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Stellensätze and non-negativity

The solution to Hilbert’s 17th problem characterizes non-negative polynomials on Rn

as the sums of squares of rational functions. In this chapter we extend this result
in two directions: (1) to other sign constraints such as strict positivity or vanishing
of a polynomial function, and (2) to constrained semialgebraic sets in place of Rn.
These questions are highly relevant in polynomial optimization and we complement
the theoretical treatment based on [Mar08] with a computational approach from
semidefinite programming [BPT13].

5.1 The Positivstellensatz and its variants

A fundamental task in algebraic geometry is to study the behavior of polynomial
functions on varieties. In the ordered setting, we study more concretely signs of polyno-
mials on semialgebraic sets. From Theorem 4.5 we know when exactly polynomials are
globally non-negative. We also observed that Theorem A.5 fails for non-algebraically
closed fields. After more preliminary real algebra, we are ready to formulate and
prove the appropriate analogue of this theorem which works over real-closed fields: the
celebrated Positivstellensatz.

To this end it is advantageous to work with ordered rings, in particular polynomial
rings. The definition of ordering and cone from Chapter 1 apply verbatim — although
not all of the results from that chapter do. Also recall from Exercise 1.4 that if the
ordered ring R is reduced, then it is an integral domain and its orderings are in bijection
with the orderings of its fraction field ff(R). Any family of elements fi ∈ R generates
the following subsets of R:

— Their ideal I = I(fi) contains all fi and satisfies I + I ⊆ I and R · I ⊆ I.
— Their cone P = P(fi) contains all fi as well as all squares f 2 for f ∈ R

and satisfies P + P ⊆ P and P · P ⊆ P.
— Their (multiplicative) monoid U = U(fi) contains all fi as well as 1 ∈ R

and satisfies U · U ⊆ U.

It is helpful to imagine these objects in a polynomial ring R = F[x1, . . . , xn] over an
ordered field F. Elements of the ideal I(fi) vanish whenever all of the fi vanish; elements
of the cone are non-negative whenever the fi are non-negative; and elements of the
monoid do not vanish whenever all of the fi do not vanish. The following extensional
characterizations are easy to prove:
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Lemma 5.1. Let fi ∈ R, i ∈ I, be an arbitrary family.

— I(fi) consists of
∑

i∈F gifi for F ⊆ I finite and gi ∈ R.
— P(fi) consists of

∑
i∈F σiPi for F ⊆ I finite, σi ∈

∑
R2 and Pi ∈ U(fi).

— U(fi) consists of
∏

i∈F f
mi
i for F ⊆ I finite and mi ∈ N.

We prove at first a weak version of the Positivstellensatz and then derive the strong
version from it. For this we require the following extension principle which we supply
without proof.

Lemma 5.2. Let P be a proper cone in a ring R. Then there exists a homomorphism
ϕ : R→ F into a real-closed field F whose order cone extends ϕ(P).

Lemma 5.3: Weak Positivstellensatz. Let F be real-closed, f1, . . . , fr ∈ F[x1, . . . , xn]
and let K = { fi ≥ 0 } denote their basic closed semialgebraic set and P = P(fi) the
cone generated by them in F[x1, . . . , xn]. Then K = ∅ if and only if −1 ∈ P.

Proof. If −1 ∈ P, then for every x ∈ K we have −1 =
∑

j σj
∏

i fi(x)mij ≥ 0 according
to Lemma 5.1 since all summands are non-negative but this is absurd.

Now suppose −1 6∈ P. Then P is proper and Lemma 5.2 furnishes a homomorphism
ϕ : F[x] → F′ into a real-closed field F′ whose ordering extends ϕ(P). As a ring
homomorphism between fields, the composition F ↪→ F[x]→ F′ is injective and so F′ is
a real-closed extension of F. Since fi ∈ P we have F′ |= ∃x : fi(x) ≥ 0 analogously to
the proof of Theorem 4.5. Hence Tarski’s transfer principle shows F |= ∃x : fi(x) ≥ 0,
i.e., K is non-empty.

The prototypical example is the empty circle in R2: if r < 0, then {x2 + y2 = r } is
empty and indeed −1 = (1/

√
−r · x)2 + (1/

√
−r · y)2 ∈

∑
R[x, y]2. Here, we do not even

need the two inequalities x2+y2−r ≥ 0 and −x2−y2+r ≥ 0 which generate P. Another
description of the empty set is {x ≥ 1,−x ≥ 1 } and we obtain −1 = 1/2(x− 1) +
1/2(−x− 1) ∈ P using only that 1/2 is a sum of squares in R.

