
Chapter 7

Densities and kernels

7.1 Weighted measures

Let ⌫ be a measure on a measurable space (S,S). Let f : S ! [0,1] be a
S/B([0,1])-measurable function. Define

µ(B) =

Z

B

f(x) ⌫(dx), B 2 S, (7.1.1)

where by definition, the right side means
R
S 1Bf d⌫, that is, the integral of the

function x 7! 1B(x)f(x) with respect to ⌫. This can be seen as an weighted
version of ⌫, so that the mass of ⌫(dx) is weighted by f(x). The following
result confirms that weighted measures are measures. The weighted measure
is sometimes abbreviated as µ(dx) = f(x)⌫(dx).

Proposition 7.1.1. For any measure ⌫ on (S,S) and any measurable func-

tion f : S ! [0,1], the map B 7!
R
B f d⌫ is a measure on (S,S).

Proof. For any B 2 S, the function 1B is S/B([0,1])-measurable, and
the same is true for f by our assumption. Hence also the function 1Bf
is S/B([0,1])-measurable, and the integral

R
B f d⌫ =

R
S 1Bf d⌫ on the right

side of (7.1.1) is well defined. Hence µ is a well-defined set function from S

into [0,1].
For B = ;, we see that 1B(x) = 0 for all x. Hence 1Bf is identically zero,

and therefore µ(;) =
R
; f d⌫ = 0.

Let B1, B2, . . . be disjoint sets in S. Denote Cn = B1 [ · · · [ Bn and
C1 = [

1
k=1Bk. Then 1Cn =

Pn
k=1 1Bk

, and 1Cnf =
Pn

k=1 1Bk
f , and the

linearity of integration implies that

µ(Cn) =

Z

S

1Cnf d⌫ =
nX

k=1

Z

S

1Bk
f d⌫ =

nX

k=1

µ(Bk).
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Next, we see that Cn " C1, so that 1Cn " 1C1 . Hence also 1Cnf " 1C1f . By
monotone continuity of integration, it follows that

µ(C) =

Z

S

1C1f d⌫ = lim
n!1

Z

S

1Cnf d⌫ = lim
n!1

nX

k=1

µ(Bk) =
1X

k=1

µ(Bk).

We conclude that µ is a measure.

7.1.1 Integrating against weighted measures

This is called a chain rule [Kal02, Lemma 1.23].

Proposition 7.1.2. For any f, g : S ! [0,1], integration with respect to the

weighted measure µ(B) =
R
B f(x)⌫(dx) satisfies

Z

S

g(x)µ(dx) =

Z

S

g(x)f(x) ⌫(dx). (7.1.2)

Proof. (i) Let us first see what happens with indicator functions. Let g = 1A
for some A 2 S. Then
Z

S

g(x)µ(dx) =

Z

S

1A(x)µ(dx) = µ(A) =

Z

A

f(x) ⌫(dx) =

Z

S

f(x)1A(x) ⌫(dx).

Hence (7.1.2) holds for indicator functions g.
(ii) Assume next that g =

Pn
k=1 ck1Ak

is a finite-range function, with
ck � 0 and Ak 2 S. The by linearity of integration and by (i),

Z

S

g dµ =

Z

S

nX

k=1

ck1Ak
dµ

=
nX

k=1

ck

Z

S

1Ak
dµ

=
nX

k=1

ck

Z

S

f1Ak
d⌫

=

Z

S

f
nX

k=1

ck1Ak
d⌫

=

Z

S

fg d⌫.

Hence (7.1.2) holds for nonnegative measurable finite-range functions g.
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(iii) Let g : S ! [0,1] be measurable. Fix nonnegative measurable finite-
range functions gn such that gn " g. Then by (ii),

Z

S

gn dµ =

Z

S

fgn d⌫

for all n. Because gn " g and fgn " fg, we see by monotone continuity of
integration, and taking limits of both sides above as n ! 1, that

Z

S

g dµ = lim
n!1

Z

S

gn dµ = lim
n!1

Z

S

fgn d⌫ =

Z

S

fg d⌫.

7.2 Probability densities

Weighted measures defined using a weight function integrating to one yield
probability measures. Let ⌫ be a measure on (S,S) and let f : S ! [0,1]
be a measurable function such that

R
S f dµ = 1. Proposition 7.1.1 implies

that µ(B) =
R
B f d⌫ is a probability measure on (S,S). We say that f is a

density of µ with respect to reference measure ⌫. Note that ⌫ does not need
to be a finite measure.

