Prof. Dr. Marcus Greferath Dept. of Mathematics and Systems Analysis School of Sciences Aalto University

Summer 2023

MS-EV0011: Codes over nonstandard alphabets

Problem Set III

Problem 1: Let R be a finite ring, and let $R^{\times}x$ denote the set of all generators of the ideal $Rx \leq R$, and let μ be the Moebius function on the poset of all principal left ideals of R.

(a) Show that for all $x \in R$ there holds:

$$\bigcup_{Ry \le Rx} R^{\times} y = Rx$$

(b) Use Moebius inversion in order to derive that for all $x \in R$ there holds:

$$|R^{\times}x| = \sum_{Ry \le Rx} |Ry| \, \mu(Ry, Rx).$$

Work: Without proof, we use the fact that $R^{\times}x = \{ux \mid u \in R^{\times}\}$ is indeed the set of all generators of the ideal Rx, which particularly implies $R^{\times}x = R^{\times}y$ if and only if Rx = Ry, for all $x, y \in R$.

(a) It is easily seen that the relation $x \sim y$ if and only if $R^{\times}y = R^{\times}x$ is an equivalence relation on R, where the equivalence class belonging to $x \in R$ is of the form $R^{\times}x$. For this reason we clearly have

$$\bigcup_{y \in Rx} R^{\times} y = Rx.$$

To make this a disjoint sum, we use the above preamble and then obtain

$$\bigcup_{Ry \le Rx} R^{\times} y = Rx.$$

(b) From (a), we obtain

$$\sum_{Ry \le Rx} |R^{\times}y| = |Rx|,$$

which yields the claim

$$|R^{\times}x| = \sum_{Ry \le Rx} |Ry| \, \mu(Ry, Rx).$$

by Moebius inversion. Here, μ is in fact the Moebius function on the partially ordered set of all principal left ideals.

Problem 2: Let R be a finite ring, and let μ again denote the Moebius function on the poset of its left principal ideals. For arbitrary $\gamma > 0$, verify that the function $w : R \longrightarrow \mathbb{R}$ with

$$w(x) := \gamma \left[1 - \frac{\mu(0, Rx)}{|R^{\times}x|} \right],$$

is indeed a (left) homogeneous weight, as it satisfies all of its defining criteria.

<u>Work:</u> We first observe that w is a real-valued function that maps 0 to $\gamma(1-1/1) = 0$. As a second step, we verify that w(ux) = w(x), because Rux = Rx and $R^{\times}ux = R^{\times}x$, for all $u \in R^{\times}$ and $x \in R$. Finally, we compute

$$\begin{split} \sum_{y \in Rx} w(y) &= \sum_{Ry \le Rx} w(y) \left| R^{\times} y \right| = \sum_{Ry \le Rx} \gamma(\left| R^{\times} y \right| - \mu(0, Ry)) \\ &= \gamma \left| Rx \right| - \gamma \sum_{Ry \le Rx} \mu(0, Ry) = \begin{cases} \gamma \left| Rx \right| &: x \ne 0, \\ 0 &: \text{ otherwise} \end{cases} \end{split}$$

Here we have used the fact, that

$$\sum_{Ry \le Rx} \mu(0, Ry) = \begin{cases} 0 & : \quad x \ne 0, \\ 1 & : \quad \text{otherwise,} \end{cases}$$

which can be obtained easily from the properties of the Moebius function μ .

Problem 3:

- (a) Compute the homogeneous weight of average 1 on \mathbb{Z}_6 and verify that this weight does not satisfy the triangle inequality.
- (b) Compute the homogeneous weight w on $R := \mathbb{Z}_2 \times \mathbb{Z}_2$ and verify that w(1,1) = 0, so that w is not strictly positive.

Work:

- (a) We have $\gamma = 1$ and observe w(0) = 0 and $w(1) = w(5) = 1 \frac{1}{2} = \frac{1}{2}$. Moreover, we find $w(3) = 1 \frac{-1}{1} = 2$, and $w(2) = w(4) = 1 \frac{-1}{2} = \frac{3}{2}$. The triangle inequality is violated because $w(2) = \frac{3}{2} > 1 = \frac{1}{2} + \frac{1}{2} = w(1) + w(1)$.
- (b) For given $\gamma \in \mathbb{R}$ we have w(0,0) = 0 and $w(1,0) = w(0,1) = \gamma(1-\frac{-1}{1}) = 2, \gamma$ whereas $w(1,1) = \gamma(1-\frac{1}{1}) = 0$. Hence this weight is not strictly positive.

Problem 4: Draw the Hasse diagram for the poset of all left ideals of $M_2(\mathbb{F}_q)$ and compute the homogeneous weight of average 1 for this ring.

Work: Let $R = M_2(\mathbb{F}_q)$, then the desired Hasse diagram of the lattice of all left ideals of R looks like the following:

Here we have q+1 simple ideals of size q^2 , as the above illustration shows. For this reason, we find $\mu(0,0) = 1$, and $\mu(0,Rx) = -1$ for all these q+1 ideals, which eventually yields $\mu(0,R) = -1 - (q+1) \cdot (-1) = q$. Moreover, we have $|R^{\times}| = (q^2 - 1)(q^2 - q)$ and $|R^{\times}x| = q^2 - 1$ (why?). For given $\gamma \in \mathbb{R}$, we conclude

$$w(x) = \gamma \cdot \left\{ \begin{array}{cccc} 0 & : & x = 0, \\ 1 + \frac{1}{q^2 - 1} & : & x \neq 0, \ \det(x) = 0, \\ 1 - \frac{q}{(q^2 - 1)(q^2 - q)} & : & x \text{ invertible}, \end{array} \right\} = \gamma \cdot \left\{ \begin{array}{cccc} 0 & : & x = 0, \\ q^2 - q & : & x \neq 0, \ \det(x) = 0, \\ q^2 - q - 1 & : & x \text{ invertible}, \end{array} \right\}$$

where we have tacitly rescaled γ in such a way, that the resulting expressions become integer-valued.