Evolving Bacterial Fitness with an Expanded Genetic Code

Presented by Laura Kangas, Milla Tynkkynen & Mikko Korkiakoski

Contents

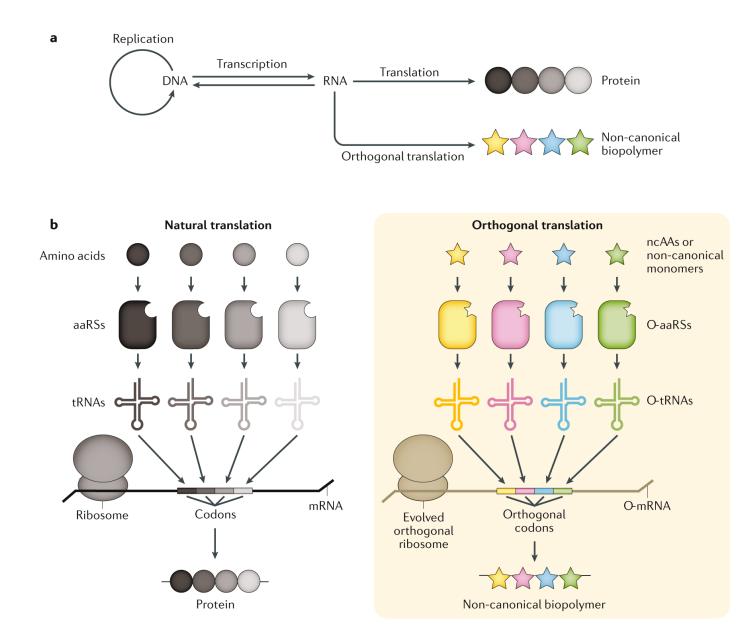
- 1. Introduction and aims
- 2. Terminology
- 3. Methods and approaches
- 4. Results
- 5. Importance and future aspects

Introduction and aims

Introduction

- Canonical genetic code has the ability to evolve, since alternative mitochondrial genomes are evolved from the standard codon table
- The full adaptation process of a cell to an expanded genetic code is not yet presented
- Tack et al. researched how the genetic code can be expanded with the development of **orthogonal translation systems** (OTS) and how this can be used to improve bacterial fitness
 - Active OTS have been found to cause fitness deficits in cells since any protein terminated by an amber stop codon can be unnaturally extended
 - Previous research on expanded genetic code has been performed with bacteriophages (so the fitness of the host organism is irrelevant) or with strains that do not contain amber codons

Main aim

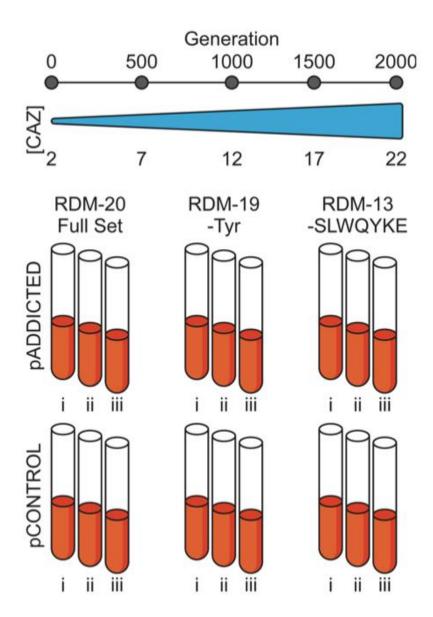

- Expanding the bacterial genome to accept the noncanonical amino acid (ncAA) 3-nitro-L-tyrosine (3nY), and explore its utility in the proteome
- Studying long-term adaptation and evolution of $E.\ coli$ addicted to 3nY and creating a hybrid approach to expand amino acid genetic codes
- Preserve an active OTS in an unmodified organism
- Improving bacterial fitness: engineered essential gene for a β-lactamase (bla) used to tackle fitness issues and study long term evolution

Terminology

Orthogonal translation systems (OTSs)

- Allow for the expansion of proteinogenic amino acids by modifying the translational machinery of the organism
- Comprised of aminoacyl-tRNA synthetase (aaRS)/suppressor tRNA pairs
 - **Aminoacyl-tRNA synthetase**: an enzyme that connects an amino acid to its corresponding tRNA
 - **Suppressor tRNA**: tRNA with a mutation which allows it to recognize a stop codon and insert an amino acid in its place (1)
- Do not significantly interact with the host translational machinery or have interference with the occupied parts of the genetic code
 - Allows the incorporation of noncanonical amino acids by suppressing the amber stop codon (UAG)

- **Noncanonical amino acids** (ncAAs): amino acids beyond the usual 20 amino acids
 - Usually synthesized in a laboratory
 - Different side chain structures and backbone conformations
 - Not integrated into proteins naturally during ribosomal synthesis
- The **amber stop codon** is a nonsense codon, leading to a premature stop codon in the translated mRNA
 - Amber stop codons are possible in bacteria that contain amber suppressor mutations
 - Can be recognized by tRNA molecules carrying unnatural amino acids which have been designed to recognize the amber stop codon


