CS-EJ3211 Machine Learning with Python Exercise Session 1

Shamsi Abdurakhmanova

Aalto University FITech

31.05.23

Table of Contents

- 2 Machine Learning: Definitions
- Machine Learning: Components
- 4 Machine Learning: Implementation

Table of Contents

Machine Learning: Definitions

3 Machine Learning: Components

4 Machine Learning: Implementation

Teaching staff

- Shamsi Abdurakhmanova shamsiiat.abdurakhmanova@aalto.fi
- Alexander Pavlyuk alexander.pavlyuk@aalto.fi
- Alex Jung alex.jung@aalto.fi

Course info & materials

- Course home page at MyCourses https://mycourses.aalto.fi/course/view.php?id=38429
- Course email cs-ej3211@aalto.fi
- Assignments and timetables see on MyCourses/Notebooks and MyCourses/ML Project
- Main material is jupyter notebooks (text + code)
- Course book by Alex Jung "Machine Learning: The Basics" http://mlbook.cs.aalto.fi/

Course structure

- No lectures
- Jupyter notebook each week on Mon (DL next Mon), 6 notebooks altogether
- Exercise sessions on Wed (14-15.00)
- ML Project peer-graded assignments (starts from 5.6)
- communication via email cs-ej3211@aalto.fi and Slack

Grading

- Notebooks: 6 notebooks x 10 points max = 60 points max (30p min to pass)
- ML project: 3 stages, 40 points max (20p min pass). Project includes submission and peer-grading part
- Grade bounds: 1: 50p, 2: 60p, 3: 70p, 4: 80p, 5: 90p
- Post re-grading requests at Slack #grading or email cs-ej3211@aalto.fi
- No exam
- Bonus tasks: TBA

< 回 > < 回 > < 回 >

Course implementation

- Notebooks: on jupyter hub https://jupyter.cs.aalto.fi/
 - notebooks are autograded after DL
 - feedback released 1-2 day after DL on jupyter hub (see MyCourses/FAQ and How to use Jupyter Hub pdf at MyCourses/Notebooks)
 - you can ask solutions review at Slack #grading or email cs-ej3211@aalto.fi
- ML project: at MyCourses/ML Project
- Exercise sessions: on Zoom

通 ト イ ヨ ト イ ヨ ト

Course feedback

- General feedback at the end of the course (mandatory).
- Specific feedback for each notebook at MyCourses/Notebooks.
- Feedbacks are anonymous.

(Aalto - FITech)

Ground rules

- No plagiarism
- No bullying, harassment
- See Aalto Code of conduct https://www.aalto.fi/en/aaltouniversity/code-of-conduct-values-into-practice

Course logistics - Questions?

31.05.23

・ 同 ト ・ ヨ ト ・ ヨ ト

Table of Contents

2 Machine Learning: Definitions

3 Machine Learning: Components

< □ > < □ > < □ > < □ > < □ > < □ >

Machine Learning - Definition

"Machine learning is the study of computer algorithms that improve automatically through experience."

— Wiki

"Machine learning is a field of computer science that aims to teach computers how to learn and act without being explicitly programmed."

— deepai.org

"Machine learning fits fancy mathematical models to data."

— A.Jung

31.05.23

13 / 37

Machine Learning - Relation to other fields

ARTIFICIAL INTELLIGENCE

A technique which enables machines to mimic human behaviour

MACHINE LEARNING

Subset of AI technique which use statistical methods to enable machines to improve with experience

DEEP LEARNING

Subset of ML which make the computation of multi-layer neural network feasible

image source

31.05.23

イロト イポト イヨト イヨト

14 / 37

Machine Learning - Applications

Machine Learning - Applications

- Natural Language Processing
- Insurance Claim Analysis
- Bioinformatics and Medical Diagnosis
- Image Processing and Pattern Recognition
- Search Engines
- Financial Market Analysis

from deepai.org

Machine Learning - Why and When?

Why:

- Automation (make process faster and cheaper)
- Accuracy, reliability, consistency, unbias (do the task better than humans)
- Discovery (explore the data to get new insights or find new relations)

When:

- There is a complex pattern to learn
- There is a (lots of) data exist

Table of Contents

Course Logistics

2 Machine Learning: Definitions

< □ > < □ > < □ > < □ > < □ > < □ >

Components of ML

Goal: Formulate a real-life problem as a Machine Learning problem.

