Prof. Dr. Marcus Greferath
Dept. of Mathematics and Systems Analysis
School of Sciences
Aalto University
Summer 2023

MS-EV0011: Codes over nonstandard alphabets

Problem Set III

Problem 1: Let R be a finite ring, and let $R^{\times} x$ denote the set of all generators of the ideal $R x \leq R$, and let μ be the Moebius function on the poset of all principal left ideals of R.
(a) Show that for all $x \in R$ there holds:

$$
\bigcup_{R y \leq R x} R^{\times} y=R x
$$

(b) Use Moebius inversion in order to derive that for all $x \in R$ there holds:

$$
\left|R^{\times} x\right|=\sum_{R y \leq R x}|R y| \mu(R y, R x)
$$

Work: Without proof, we use the fact that $R^{\times} x=\left\{u x \mid u \in R^{\times}\right\}$is indeed the set of all generators of the ideal $R x$, which particularly implies $R^{\times} x=R^{\times} y$ if and only if $R x=R y$, for all $x, y \in R$.
(a) It is easily seen that the relation $x \sim y$ if and only if $R^{\times} y=R^{\times} x$ is an equivalence relation on R, where the equivalence class belonging to $x \in R$ is of the form $R^{\times} x$. For this reason we clearly have

$$
\bigcup_{y \in R x} R^{\times} y=R x
$$

To make this a disjoint sum, we use the above preamble and then obtain

$$
\bigcup_{R y \leq R x} R^{\times} y=R x
$$

(b) From (a), we obtain

$$
\sum_{R y \leq R x}\left|R^{\times} y\right|=|R x|
$$

which yields the claim

$$
\left|R^{\times} x\right|=\sum_{R y \leq R x}|R y| \mu(R y, R x)
$$

by Moebius inversion. Here, μ is in fact the Moebius function on the partially ordered set of all principal left ideals.

Problem 2: Let R be a finite ring, and let μ again denote the Moebius function on the poset of its left principal ideals. For arbitrary $\gamma>0$, verify that the function $w: R \longrightarrow \mathbb{R}$ with

$$
w(x):=\gamma\left[1-\frac{\mu(0, R x)}{\left|R^{\times} x\right|}\right]
$$

is indeed a (left) homogeneous weight, as it satisfies all of its defining criteria.

Work: We first observe that w is a real-valued function that maps 0 to $\gamma(1-1 / 1)=0$. As a second step, we verify that $w(u x)=w(x)$, because $R u x=R x$ and $R^{\times} u x=R^{\times} x$, for all $u \in R^{\times}$and $x \in R$. Finally, we compute

$$
\begin{aligned}
\sum_{y \in R x} w(y) & =\sum_{R y \leq R x} w(y)\left|R^{\times} y\right|=\sum_{R y \leq R x} \gamma\left(\left|R^{\times} y\right|-\mu(0, R y)\right) \\
& =\gamma|R x|-\gamma \sum_{R y \leq R x} \mu(0, R y)=\left\{\begin{array}{cl}
\gamma|R x| & : x \neq 0 \\
0 & :
\end{array}\right. \text { otherwise. }
\end{aligned}
$$

Here we have used the fact, that

$$
\sum_{R y \leq R x} \mu(0, R y)=\left\{\begin{array}{lll}
0 & : & x \neq 0 \\
1 & : & \text { otherwise }
\end{array}\right.
$$

which can be obtained easily from the properties of the Moebius function μ.

Problem 3:

(a) Compute the homogeneous weight of average 1 on \mathbb{Z}_{6} and verify that this weight does not satisfy the triangle inequality.
(b) Compute the homogeneous weight w on $R:=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and verify that $w(1,1)=0$, so that w is not strictly positive.

Work:

(a) We have $\gamma=1$ and observe $w(0)=0$ and $w(1)=w(5)=1-\frac{1}{2}=\frac{1}{2}$. Moreover, we find $w(3)=$ $1-\frac{-1}{1}=2$, and $w(2)=w(4)=1-\frac{-1}{2}=\frac{3}{2}$. The triangle inequality is violated because $w(2)=\frac{3}{2}>$ $1=\frac{1}{2}+\frac{1}{2}=w(1)+w(1)$.
(b) For given $\gamma \in \mathbb{R}$ we have $w(0,0)=0$ and $w(1,0)=w(0,1)=\gamma\left(1-\frac{-1}{1}\right)=2$, γ whereas $w(1,1)=$ $\gamma\left(1-\frac{1}{1}\right)=0$. Hence this weight is not strictly positive.

Problem 4: Draw the Hasse diagram for the poset of all left ideals of $M_{2}\left(\mathbb{F}_{q}\right)$ and compute the homogeneous weight of average 1 for this ring.
Work: Let $R=M_{2}\left(\mathbb{F}_{q}\right)$, then the desired Hasse diagram of the lattice of all left ideals of R looks like the following:

Here we have $q+1$ simple ideals of size q^{2}, as the above illustration shows. For this reason, we find $\mu(0,0)=$ 1 , and $\mu(0, R x)=-1$ for all these $q+1$ ideals, which eventually yields $\mu(0, R)=-1-(q+1) \cdot(-1)=q$. Moreover, we have $\left|R^{\times}\right|=\left(q^{2}-1\right)\left(q^{2}-q\right)$ and $\left|R^{\times} x\right|=q^{2}-1$ (why?). For given $\gamma \in \mathbb{R}$, we conclude

$$
w(x)=\gamma \cdot\left\{\begin{array}{cl}
0 & : x=0, \\
1+\frac{1}{q^{2}-1} & : x \neq 0, \operatorname{det}(x)=0, \\
1-\frac{:}{\left(q^{2}-1\right)\left(q^{2}-q\right)} & : x \text { invertible },
\end{array}\right\}=\gamma \cdot\left\{\begin{array}{cl}
0 & x=0, \\
q^{2}-q & : x \neq 0, \operatorname{det}(x)=0 \\
q^{2}-q-1 & : x \text { invertible }
\end{array}\right.
$$

where we have tacitly rescaled γ in such a way, that the resulting expressions become integer-valued.