Let (⌦,A,P) be a probability space, and let X : ⌦ ! S be a random
variable with law µ. In this case we also say that X is distributed according
to µ, or that the probability distribution of X equals µ. Let us assume that
µ admits a density f with respect to a reference measure ⌫. Probabilities
associated with X can then be computed as

P(X 2 B) =

Z

B

f(x) ⌫(dx).

Expectations related to X can be computed as

Eg(X) =

Z

R
g(x)f(x) ⌫(dx).

7.2.1 Lebesgue densities

Let � be the Lebesgue measure on (R,B(R)). Let f : R ! R be a Borel
function such that f(x) � 0 for all x 2 R and

R
R f(x)�(dx) = 1. Then

µ(B) =
R
B f(x)�(dx) is a probability measure on (R,B(R)). Each such

function satisfying f(x) � 0 for all x 2 R and
R
R f(x)�(dx) = 1 yields

a probability measure on the real line. Important examples of probability
measure admitting a Lebesgue density are the following.
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Example 7.2.1. Let f(x) = 1
�(A)1A(x) for some A 2 B such that 0 < �(A) <

1. The probability measure on (R,B(R)) with Lebesgue density f is called
the uniform distribution on A. Compare with Example 7.2.6.

Example 7.2.2. Let f(x) = 1
�
p
2⇡
e�

1
2 (

x�m
� )2 for some m 2 R and � 2 (0,1).

The probability measure on (R,B(R)) with Lebesgue density f is called the
normal distribution with mean m and standard deviation �.

Example 7.2.3. Let f(x) = 1(0,1)(x) be�bx for some 0 < b < 1. The proba-
bility measure on (R,B(R)) with Lebesgue density f is called the exponential
distribution with rate parameter b.

Example 7.2.4 (No Lebesgue density). Let �0(A) = 1(0 2 A) be the Dirac
measure at 0. We see that �0 is a probability measure on (R,B(R)). We
show that �0 does not admit a density with respect to the Lebesgue measure
� on (R,B(R)). Assume the contrary. Then there would exists a measurable
function f : R ! [0,1] such that

�0(B) =

Z

B

f(x)�(dx) for all B 2 B(R).

In particular, the fact that �{0} = 0 implies that

1 = �0({0}) =

Z

{0}
f(x)�(dx) = f(0)�{0} = 0.

Because this is a contradiction, we conclude that �0 does not admit a Lebesgue
density.

7.2.2 Counting measures and discrete densities

Let S be a countable set equipped with the power sigma-algebra 2S. Let
⌫ be the counting measure on (S, 2S), so that ⌫(A) equals the number of
points in A. Integration against the counting measure is indeed summation,
as confirmed next.

Proposition 7.2.5. For any f : S ! [0,1],

Z

S

f(x) ⌫(dx) =
X

x2S

f(x).

Proof. (i) Assume first that S is a finite set, and enumerate it according to
S = {s1, . . . , sn}. Let f : S ! [0,1] be arbitrary. Then f is measurable and
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finite range. We may represent f =
Pn

k=1 ck1Ak
where ck = f(sk) and Ak =

{sk}. Then by definition of the integral, and noting that ⌫(Ak) = ⌫{sk} = 1
for all k, we see that

Z

S

f d⌫ =
nX

k=1

ck⌫(Ak) =
nX

k=1

f(sk) =
X

x2S

f(x).

(ii) Assume next that S is a countably infinite set, and enumerate it
according to S = {s1, s2, . . . }. Let Sn = {s1, . . . , sn}. Then Sn " S, so that
f1Sn " f1S. The monotone continuity of integration then implies that

Z

S

f d⌫ =

Z

S

lim
n!1

f1Sn d⌫ = lim
n!1

Z

S

f1Sn d⌫ = lim
n!1

Z

Sn

f d⌫.

Part (i) of the proof tells that
R
Sn

f d⌫ =
P

x2Sn
f(x). Hence

Z

S

f d⌫ = lim
n!1

Z

Sn

f d⌫ = lim
n!1

X

x2Sn

f(x) = lim
n!1

nX

k=1

f(sk) =
1X

k=1

f(sk)

The claim follows.

Propositions 7.1.1–7.2.5 imply that every function f : S ! R+ on a count-
able set S such that

P
x2S f(x) < 1 defines a probability measure µ on

(S, 2S) by the formula

µ(B) =

Z

B

f d#S =

Z

B

f(x)#S(dx) =
X

x2B

f(x),

where #S denotes the counting measure on (S, 2S). Densities with respect to
a counting measures are typically called probability mass functions. Prob-
ability measures on countable spaces are often called discrete probability
distributions. Important examples of discrete probability distributions on
the integers are the following.