イロト イポト イヨト イヨト

э

Components of ML

Goal: Formulate a real-life problem as a Machine Learning problem.

Solution: Decompose a problem into 3 components

- Data
- Model (Hypothesis space)
- Loss

・ 同 ト ・ ヨ ト ・ ヨ ト

Data

Data is a collection of data points.

A data point is any object that conveys information. Data points might be students, radio signals, trees, forests, images, RVs, real numbers or proteins. We characterize data points using two types of properties: features and labels.

Features are properties of a data point that can be measured or computed in an automated fashion.

The label of a data point represents a higher-level facts or quantities of interest. In contrast to features, determining the label of a data point typically requires human experts (domain experts).

ML aims at predicting the label of a data point based solely on its features.

イロト 不得 トイヨト イヨト

Data - Examples

- Data points: house, text, genome sequence, image, speech
- **Features**: number of rooms, word "cat" count in the text, frequency of AATCAGTT motif, pixel values, spectrum of the signal
- Labels: price, article topic, cell type, identify objects in the image, emotional state

イロト イヨト イヨト ・

Cat dataset - Features or Labels?

• 612x612 RGB pixel values

- Cat
- No cat

Linnerud dataset - Features or Labels?

- Chin-ups
- Sit-ups
- Jumps

- Weight
- Waist
- Pulse

(Aalto - FITech)

CS-EJ3211 Machine Learning with Python

31.05.23

(B)

23 / 37

The hypothesis space

The hypothesis space of a ML method is a subset of all possible maps from the feature space to label space. The design choice of the hypothesis space should take into account available computational resources and statistical aspects.

$$h:\mathcal{X}
ightarrow\mathcal{Y}$$

Loss

Loss function $\mathcal{L}(y, \hat{y})$ measures the quality of a hypothesis map.

Examples:

- MSE $\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \hat{y}^{(i)})^2$
- MAE $\frac{1}{m} \sum_{i=1}^{m} |y^{(i)} \hat{y}^{(i)}|$
- Logistic Loss, Cross Entropy
- Hinge Loss
- 0/1 Loss

Problem formulation in ML

Machine Learning: "Given an image of a histological analyses of a tissue, how likely that this sample is malignant tumor?"

Problem formulation:

• Data:

- Data point image of a tissue sample
- Features pixels
- Labels {cancer, no cancer}
- Model: Logistic regression
- Loss: Logistic loss

Machine Learning: Components - Questions?

(Aalto - FITech)

CS-EJ3211 Machine Learning with Python

31.05.23

(B)

Table of Contents

Machine Learning: Definitions

4 Machine Learning: Implementation

< □ > < □ > < □ > < □ > < □ > < □ >

Python libraries

(Aalto - FITech)

CS-EJ3211 Machine Learning with Python

29 / 37

Python classes

- Objects are Python's abstraction for data. All data in a Python program is represented by objects or by relations between objects.
- Creating a new class creates a new type of object
- Class allows to create new instances of that type
- Each class instance can have **attributes** attached to it for maintaining its state.
- Class instances can also have methods (defined by its class) for modifying its state.

・ 同 ト ・ ヨ ト ・ ヨ ト

Python classes - Example

Attributes: Attributes: • first name • last name • pay • employee 2 • employee 2 • employee 3 • get full name • pay raise

Python classes - Example

< □ ▶ < 酉 ▶ < 壹 ▶ < 壹 ▶
 n
 31.05.23

32 / 37

Python classes - sklrean

sklearn.linear_model.LinearRegression

Using ML models with sklearn

Import model from sklearn:

- o from sklearn.linear_model import LinearRegression
- from sklearn.tree import DecisionTreeClassifier
- from sklearn.svm import SVR

Instantiate a class (create an object of that class):

- reg_lin = LinearRegression(fit_intercept=False)
- o clf_dt = DecisionTreeClassifier(random_state=0)
- reg_svm = SVR(C=1.0, epsilon=0.2)

Using ML models with sklearn

Fit a model:

- reg_lin.fit(X,y)
- o clf_dt.fit(X,y)
- reg_svm.fit(X,y)

Make predictions:

- reg_lin.predict(X)
- o clf_dt.predict(X)
- reg_svm.predict(X)

伺 ト イ ヨ ト イ ヨ ト

The hypothesis space

Choosing the right estimator with sklearn.

(Aalto - FITech)

CS-EJ3211 Machine Learning with Python

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 31.05.23

э

Machine Learning: Implementation - Questions?

(B)