Methods and approaches

Experimental set-up

- Assembly of the OTS compatible with 3nY
 - Aim: incorporation of 3nY to the genome
 - Parts of the system
 - Methanocaldococcus jannaschii tyrosyl-aaRS variant previously engineered to be specific for 3-iodo-L-tyrosine (3iY) and also compatible with 3nY
 - Corresponding tyrosyl-tRNA with an anticodon complementary to the UAG amber stop codon
- The OTS was assembled to enable addiction via a β -lactamase variant ($bla_{\text{TEM-1.B9}}$)
 - Dependent on the incorporation of 3nY at amino acid position 162
- The ß-lact amase variant was further engineered to use ceftazidime (CAZ) as a substrate $\to bla_{\rm Addicted}$
 - This variant provided a moderate resistance to CAZ dependent on 3nY concentrations usually used in bacterial cultures
- The new variant allowed the retainment and challenging of 3nY incorporation into the genome by increasing CAZ concentrations in the culture
 - Increased CAZ concentrations provided a fitness burden to the system and enforced the activity of the $\ensuremath{\text{OTS}}$

Experimental set-up

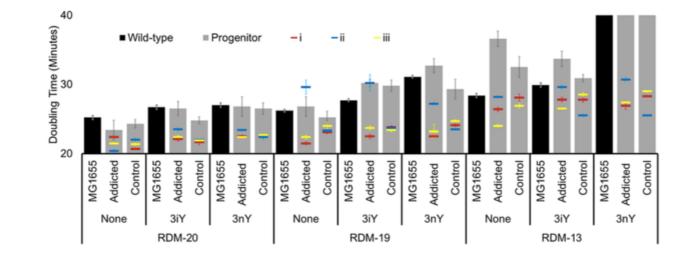
- Wild-type E. coli strain MG1655
- pADDICTED or pCONTROL evolved in biological triplicates (i, ii, and iii) for 2000 generations
- Three defined media conditions each supplemented with 10 mM 3nY
 - 1. media (RDM-20): all 20 canonical amino acids
 - 2. media (RDM-19): no tyrosine
 - 3. media (RDM-13): lacked seven amino acids (serine, leucine, tryptophan, glutamine, tyrosine, lysine, and glutamate)
- CAZ concentration increased during evolution
 - Fitness burden, enforcement of OTS activity

Test methods

- Growth rates as doubling times measured to evaluate cellular fitness both before and after evolution
 - Different conditions for measuring doubling times:
 - In absence of CAZ
 - * Amino acid environments: without ncAA, with 3nY, and with 3iY
- **Minimum inhibitory concentration** (MIC): values of the lowest concentration at which no bacterial growth observed
- GFP assays: absorbance and fluorescence

Results

Experimental evolution


- The research group were able to create a system that incorporates an ncAA for 2 000 generations of evolution
- System evolved to overcome the fitness burden from the expanded genetic code
 - Fitness deficit of the strain is largely repaired through mutations
 - Alleviation of toxicity of an unnatural amino acid
 - * Optimization of the composition of the 20 amino acids normally used
 - All lineages overcame the burden of 3nY toxicity
 - Improved fitness allows new amber codons to populate coding sequences
- The group was able to identify the entire complement of genetic mutations that lead to improved fitness in the presence of the 21 amino acid code

Effect of media composition

- Media lacking tyrosine (RDM-19, RDM-13)
 - * Tyrosine permease (tyrP) inactivated
- Media also lacking tryptophan (RDM-13)
 - * Tryptophan permease mtr inactivated
- All amino acids present (RDM-20)
 - Serine permease sdaC inactivated
 - Serine most abundant \rightarrow amino acid pool is better balanced through this deletion with other serine transporters (*sstT*) available for serine uptake

Growth rates

- Growth rates, or doubling times were used as general indicators of cellular fitness
- Doubling times of wild-type E. coli strain MG1655 compared well to those in rich media, in the absence of 3nY
- Reduced doubling time of the Addicted-19(ii) line in the absence of 3nY
 - Possible preference to new media condition containing 3nY with no inframe amber codons
 - Resemblance to evolution of *B*. *subtilis* that could utilize 4-fluoro-tryptophan in place of tryptophan

Importance and future aspects

Importance and path forward

- One of the first experiments to describe a hybrid approach to modify a protein genome
- Previous studies include two different approaches to generate expanded genetic codes
 - Engineer components of the organism to function with ncAA
 - Evolve the organism in the presence of ncAA
- Hybrid approach includes engineering of an addiction element *bla*, utilized to preserve an OTS over evolution
- Amberless *E. coli* can now be used to produce fully synthetic genomes with depencende on ncAA
- Further research on recoding of the genetic code during evolution or evolution of biochemically unique organisms

Thank you!

Sources

- Tack, D. S., Cole, A. C., Shroff, R., Morrow, B. R., & Ellington, A. D. (2018). Evolving bacterial fitness with an expanded genetic code. *Scientific Reports*, 8(1), 1–12. https://doi.org/10.1038/s41598-018-21549-w
- Herring, C. D., & Blattner, F. R. (2004). Global transcriptional effects of a suppressor tRNA and the inactivation of the regulator frmR. *Journal of Bacteriology*, *186*(20), 6714–6720. https://doi.org/10.1128/JB.186.20.6714-6720.2004
- de la Torre, D., & Chin, J. W. (2021). Reprogramming the genetic code. *Nature Reviews. Genetics*, 22(3), 169–184. https://doi.org/10.1038/s41576-020-00307-7