order $r=4$, so the existence of a code is granted. The Singleton bound precludes the existence of a binary code with parameters $[11,7,6]$ because $7+6 \not \leq 11+1$. Looking at codetables.de, or otherwise, it turns out that the triple $[10,3,6]$ does not belong to an existing code, because of a violation of the Griesmer bound (that we have not covered in class). The final triple $[16,5,8]$ turns out to belong to the Reed-Muller Code $\mathrm{RM}(1,4)$, hence a code with these parameters exists.
(b) The purely combinatorial version of the GV-bound yields that $A_{2}(16,6) \geq 10$, while the algebraic version guarantees a linear code with at least 16 words. We conclude that the coveringbased version is not as powerful as its competitor, which might be considered counter-intuitive, because linearity is a proper restriction on the code class. This problem is resolved observing that these bounds are lower bounds, guaranteeing rather than precluding the existence of the respective codes.

Problem 4: Let R be a finite Frobenius ring and assume χ is a generating character for R which means $\widehat{R}=R \chi$. Show that the pair of transforms ${ }^{\wedge}$ and ${ }^{\sim}: \mathbb{C}^{R} \longrightarrow \mathbb{C}^{R}$ where

$$
\hat{f}(x)=\sum_{r \in R} f(r) \chi(x r) \quad \text { and } \quad \tilde{f}(x)=\frac{1}{|R|} \sum_{r \in R} f(r) \chi(-r x)
$$

indeed satisfies $\tilde{\hat{f}}=\hat{\tilde{f}}=f$ for all $f \in \mathbb{C}^{R}$.
Work: We first observe that

$$
\sum_{x \in R} \chi(x r)=\left\{\begin{array}{cll}
|R| & : & r=0 \\
0 & : & \text { otherwise }
\end{array}\right.
$$

This stems from the fact that ${ }^{r} \chi$ is principal if and only if $r=0$, and is due to the fact that χ is a generating character. We will restrict to showing $\tilde{\hat{f}}=f$ for all $f \in \mathbb{C}^{R}$. For this, we compute

$$
\tilde{\hat{f}}(x)=\frac{1}{|R|} \sum_{y \in R} \hat{f}(y) \chi(-y x)
$$

combine it with

$$
\hat{f}(y)=\sum_{r \in R} f(r) \chi(y r),
$$

in order to obtain

$$
\tilde{\hat{f}}(x)=\sum_{r \in R} f(r) \frac{1}{|R|} \sum_{y \in R} \chi(y(r-x))=f(x) .
$$

In fact, by the above observation we have

$$
\frac{1}{|R|} \sum_{y \in R} \chi(y(r-x))=\left\{\begin{array}{lll}
1 & : & r=x \\
0 & : & \text { otherwise }
\end{array}\right.
$$

