MS-C1620 Statistical inference

4 Inference for binary data

Pekka Pere
Department of Mathematics and Systems Analysis
School of Science
Aalto University
Academic year 2023-2024
Period III-IV

Contents

(1) Binary data
(2) Single binary sample
(3) Two binary samples
4. Lecture quiz

Binary observations

In many applications the observations are binary.

- Something is true/false.
- Something happened/did not happen.
- Someone belongs/does not belong to a group.

Such observations are conveniently coded as 0/1-valued indicator variables.
Recall that a 0/1-valued random variable follows a Bernoulli distribution.

Bernoulli distribution

A random variable x has the Bernoulli distribution with success probability π if,

$$
\mathbb{P}(x=1)=\pi \quad \text { and } \quad \mathbb{P}(x=0)=1-\pi
$$

The expected value and variance of x are

$$
\begin{aligned}
\mathbb{E}(x) & =\pi \\
\operatorname{Var}(x) & =\pi(1-\pi) .
\end{aligned}
$$

Note that the Bernoulli distribution has only a single parameter to estimate (no separate "variance parameter").

The sum of n i.i.d. Bernoulli random variables with the success probability π has the binomial distribution with parameters n and π (or index n and parameter π).
(Often the success probability is called p, but here we use π to emphasize that it is a parameter to estimate, and to avoid confusion with p-values in hypothesis testing.)

Contents

(1) Binary data

(2) Single binary sample
(3) Two binary samples
4. Lecture quiz

Approximate confidence interval

Central limit theorem can be used to obtain a confidence interval for the success probability π of a Bernoulli distribution.

Let $x_{1}, x_{2}, \ldots, x_{n}$ be an i.i.d. sample from the Bernoulli distribution with the success probability/expected value π.

For large n, a level $100(1-\alpha) \%$ confidence interval for the success probability π is obtained as

$$
\left(\hat{\pi}-z_{1-\alpha / 2} \frac{\sqrt{\hat{\pi}(1-\hat{\pi})}}{\sqrt{n}}, \hat{\pi}+z_{1-\alpha / 2} \frac{\sqrt{\hat{\pi}(1-\hat{\pi})}}{\sqrt{n}}\right)
$$

where $\hat{\pi}$ is the observed proportion of successes and $z_{1-\alpha / 2}$ is the $(1-\alpha / 2)$-quantile of the standard normal distribution.

One-sample proportion test

To test whether the success probability of a Bernoulli distribution equals some pre-specified value, we employ the one-sample proportion test.

One-sample proportion test, assumptions
Let $x_{1}, x_{2}, \ldots, x_{n}$ be an i.i.d. sample from a Bernoulli distribution with success probability π.

One-sample proportion test, hypotheses

$$
H_{0}: \pi=\pi_{0} \quad H_{1}: \pi \neq \pi_{0} .
$$

One-sample proportion test

One-sample proportion test, test statistic

- The test statistic,

$$
C=\sum_{i=1}^{n} x_{i}
$$

follows the binomial distribution with parameters n and π_{0} (or index n and parameter π_{0}) under H_{0}.

- Under H_{0}, the test statistic has $\mathrm{E}[C]=n \pi_{0}$ and $\operatorname{Var}(C)=n \pi_{0}\left(1-\pi_{0}\right)$ and both large and both large and small values of the test statistic suggest that the null hypothesis H_{0} is false.

The distribution of the test statistic C is tabulated, and statistical software calculates exact p-value of the test statistic.

Asymptotic one-sample proportion test

If the sample size is large then the standardized test statistic,

$$
Z=\frac{\hat{\pi}-\pi_{0}}{\sqrt{\pi_{0}\left(1-\pi_{0}\right) / n}}
$$

follows approximately the standard normal distribution under the null hypothesis H_{0}. Here $\hat{\pi}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ is an unbiased estimator of parameter π.

The approximation is usually accurate enough if $n \hat{\pi}>10$ and $n(1-\hat{\pi})>10$. For smaller samples one should use the exact distribution of the test statistic C.

