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Point estimates

With parametric models, we often want to estimate the value of some
parameter using the sample x1, . . . , xn.

We estimate the expected value µ of a normal distribution N (µ, σ2)
by the maximum likelihood estimate x̄ .

We estimate the population skewness coefficient γ by the
corresponding sample estimate γ̂.

Such estimates are called point estimates of the parameter.

(A parameter is a quantity characterizing the population / generating

distribution, similar to statistic which is property of a sample.)

A point estimate on its own rarely gives us enough information.
To gain some idea of the precision of a point estimate, they are usually
accompanied with some measures of their accuracy.

3 / 36



Confidence interval

A confidence interval gives an estimated range of values which is likely to
contain the value of an unknown population parameter.

The confidence level of a confidence interval determines the probability
that the confidence interval produced (interpreted as a random interval)
will contain the true parameter value.

E.g. if 95% confidence intervals for an unknown parameter are computed
from 100 independent samples, approximately 95 of the these will contain
the true parameter value — but we do not know which!

Note that any particular realized confidence interval either contains the
true value or not; the 95% frequency concens the probability in the
sampling process
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Figure: A statistical Sibelius Monument. One hundred 95 % confidence intervals
for mean µ assuming a known σ2 (n = 36). The observations were generated
from N(100, 182).
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The bootstrap

The standard formulas for confidence intervals either make heavy
parametric assumptions or work only for parameters estimable by means
(CLT).

The standard non-parametric procedure for estimating confidence intervals
is known as the bootstrap.

Bootstrap creates pseudo-samples by drawing n observations from the
data, with replacement, repeating the procedure for a large number of
times.

If n is large enough, the pseudo-sampling approximates true sampling from
the population.
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Bootstrap confidence intervals

Let x1, x2, . . . , xn be independent and identically distributed (i.i.d.) sample
from a distribution (parametric model) Fx .

Let θ be a parameter of the distribution Fx and assume that θ̂ is a point
estimate of θ.

An approximate confidence interval for θ can now be obtained by
bootstrap resampling as follows:
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Bootstrap confidence intervals

1 Select n data points randomly with replacement from the original
sample {x1, x2, ..., xn}. Each data point can be selected once, multiple
times, or not at all. (Note that the sample size of the new sample is
the same as the sample size of the original sample.)

2 Use this new sample to calculate a new estimate for the parameter θ.

3 Repeat the previous steps B times.

4 After the replications, order the B estimates from the smallest to the
largest.

5 A 100(1− α)% confidence interval is now obtained by choosing the
⌊B × (α/2)⌋ ordered estimate as the lower endpoint and the
⌊B × (1− α/2)⌋ ordered estimate as the upper endpoint.
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Exact confidence intervals

Often, when the type of the distribution is known, also exact confidence
intervals can be calculated.

Bootstrap, however, while an approximation, makes no assumptions on the
distribution of the data.
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Exact confidence intervals, normal distribution

Let x1, x2, . . . , xn be an i.i.d. sample from the normal distribution
N (µ, σ2) where both µ ∈ R and σ2 > 0 are unknown.

A 100(1− α)% confidence interval for µ is obtained as,(
x̄ − t1−α/2(n − 1)

s√
n
, x̄ + t1−α/2(n − 1)

s√
n

)
,

where t1−α/2(n − 1) is the (1− α/2)-quantile of Student’s t-distribution
with n − 1 degrees of freedom.

For large values of n, the Student’s t-distribution with n − 1 degrees of
freedom approaches the standard normal distribution and its corresponding
quantile can be substituted in place of t1−α/2(n − 1).
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Exact confidence intervals, normal distribution

A 100(1− α)% confidence interval for σ2 is obtained as,(
(n − 1)× s2

χ2
1−α/2(n − 1)

,
(n − 1)× s2

χ2
α/2(n − 1)

)
,

where χ2
α/2(n − 1) is the α/2-quantile and χ2

1−α/2(n − 1) is the

(1− α/2)-quantile of the χ2(n − 1)-distribution (χ2-distribution with
n − 1 degrees of freedom).

The validity of the confidence interval hinges strongly on the Normality
assumption. The interval is not robust with respect to the distribution of
the observations.
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Hypothesis testing

Statistical tests are applied extensively in various fields of science.

Examples of statistical testing situations

Testing whether psychic can predict the winner of a sports match.