Positivstellensatz. Let F be real-closed, f1, . . . , fr ∈ F[x1, . . . , xn] and let K =
{ fi ≥ 0 } denote their basic closed semialgebraic set and P = P(fi) the cone generated
by them in F[x1, . . . , xn]. For any f ∈ F[x1, . . . , xn] we have:

(1) f > 0 on K if and only if ∃p, q ∈ P : pf = 1 + q.
(2) f ≥ 0 on K if and only if ∃m ∈ N ∃p, q ∈ P : pf = f 2m + q.
(3) f = 0 on K if and only if ∃m ∈ N : −f 2m ∈ P.
(4) K = ∅ if and only if −1 ∈ P.

Proof. Since we know by Lemma 5.3 that (4) is true, it suffices to show that all
statements are equivalent. Note that all “if” assertions are obvious, for instance in
(1): if pf = 1 + q, then on every point x ∈ K we have p(x) · f(x) = 1 + q(x) > 0, so
p(x) > 0 and thus f(x) = 1+q(x)

p(x)
> 0. Thus in the equivalence proofs we only need to

prove the “only if” parts.
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(1) ⇒ (2): Suppose that (1) is true for all f, f1, . . . , fr. For the “if” part of (2) sup-
pose that f ≥ 0 on K. Introduce a new variable y and consider K ′ = { fi ≥ 0, yf = 1 }.
Let F (x, y) = f(x). Since f ≥ 0 on K, we have that F > 0 on K ′, so by (1) we get
P,Q ∈ P(fi) ⊆ F[x, y] with PF = 1 +Q. P is a finite sum

P =
∑
j

σjPj, where σj ∈
∑

F[x, y]2 and Pj ∈ U(fj, yf − 1,−yf + 1).

Substituting y = 1/f(x) in this expression kills all summands in which Pj involves a
factor yf − 1 or −yf + 1. In all other instances, y appears only in the σj terms. Write

σj(x, y) =
∑
k

gjk(x, y)2 =
∑
k

(∑
`

gjk`(x)y`

)2

,

then multiply through with a sufficiently large even power of f :

f 2m(x)σj

(
x,

1

f(x)

)
=
∑
k

(∑
`

gjk`(x)fm−`(x)

)2

∈
∑

F[x]2.

Thus we obtain p = f 2m(x)P
(
x, 1

f(x)

)
∈ P if only m is sufficiently large. The same

argument applies to q and thus we have an equation pf = f 2m + q as desired.

(2) ⇒ (3): Suppose f = 0 on K. This just means that f ≥ 0 and −f ≥ 0, so
we obtain two sets of numbers m1,m2 and polynomials p1, p2, q1, q2 ∈ P such that
p1f = f 2m1 + q1 and −p1f = f 2m2 + q2. But then

−p1p2f 2 = f 2(m1+m2) + f 2m1q2 + f 2m2q1 + q1q2.

Rearranging the terms gives −f 2(m1+m2) ∈ P.

(3) ⇒ (4): If K = ∅ then the constant 1 vanishes on K and we obtain −1 ∈ P.

(4) ⇒ (1): If f > 0 on K, then K ′ = { fi ≥ 0,−f ≥ 0 } = ∅ and we have −1 ∈
P(−f). Since P(−f) = P− fP we obtain −1 = q − fp for p, q ∈ P as desired.

The Positivstellensatz as stated above applies only to basic closed semialgebraic sets.
With just a few more algebraic tools one can prove the following technical refinement
which has consequences of theoretical and practical interest. We merely state it here
and refer to [BCR98, Chapter 4] for the proof.

Formal Positivstellensatz. Let R be a commutative ring and fi, gj, hk ∈ R. Let I be
the ideal generated by the fi, P the cone generated by the gj and U the multiplicative
monoid generated by the hk in R. Then the following two statements are equivalent:

(a) There is no ring homomorphism ϕ : R→ F into a real-closed field
F such that ϕ(fi) = 0, ϕ(gj) ≥ 0 and ϕ(hk) 6= 0 for all i, j, k.