Contents

(1) Binary data

(2) Single binary sample
(3) Two binary samples
4. Lecture quiz

Two-sample proportion test

The one-sample proportion test can be seen as the equivalent of t-test when the normal distribution is replaced by the Bernoulli distribution.

As with t-test, a two-sample version readily follows. In the two-sample proportion test estimates of parameters of two independent Bernoulli-distributed variables are compared.

Two-sample proportion test, assumptions
Let $x_{1}, x_{2}, \ldots, x_{n}$ be an i.i.d. sample from a Bernoulli distribution with the success probability π_{x} and let $y_{1}, y_{2}, \ldots, y_{m}$ be an i.i.d. sample from a Bernoulli distribution with the success probability π_{y}. Furthermore, let the two samples be independent.

Two-sample proportion test, hypotheses

$$
H_{0}: \pi_{x}=\pi_{y} \quad H_{1}: \pi_{x} \neq \pi_{y} .
$$

Two-sample proportion test

Two-sample proportion test, test statistic

- Calculate the sample proportions

$$
\hat{\pi}_{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \quad \hat{\pi}_{y}=\frac{1}{m} \sum_{i=1}^{m} y_{i}, \quad \hat{\pi}=\frac{n \hat{\pi}_{x}+m \hat{\pi}_{y}}{n+m} .
$$

- The test statistic

$$
Z=\frac{\hat{\pi}_{x}-\hat{\pi}_{y}}{\sqrt{\hat{\pi}(1-\hat{\pi})\left(\frac{1}{n}+\frac{1}{m}\right)}}
$$

follows for large n under H_{0} the standard normal distribution.

- Values far from zero (positive or negative) suggest that the null hypothesis H_{0} is false.

The normal approximation is usually good enough if $n \hat{\pi}_{x}>5$, $n\left(1-\hat{\pi}_{x}\right)>5, m \hat{\pi}_{y}>5$ and $m\left(1-\hat{\pi}_{y}\right)>5$.

Frequency tables

Assuming a "paired binary sample", the previous test is no longer valid.

id	X	Y
1	0	1
2	0	0
3	0	1
4	1	1
\vdots	\vdots	\vdots

This kind of data is conveniently represented in a contingency table (aka cross tabulation).

	$\mathrm{Y}=0$	$\mathrm{Y}=1$
$\mathrm{X}=0$	173	40
$\mathrm{X}=1$	65	53

Inference from contingency tables is discussed next time.

Contents

(1) Binary data

(2) Single binary sample
(3) Two binary samples
4. Lecture quiz

Lecture quiz

A lecture quiz to determine what you have learned thus far!
Answer the following questions on your own or in small groups.

Lecture quiz

Question 1

Consider the following random sample: 5, -4, -2, 2. Calculate the following sample quantities:
(1) Sample mean
(2) Sample standard deviation
(3) Sample median
(9) Sample median absolute deviation
(0) Sample range
(0) Signs of the sample points
(- Ranks of the sample points
(8) Signed ranks of the sample points with respect to distance to 0 .

Lecture quiz

Question 2

Give concrete examples when you would/would not use the following measures of location:
(1) Sample mean
(2) Sample median
(3) Mode

Question 3

Give concrete examples when you would/would not use the following measures of scatter:
(1) Standard deviation
(2) Median absolute deviation
(3) Sample range

Lecture quiz

Question 4

What does it mean in practice if:

- The confidence interval of a parameter is narrow
- The significance level of a test is set to small value
- The p-value of a test is high
- Type I error occurs in a statistical test
- Type II error occurs in a statistical test

Lecture quiz

Question 5

How would you visualize the following samples:

- The heights of the male and female students attending a course.
- The exam points $(0-24)$ on a large course.
- The proportions of faulty products produced by 5 different production lines.
- Stock prices of 3 companies over some time interval
- The monthly salaries and postal codes of adults living in Helsinki area.

Lecture quiz

Question 6

The following plots show the distributions of the test statistics of \mathbf{A}. t-test, B. sign test, C. signed rank test for the null hypothesis of zero location, with a sample of $n=10$ points from from the standard normal distribution. Which plot is from which test?

