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MS-EV0011: Codes over nonstandard alphabets

Problem Set II

Problem 1: Let C be the smallest cyclic code of length n that contains a given codeword a ,
where a is a polynomial of degree at most n − 1 over the base field. Show that the generator
polynomial of C is given by g = gcd(a, xn − 1) .

Work: First of all, we observe that, by definition, g is a monic divisor of xn − 1 , and hence it
is the generator polynomial of a cyclic code. Now that g is at the same time a divisor of a , we
conclude that F[x] a ⊆ F[x] g , and hence F[x] a/(xn − 1) ⊆ F[x] g/(xn − 1) . Known properties
about the gcd include that there exist s, t ∈ F[x] such that g = s a+ t (xn − 1) . This immediately
implies F[x] g/(xn − 1) = F[x] sa/(xn − 1) ⊆ F[x] a/(xn − 1) which is the reverse inclusion. Hence,
our claim has been proved.

Problem 2: Let C be a q -ary cyclic code of length n where gcd(q, n) = 1 . Assume g ∈ Fq[x]
is the generator polynomial, and h ∈ Fq[x] is its check polynomial, and hence gh = xn − 1 . Since
gcd(g, h) = 1 (why?) we have a, b ∈ Fq[x] with ag + bh = 1 . Define i = ag = 1− bh .

(a) Show that i is a codeword, and that ic ≡ c (mod xn − 1) for all c ∈ C .

(b) Show that i is an idempotent element, that means i2 ≡ i (mod xn − 1) .

(c) Show that a polyomial having the properties in (a) is unique modulo xn− 1 . It is called the
generating idempotent for C .

Work: Using the formal derivative (or otherwise), one can show that the assumption gcd(q, n) = 1
leads to the fact that xn − 1 does not have multiple zeros (in any extension field). This makes the
two co-divisors g and h co-prime.

(a) For c ∈ C we have λ ∈ Fq[x] such that c ≡ λ g (mod xn − 1) . This leads to ic ≡
(1− bh)λg = λg − λbgh ≡ λg ≡ c (mod xn − 1) .

(b) Observing that i ∈ C , the equality i2 = i directly follows from (a).

(c) If j ∈ C is another candidate for the role of i , we find ij = j and ji = i which by
commutativity yields the equality of i and j .

Problem 3:

(a) Using suitable existence bounds, determine whether or not binary linear codes with the
following parameters exist. If you feel that such a code exists, then provide an example.

– [15, 11, 3]



– [11, 7, 6]

– [10, 3, 6]

– [16, 5, 8]

(b) Compare the Gilbert with the Varshamov bound: using these, determine lower bounds on
A2(16, 6) . Conclusion?

Recall: Aq(n, d) = max{M | there exists an (n,M, d)q -code.}

Work:

(a) The triple [15, 11, 3] belongs to the binary Hamming code of order r = 4 , so the existence
of a code is granted. The Singleton bound precludes the existence of a binary code with
parameters [11, 7, 6] because 7 + 6 ̸≤ 11 + 1 . Looking at codetables.de, or otherwise, it
turns out that the triple [10, 3, 6] does not belong to an existing code, because of a violation
of the Griesmer bound (that we have not covered in class). The final triple [16, 5, 8] turns
out to belong to the Reed-Muller Code RM(1, 4) , hence a code with these parameters exists.

(b) The purely combinatorial version of the GV-bound yields that A2(16, 6) ≥ 10 , while the alge-
braic version guarantees a linear code with at least 16 words. We conclude that the covering-
based version is not as powerful as its competitor, which might be considered counter-intuitive,
because linearity is a proper restriction on the code class. This problem is resolved observing
that these bounds are lower bounds, guaranteeing rather than precluding the existence of
the respective codes.

Problem 4: Let R be a finite Frobenius ring and assume χ is a generating character for R
which means R̂ = Rχ . Show that the pair of transforms ˆ and ˜: CR −→ CR where

f̂(x) =
∑
r∈R

f(r)χ(xr) and f̃(x) =
1

|R|
∑
r∈R

f(r)χ(−rx)

indeed satisfies
˜̂
f =

ˆ̃
f = f for all f ∈ CR .

Work: We first observe that ∑
x∈R

χ(xr) =

{
|R| : r = 0,
0 : otherwise.

This stems from the fact that rχ is principal if and only if r = 0 , and is due to the fact that χ is

a generating character. We will restrict to showing
˜̂
f = f for all f ∈ CR . For this, we compute

˜̂
f(x) =

1

|R|
∑
y∈R

f̂(y)χ(−yx),

combine it with
f̂(y) =

∑
r∈R

f(r)χ(yr),

in order to obtain
˜̂
f(x) =

∑
r∈R

f(r)
1

|R|
∑
y∈R

χ(y(r − x)) = f(x).

In fact, by the above observation we have

1

|R|
∑
y∈R

χ(y(r − x)) =

{
1 : r = x,
0 : otherwise.