Testing whether a treatment works better than the old one.
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Hypothesis testing

Statistical hypothesis testing is based on

1 Selecting a statistical model/assumptions and

2 Setting a null hypothesis, and often also an alternative hypothesis,

p-value of the test statistic is a basis for conclusions.
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Statistical model

Statistical model/assumptions casts the problem in a mathematical
context and defines the rules of probability governing it.

Statistical models are usually of the form:

“Let x1, . . . , xn be an i.i.d. sample from the distribution F with the
unknown parameter θ”.

The validity of the model can, and in general should, be tested
separately.

Examples of statistical models/assumptions

A psychic guesses the winner of each of the n sports matches
correctly with the probability p, independent of his previous guesses.

The treatment group responses x1, . . . , xn are an i.i.d. sample from
N (µ1, σ

2) and the control group responses y1, . . . , ym are an i.i.d.
sample from N (µ2, σ

2).
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Null hypothesis

The statement of interest about a model parameter is called the null
hypothesis, H0.

H0 is assumed (or pretended!) to be true. It is rejected if there is
strong evidence that indicates otherwise.

In simple statistical tests the null hypothesis can often be stated as an
equality, H0: θ = θ0, where θ is the parameter being tested and θ0 is
a fixed value of the parameter.

The null hypothesis is often conceptually of the form “equals” or “no
difference”.

Examples of null hypotheses

H0: π = 0.5 (π is probability).

H0: µ1 − µ2 = 0.
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Alternative hypothesis

Null hypothesis H0 is usually accompanied by an alternative
hypothesis H1. It is often the logical opposite of H0.

If H0 is rejected then H1 is accepted.

The alternative hypothesis is often conceptually of the form “differs”.

Examples of alternative hypotheses

H1: π ̸= 0.5.

H1: µ1 − µ2 ̸= 0.

Most tests in these lecture slides are for simplicity formulated using
two-sided alternative hypotheses:

H0: θ = θ0 H1: θ ̸= θ0.

(Often a one sided-alternative, such as H1: π > 0.5, would be natural.)
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Test statistic

Test statistic measures deviation of the observed sample from the null
hypothesis.

A test statistic is a random variable. Its value depends on the random
observations.

The distribution of the test statistic under the null hypothesis must
be known for assessing the compatibility of the observations with the
null hypothesis.

Examples of test statistics

The proportion of correct guesses out of the total n.

(µ̂1 − µ̂2)/SD(µ̂1 − µ̂2).
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p-value

p-value of a test statistic is the probability of observing at least as
deviating value towards H1 as the observed value of the test statistic
under the null hypothesis H0.

What is considered as “deviating” depends on the form of the
hypotheses.

If the p-value is very small (the observation is too strange to have
happened under H0) then we reject H0 in favor of H1.

Non-rejection of H0 does not mean that H0 is true.
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Significance level and critical values

Significance level α is used to make a cut-off between small and large
p-values.

▶ If p < α we reject H0.
▶ If p ≥ α we do not reject H0.

Commonly used significance levels are α = 0.05, 0.1, 0.01, 0.001.

The set of values of the test statistic for which the null hypothesis is
rejected (i.e. the values that yield a p-value smaller than α) is called
the critical region.

The threshold values delimiting the regions of non-rejection and
rejection for the test statistic are called the critical values.

Neyman–Pearson theory: Set α beforehand. It may be wiser to apply
the p-value more flexibly in combination with other information.
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Errors in statistical hypothesis testing

The are two kinds of errors related to the rejection of the null hypothesis
H0.

Type 1 error: True null hypothesis is rejected.

Type 2 error: False null hypothesis is not rejected.

The type 1 error rate α is the probability of rejecting a true H0.

The type 2 error rate is the probability of not rejecting a false H0. Type 2
error rate is more difficult to control as it is usually a function of the
possible distributions of the test statistic under H1.

Power of a test is equal to 1 −“type 2 error rate”. The larger the power,
the better the test detects false null hypotheses.
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Steps of statistical hypothesis testing

1 Select the statistical model and state the hypotheses.

2 Select a test statistic.

3 Pick a sample (for which the model holds).

4 Calculate the value of the test statistic from the data.

5 Calculate the p-value corresponding to the observed value of the test
statistic.

6 Draw conclusions and reject/do not reject the null hypothesis.
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One-sample t-test

One-sample t-test compares the expected value of a distribution to a given
constant.

One-sample t-test, assumptions

Let x1, x2, . . . , xn be and i.i.d. sample from N (µ, σ2).

