CS-EJ3211 Machine Learning with Python Session 4 – Classification

Alexander Pavlyuk

Aalto University FITech

21.06.23

Categorical vs. Numeric labels

Numeric labels:

- Regression problem (week 2).
- Structured label space
- Example: the real numbers \mathbb{R} .

Categorical labels:

- · Classification problem.
- Finite label space consists of classes/categories.
- Example: phone storage condition is "Empty", "Partly filled", or "Full".

Ordinal labels:

- Classification or regression problem.
- Finite and structured label space.
- Example: $y \in \{1, 2, 3\}$.

Categorical labels

Binary classification – each data point belongs to exactly one out of two different classes.

not a cat

Multiclass classification – each data point belongs to exactly one out of more than two different classes.

Classification performance

Possible outcomes of binary classification:

 $y \in \{0, 1\}$, where y = 1 is positive class y = 0 is negative class

- $y = 0, \ \hat{y} = 0$
- $y = 0, \ \hat{y} = 1$
- $y = 1, \ \hat{y} = 0$
- $y = 1, \ \hat{y} = 1$

True Negative (TN) False Positive (FP) False Negative (FN) True Positive (TP)

Classification performance metrics

Accuracy – fraction of correctly predicted labels.

(Aalto - FiTech)

 $\frac{TP + TN}{TP + FP + TN + FN}$

Precision – fraction of correctly predicted positive class among all predicted positive.

 $\frac{TP}{TP + FP}$

Recall (sensitivity) – fraction of correctly predicted positive class among all with true label positive.

 $\frac{TP}{TP + FN}$

F1 score – combination of precision and recall. High F1 score implies low FP and low FN.

precision * recall	
$2 * \overline{precision + recall}$	
CS-EJ3211 Machine Learning with Python	21.06.23

5/20

Classification methods – Logistic regression

Logistic regression is a binary classification method that learns a hypothesis out of the linear hypothesis space.

 $\mathcal{H}^{(n)} := \{h^{(w)}: \mathbb{R}^n \to \mathbb{R}: h^{(w)}(x) = w^T x \text{ with some vector parameter } w \in \mathbb{R}^n\}.$

Nominal classes can be encoded in binary:

Linear vs. Logistic regression

Logistic loss

$$L[(\mathcal{X},\mathcal{Y}),h(\cdot)] = \left\{egin{array}{cc} -\log(h(x)) & ext{if } y=1\ -\log(1-h(x)) & ext{else} \end{array}
ight.$$

Data standardization

Definition: the process of rescaling the data so that the mean is zero and the variance is one.

Process (for feature matrix **X**): for all elements in each column, we subtract the column mean (μ) and divide by the standard deviation (σ) of the column.

$$\boldsymbol{X} = \begin{array}{ccc} \boldsymbol{x}_1^1 & \cdots & \boldsymbol{x}_k^1 \\ \cdots & \ddots & \cdots, \text{ where} \\ \boldsymbol{x}_1^n & \cdots & \boldsymbol{x}_k^n \end{array}$$

 $\mathbf{z}_{j}^{(i)} = \frac{\mathbf{x}_{j}^{(i)} - \boldsymbol{\mu}(\mathbf{x}_{j})}{\sigma(\mathbf{x}_{j})}$

n is the length of each feature vector, k is the number of features.

Student Task 4.1 – Logistic Regression

Create <u>Standard_Scaler</u>object. # scaler = ...

Create LogisticRegression object. # log_reg = ...

```
Create <u>Pipeline</u> object.
# pipe = ...
```

Fit the Pipeline to the training set.
pipe.xxx(...)

Compute training and testing accuracies by calling <u>.score(...)</u> method. # acc_train = ... # acc_test = ...

Multiclass Classification

Multiclass Classification

Divide the multiclass classification problem into several binary classification subproblems

One-vs-Rest (OVR) strategy

Student Task 4.2 – Tuning a Logistic Regression model

Create the <u>Pipeline</u> object (remember to specify multi_class parameter as "ovr" in LogisticRegression inside the Pipeline).

pipe = ...

Create a parameter <u>dictionary</u> containing one key-value pair of the parameter "C". *# params = ...*

```
Create <u>GridSearchCV</u> object.
# cv = ...
```

Perform 5-fold cross-validation. Remember to use training dataset! # cv.fit(...)

Store the average training and validation accuracies. GridSearchCV.cv_results_ attribute contains a dictionary with the performance data. Extract the required data by the proper key name. # acc train = ...

```
# acc_val = ...
```

Store the best estimator by calling GridSearchCV.best_estimator_attribute. # best model = ...

(Aalto - FiTech)

CS-EJ3211 Machine Learning with Python

21.06.23

Confusion Matrix

Decision Tree

Decision Trees consist of

- Decision (or test) nodes.
- Branches.
- Leaf nodes.

See MLBasics book section 3.10 for details

	_		
(Aalto	 - 11	00	ה ۱
LAGIU			
() 101110		00	••7

Student Task 4.3 – Decision Tree Classifier

Create <u>Decision Tree Classifier</u> object. # clf = ...

Fit the Decision Tree Classifier to the training set. # clf. ...

Compute training and testing accuracies by calling <u>.score(...)</u> method. # acc_train = ... # acc_test = ...

Decision Tree - Regularization

Hyperparameters available for tuning:

- Maximum depth of the tree.
- Minimum number of data points in leaf nodes.
- The minimum number of samples required to split an internal node.
- The number of features to consider when looking for the best split.
- Maximum number of leaf nodes.

See sklearn docs for more options and detailed explanations (<u>link</u>).

Random forest:

- Ensemble model with multiple decision trees.
- A data point is classified using a consensus based on the predictions of all decision trees in the "forest".

Logistic Regression vs. Decision Tree

Logistic regression:

Decision Tree:

Pros:

- Minimizing a logistic loss amounts to a smooth convex optimization problem (gradient-based method are possible for application).
- Good for linear relationships between the predictors and response.
- Good for the small sample size.

Cons:

- Data pre-processing is required.
- Poor performance on complex data with outliers, non-linear relationships and other.

Pros:

- Very interpretable.
- No need for data pre-processing.
- Flexible hypothesis space, including complex predictors.

Cons:

- Prone to severe overfitting.
- Training is not as efficient, and globally optimum solution is not guaranteed.
- Not robust to changes in data. Small changes can result in very different models.

(Aalto - FiTech)

21.06.23

Questions?