(b) There exist f ∈ I, g ∈ P and h ∈ U such that f + g + h2 = 0.
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Remark 5.4. The Positivstellensatz is recovered by taking R = F[x1, . . . , xn] with F
real-closed. By Tarski’s transfer principle, the existence of the homomorphism ϕ in
this case really only postulates the existence of a solution to the polynomial system
{ fi = 0, gj ≥ 0, hk 6= 0 } in F. Notice that every primary semialgebraic set is of the
form considered in the theorem. Existence of a solution on a general semialgebraic set
can be treated on each primary semialgebraic set in the decomposition afforded by
Lemma 2.5 separately, and so Formal Positivstellensatz can be put to use with every
semialgebraic set.

When R = F[x1, . . . , xn] for an ordered field F, there always exists a homomorphism
F→ rcl(F) and the Formal Positivstellensatz may be read as a theorem of the alter-
native analogous to Theorem A.6. In this form, it is also an algebraic version of the
completeness of RCF: for every definable (semialgebraic) set, either there exists a point
inside it over the real closure of the coefficient field and plugging it into the defining
polynomials provides an algebraic proof that the point belongs to the set; or there is
no point and an algebraic proof of the emptiness of the set exists in the form of three
polynomials f, g, h.

Since this theorem is valid for arbitrary commutative rings, it applies even to
R = Z[x1, . . . , xn]. This case is of special significance and we call it

Alternatives in real algebraic geometry. Let K = { fi = 0, gj > 0 } ⊆ Rn be a
Z-defined primary semialgebraic set. Then either K is non-empty and has a rcl(Q)-
rational point or it is empty and there exist f ∈ I(fi), g ∈ P(gj) and h ∈ U(gj) with
integer coefficients such that f + g + h2 = 0.

Proof. If f + g + h2 = 0, then K must be empty because on every point x ∈ K the
expression evaluates to the contradiction 0 = f(x) + g(x) + h(x)2 > 0 by the choice of
f, g, h relative to K.

Conversely, if K has no rcl(Q)-rational point, then Tarski’s transfer principle forbids
the existence of a homomorphism of Z[x] into a real-closed field over which the system
has a solution. Hence existence of f, g, h follows from the Formal Positivstellensatz.

In either case, solvability or unsolvability, the result can be certified by a finite
amount of data which can be exactly represented on a computer, stored and later used
for fast and independent verification in off-the-shelf computer algebra systems.

Real Nullstellensatz. Let I be an ideal in F[x1, . . . , xn], F real-closed, and V =
{x ∈ Fn : f(x) ∀f ∈ I } its variety. The vanishing ideal of V is{

f ∈ F[x1, . . . , xn] : ∃m ∈ N : −f 2m ∈ I +
∑

F[x1, . . . , xn]2
}
.

Proof. By Theorem A.4, the ideal I is finitely generated, by polynomials f1, . . . , fr ∈
F[x1, . . . , xn]. Then Positivstellensatz shows that f vanishes on V if and only if there
exists m ∈ N such that −f 2m ∈ P(fi,−fi). Clearly P′ = P(fi,−fi) sits inside the cone
I +

∑
F[x1, . . . , xn]2. Conversely, P′ contains the smallest cone

∑
F[x1, . . . , xn]2 and it

also contains I as
∑

i gifi =
∑

i

(
gi+1
2

)2
fi +

∑
i

(
gi−1
2

)2
(−fi) ∈ P′.
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5.2 Semidefinite programming

5.3 Exercises

Choose exercises to solve from the list below for up to 5 bonus points. Solutions must
be submitted on MyCourses by Thursday, June 1, 12:00.

5.1 Derive the Positivstellensatz from the Formal Positivstellensatz. 2 points

5.2 Derive Theorem 4.5 from the Positivstellensatz. 2 points

5.3 Derive the Positivstellensatz from the Real Nullstellensatz. 4 points

5.4 Use the TSSOS package in Julia to compute an approximate sums of squares
decomposition of the Motzkin polynomial. 3 points

5.5 Consider the set PD3 consisting of positive definite symmetric 3 × 3-matrices.
This is a full-dimensional set in the 6-dimensional spaces of symmetric matrices
Sym3(R). Show that the polynomial

σ2
13σ

2
23 − 2σ12σ13σ23σ33 + σ2

12σ
2
33

is non-negative on this space. 5 points