One-sample t-test, hypotheses

H0 : µ = µ0 H1 : µ ̸= µ0.
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One-sample t-test

One-sample t-test, test statistic

The t-test statistic,

t =
x̄ − µ0

s/
√
n
.

follows Student’s t-distribution with n − 1 degrees of freedom under
H0.

The expected value of t under the null hypothesis H0 is 0. If the
value of t is large in absolute value, evidence against the null
hypothesis H0 is found.

If the sample size is large, then the one-sample t-test is not very sensitive
to moderate deviations from normality.
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Two-sample t-test

Two-sample t-test compares the expected values of two distributions.

Two-sample t-test, assumptions

Let x1, x2, . . . , xn be an i.i.d. sample from N (µx , σ
2
x) and let y1, y2, . . . , ym

be an i.i.d. sample from N (µy , σ
2
y ). Furthermore, let the two samples be

independent.

Two-sample t-test, hypotheses

H0 : µx = µy H1 : µx ̸= µy .
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Two-sample t-test

Two-sample t-test, test statistic

The t-test statistic,

t =
x̄ − ȳ√

s2x /n + s2y /m
,

follows approximately the Student’s t-distribution with

(s2x /n + s2y /m)2

(s2x /n)
2/(n − 1) + (s2y /m)2/(m − 1)

.

degrees of freedom under H0.

The expected value of t under H0 is 0 and if the value of the test
statistic has large absolute value, evidence against the null
hypothesis H0 is found.

If the sample size is large, then the two-sample t-test is not very sensitive
to moderate deviations from normality.
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Paired t-test

The two-sample t-tests assumes that the samples are independent. What
if this is not the case?

A comparison of two measurement devices where both devices are
used to measure the same subject under same circumstances.

A drug study where the subjects’ responses are measured both before
and after the treatment.

A comparison of health-related life style choices of matched pairs,
such as spouses.

Paired data can be a great advantage: Effect of confounders tends to be
smaller than with the two-sample t-test.
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Paired t-test

Paired t-test, assumptions

Observations consist of an i.i.d. sample of pairs (xi1, xi2), i = 1, 2, ..., n
(the values within a pair need not be independent). The differences
di = xi1 − xi2 have the normal distribution N (µd , σ

2
d).

Paired t-test, hypotheses

H0 : µd = 0 H1 : µd ̸= 0.

The recipe is now simple: Apply the one-sample t-test to the differences
di , to test whether their expected value is zero (whether there is no
systematic difference between the values in a pair).
(Stop for a moment to think why this works.)
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Variance test

The variance test compares the variance of a distribution to a given
constant.

Variance test, assumptions

Let x1, x2, . . . , xn be and i.i.d. sample from N (µ, σ2).

Variance test, hypotheses

The null hypothesis

H0 : σ
2 = σ2

0 H1 : σ
2 ̸= σ2

0.
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Variance test

Variance test, test statistic

The χ2-test statistic,

χ2 =
(n − 1)s2

σ2
0

,

follows χ2-distribution with n − 1 degrees of freedom under H0.

The expected value of the test statistic under H0 is n − 1 and both
large and small values of the test statistic suggest that the null
hypothesis H0 is false.

The variance test is sensitive to deviations from normality and does not
work, even for large samples, if the underlying distribution is skewed.

32 / 36



Variance comparison test

The variance comparison test compares the variances of two distributions.

Variance comparison test, assumptions

Let x1, x2, . . . , xn be an i.i.d. sample from N (µx , σ
2
x) and let y1, y2, . . . , ym

be an i.i.d. sample from N (µy , σ
2
y ). Furthermore, let the two samples be

independent.

Variance comparison test, hypotheses

H0 : σ
2
x = σ2

y H1 : σ
2
x ̸= σ2

y .
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Variance comparison test

Variance comparison test, test statistic

The F -test statistic,

F =
s2x
s2y

,

follows the F-distribution with n − 1 and m − 1 degrees of freedom
under H0.

The expected value of the test statistic under H0 is ≈ 1 and both
large and small values of the test statistic suggest that the null
hypothesis H0 is false.

Also the variance comparison test is sensitive to deviations from normality
and does not work, even for large samples, if the underlying distribution is
skewed.
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Figure of the previous page: Confidence intervals, statistical significance,
and practical importance.

Source: P. Armitage, G. Berry, and J. N. S. Matthews (2002) Statistical
Methods in Medical Research, 4th edition. Blackwell Science. (P. 92.)
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