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Recap - Unsupervised learning

Unsupervised methods:

Clustering (week 5) ←−

Feature Learning (week 6)
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Recap - Clustering

Idea: decomposing a data set into few groups (clusters) of similar
data points.

Hard clustering (K-means) - each data point belongs to exactly one
cluster.

Soft clustering (GMM) - each data point belongs to several clusters
with varying degrees of belonging.

Similarity measures: Euclidean distance, connectivity, etc.
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Recap - Unsupervised learning

Unsupervised methods:

Clustering (week 5)

Feature Learning (week 6) ←−

(Aalto) CS-EJ3211 Machine Learning with Python 24.03.22 4 / 25



Feature Learning

The efficiency of ML methods depends on the choice of features:

More features - the risk of an increase in computational resources
used

Fewer features - the risk of overfitting

The goal of feature learning - find just enough relevant features to achieve
high ML methods performance.
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Feature Learning

Feature Learning - automate the choice of finding good features.

Feature Learning can be:

supervised - dictionary learning, ANN

unsupervised - PCA

Learn a hypothesis map that reads in some representation of a datapoint
(e.g features) and transforms it to a set of (new) features:

z = (z1, ..., zD)→ x = (x1, ..., xn) ,
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Dimensionality reduction

Transform high dimensional (many features) dataset Z to a dataset X
with lower dimensionality.
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Dimensionality reduction

Why?

reduce the use of computational resources

prevent overfitting

data visualization

How?

How to map datapoint to a space with lower dimensionality?

How to quantify the information loss after dataset transformation?
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Dimensionality reduction - Compression

The goal is to find (learn) a compression map:

h(·) : RD → Rn,

that transforms a long feature vector z ∈ RD to a short feature vector
h(z) = x ∈ Rn (D ≫ n).

The new feature vector x = h(z) is a compressed representation (code) of
the original feature vector z.
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Dimensionality reduction - Reconstruction

We can reconstruct original vector using a reconstruction map:

r(·) : Rn → RD

Reconstructed original feature vector: ẑ = r(x)

Information loss (reconstruction error): ẑ− z

Need to learn a compression map such that: ẑ ≈ z, i.e. reduce
dimensionality with minimal information loss.
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Principal Component Analyses

PCA is a dimensionality reduction method where compression map h(·) is
a linear map.

PCA is a statistical procedure that uses an orthogonal transformation to
convert a set of observations of possibly correlated variables (entities each
of which takes on various numerical values) into a set of values of linearly
uncorrelated variables called principal components.
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Linear Transformation

3Blue1Brown
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https://www.youtube.com/watch?v=kYB8IZa5AuE


Principal Component Analyses

PCA, gif
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https://miro.medium.com/max/1384/1*dh72Kx1U7FPjxkCiqnrQMg.gif


Principal Component Analyses

Reconstruction error - the mean of squared distances (red lines)

This component corresponds to the direction of the largest variance
of the data
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Principal Component Analyses

Linear transformation: h(·) : R2 → R1:
z = (z1, z2)→ x = (x1)
x = W z

Reconstruction: ẑ = W Tx

How to quantify the information loss after dataset transformation?

Information loss is measured with reconstruction error:

(1/m)
m∑
i=1

∥∥z(i) − ẑ(i)
∥∥2
2

Reconstruction error, gif.
PC1, gif.
Source.
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https://medium.com/vlgiitr/principal-components-analysis-82a7682323e6


Principal Component Analyses

We can interpret PC components as follows:
PC1 = x amount of feature 1 + y amount of feature 2

Check out PCA by StatQuest for more explanations.
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https://www.youtube.com/watch?v=FgakZw6K1QQ


Principal Component Analyses
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Student Task 6.1. - Compute PCA

1 Create a PCA object from the sklearn.Decomposition.PCA

2 Find principal components by fitting PCA to the raw dataset

3 Store principal components in W pca

4 Transform the raw dataset and store the result in Z hat

5 Compute reconstruction error according to the formula. Remember to
multiply the mean squared difference by the number of raw features!
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https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html


Student Task 6.2. - Reconstruction Error vs. Number of
PCs

1 Create a loop with m iterations

2 Create PCA object with the number of components increased by 1
from the previous iteration (first iteration - 1 component, second
iteration - 2 components, . . . )

3 Fit PCA object, transform the raw dataset, and calculate
reconstruction error.

Note: here you should not multiply the reconstruction error by the length
of the raw feature vector, since it is redundant in the comparison.
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Student Task 6.3. - Proportion of variance explained

1 Create a PCA object with the defined maximum number of
components

2 Fit the PCA object to the raw dataset

3 Access proportion of total variance explained by calling sklearn
method pca.explained variance ratio and store the result in var ratio
variable

4 Calculate the cumulative proportion of total variance explained by
calling the numpy method .cumsum(. . . ) on var ratio

5 Find the minimum number of components for which the cumulative
proportion of total variance explained exceeds the defined threshold.
Store the result in n threshold variable.

(Aalto) CS-EJ3211 Machine Learning with Python 24.03.22 20 / 25

https://numpy.org/doc/stable/reference/generated/numpy.cumsum.html


Student Task 6.3. - Proportion of variance explained
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Student Task 6.4. - PCA with Linear Regression

1 Create a linear regression model, fit it to the raw training data, and
calculate training and validation errors (week 2 material)

2 Create a PCA object with 2 components, fit it to the raw training
data

3 Transform training and validation data by applying .transform(. . . )
method

4 Create a linear regression model, fit it to the transformed training
data, and calculate training and validation errors
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Summary

PCA tries to find a linear subspace that has maximal variance

Goal of PCA: nearby points remain nearby, distant points remain
distant

PCA always converges to the same optima

PCA can be computed easily
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Other methods

Independent component analysis (ICA) - Wikipedia

Multidimensional scaling - Wikipedia

Sammon mapping - Wikipedia

Isometric mapping of data manifolds (ISOMAP) - Wikipedia

Locally linear embedding (LLE) - Article

Other nonlinear methods - Wikipedia
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https://en.wikipedia.org/wiki/Independent_component_analysis
https://en.wikipedia.org/wiki/Multidimensional_scaling
https://en.wikipedia.org/wiki/Sammon_mapping
https://en.wikipedia.org/wiki/Isomap
https://cs.nyu.edu/~roweis/lle/papers/lleintro.pdf
https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction


Additional material

CS-E4840 ”Information Visualization D” course, lecture 9

Making sense of principal component analysis - StackExchange

PCA by StatQuest - YouTube

A blog post about PCA with good visualization - Medium

3Blue1Brown lecture about linear transformation - YouTube
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https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://www.youtube.com/watch?v=FgakZw6K1QQ
https://medium.com/vlgiitr/principal-components-analysis-82a7682323e6
https://www.youtube.com/watch?v=kYB8IZa5AuE

