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Regression function

Simple linear regression (Lecture 7) is a special case of fitting a regression
function to the data.

yi = g(xi ) + ϵi

Linear model g(x) = β0 + β1x has two parameters.

Many other functional forms of g could be used, e.g.

higher order polynomials

multiple explanatory variables (Lecture 9)

piecewise regression

kernel regression (this lecture)
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Example: Motorcycle data (testing crash helmets)

Head acceleration in a simulated motorcycle accident.
x = time, explanatory variable (unit=ms)
y = acceleration, response variable (unit=g)
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Linear model fits badly, but would a polynomial be any better?

Instead of trying to fit a “global” model to all of the data, let’s try to
understand its behaviour “locally”.
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General idea of local regression

Key idea: At any given point x , the value of the regression function g(x)
is calculated from nearby data points (not all data points).

Some variants of the idea:

KNN regression: Average the k nearest data points.

Sliding window: Average all data points that are within h units of x .

Kernel regression (kernel smoothing): Average nearby data points,
giving bigger weight to data points that are very near. A kernel
function K maps distances to weights.
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Simple kernel regression

Nadaraya-Watson regression: At any point x , define regression function
value as a weighted average of data points

g(x) =
n∑

i=1

wiyi ,

where the weights are calculated as

wi =
K (x − xi )∑n
j=1 K (x − xj)

,

and K (kernel function) is some nice function that gives big values when
xi is near x . The divisor just makes sure that the weights sum to one.
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Choice of kernel function
The kernel function is typically defined in two steps:

1 Choose a shape, such as a triangular function, parabola, or the
density function of standard normal distribution

2 Choose a bandwidth that scales the shape to desired width = how far
datapoints are used in the averaging

Example: parabolic (Epanechnikov) kernel

K1(u) =
3

4
(1− u2)

for −1 ≤ u ≤ 1, and zero outside that interval.
Then scaled to bandwidth h with

Kh(u) = K1(u/h).

This is positive for −h ≤ u ≤ h.
See https://en.wikipedia.org/wiki/Kernel_(statistics) for
many other kernel shapes.

7 / 13

https://en.wikipedia.org/wiki/Kernel_(statistics)


Choice of bandwidth

Large bandwidth = averaging many datapoints = very smooth regression
function that only shows “large scale” features of the data. Also efficiently
smoothes small errors away.

Small bandwidth = averaging few datapoints = very wild regression
function that follows the data very closely. But also retains its errors.

Many methods exist for choosing the “best” bandwidth (see literature),
but for exploratory analysis you could just experiment with different
values. There are also “adaptive” methods which use smaller bandwidth if
there are many data points nearby.
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Local linear regression

Instead of taking the average of the nearby points, we can also fit a
straight line to them. This is called local linear regression.

In other words, we do a linear regression, but only on the data points xi
that are near x , and weighted by a kernel function. Then define g(x) to be
the value of that regression line at x .

Note that for each value x where we are evaluating the regression
function, we look at different “nearby” datapoints or use different weights,
so the regression function g(x) that we obtain need not be “linear” at all.

Nadaraya-Watson (local constant) and local linear regression usually
produce similar results, except at edges of the data. (Consider what
happens in time series prediction.)

Just like in “global” regression, in local regression we can also use higher
degree polynomials (e.g. parabolic).
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Kernel density estimation

The same idea, “looking at nearby datapoints”, can be used to estimate
the density function of a distribution, if we have a sample x1, x2, . . . , xn
from it.

f̂ (x) =
1

n

n∑
i=1

Kh(x − xi )

You can think of the datapoints xi as representing point masses 1/n each,
then doing kernel smoothing to distribute those masses around xi over
some distance (by the kernel function).

This gives often a nicer, smoother estimate of the unknown density than a
histogram.
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More information

You can learn more about local / kernel regression from e.g. the freely
available book https://web.stanford.edu/~hastie/ElemStatLearn/

(Chapter 6: Kernel smoothing methods)
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