Example 7.2.6. The uniform distribution on a set A 2 2Z such that 0 <
#(A) < 1 is the probability measure on (Z, 2Z) with density

f(x) =
1

#Z(A)
1A(x).

with respect to the counting measure #Z. Compare with Example 7.2.1
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Example 7.2.7. The Bernoulli distribution with parameter p 2 [0, 1] is the
probability measure on (Z, 2Z) with with density

f(x) =

8
><

>:

1� p for x = 0,

p for x = 1,

0 else,

with respect to the counting measure #Z. The Bernoulli distribution with
parameter p = 1

2 is the uniform distribution on {0, 1}.

Example 7.2.8. The Poisson distribution with parameter a 2 (0,1) is the
probability measure on (Z, 2Z) with density

f(x) = 1(x � 0) e�aa
x

x!

with respect to the counting measure #Z.

7.2.3 Practical example

Example 7.2.9. Let X1, X2 be independent random variables such that the
law of X1 is the uniform distribution on [0, 3], and the law of X2 equals
the uniform distribution on {1, 2, 3, 4, 5}. Write down a probability space
(⌦,A,P) on which X1 and X2 are defined, and determine the probability
that X1 +X2 � 3.

(i) Define ⌦ = R2, A = B(R)⌦B(R), and let P = µ1⌦µ2 where µ1 is the
law of X1 and µ2 is the law of X2. Define X1(!) = ⇡1(!) and X2(!) = ⇡2(!).
This the so-called canonical construction. But what the laws µ1, µ2?

• The law of X1 equals µ1 =
1
3�[0,3] on (R,B(R)) where �[0,3](B) = �(B\

[0, 3]) equals the Lebesgue measure on R restricted to [0, 3].

• The law of X2 equals µ2 = 1
5

P5
k=1 �k on (R,B(R)), where �k(B) =

1B(k) equals the Dirac measure at k.

(ii) Let us now compute that probability of the event

A = {! 2 ⌦ : X1(!) +X2(!) � 3}.

There are many ways to do this. Here are two. You are recommended to
have a look at both of them.

(ii)(a) Direct way: Straight from the definition(s). Then

P(A) =

Z

R2

1A(!)P(d!) =

Z

R2

1A(!) (µ1 ⌦ µ2)(d!).
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By Fubini’s theorem, we see that

P(A) =

Z

R

Z

R
1A(!1,!2)µ1(d!1)µ2(d!2) =

Z

R

Z

R
1A(!1,!2)µ2(d!2)µ1(d!1).

We may choose whichever order of integration is more convenient. Because
we may always restrict to sets of nonzero measure, we see that

P(A) =

Z

[0,3]

Z

{1,...,5}
1A(!1,!2)µ2(d!2)µ1(d!1).

Fix !1 2 [0, 3]. Note that

Z

{1,...,5}
1A(!1,!2)µ2(d!2) =

5X

k=1

1A(!1, k)µ2({k}) =
1

5

5X

k=1

1A(!1, k).

By integrating both sides above against µ1, we find that

P(A) =

Z

[0,3]

1

5

5X

k=1

1A(!1, k)µ1(d!1) =
1

5

5X

k=1

Z

[0,3]

1A(!1, k)µ1(d!1).

Next, we note that A = {(!1,!2) : !1 + !2 � 3}. Hence (!1, k) 2 A if and
only if !1 � 3� k. It follows that

P(A) =
1

5

5X

k=1

Z

[0,3]

1(!1 � 3� k)µ1(d!1)

=
1

5

5X

k=1

Z

R
1(!1 2 [0, 3]) 1(!1 � 3� k)µ1(d!1)

We note that

1(!1 2 [0, 3]) 1(!1 � 3� k) = 1(!1 2 [0, 3], !1 � 3� k)

= 1(!1 2 [3� k, 3])

= 1[3�k,3](!1).



CHAPTER 7. DENSITIES AND KERNELS 67

Hence

P(A) =
1

5

5X

k=1

µ1([3� k, 3])

=
1

5

5X

k=1

1

3
�([3� k, 3] \ [0, 3])

=
1

15

5X

k=1

�([3� k, 3])

=
1

15
(1 + 2 + 3 + 3 + 3)

=
12

15
.

(ii)(b) Alternative way. We may split the event A according to the
possible values of X2 2 {1, 2, 3, 4, 5}. Namely, A = [

5
k=1(A \ Ak) where

Ak = {! : X2(!) = k}. The events A1, . . . , A5 are disjoint. So are the events
A \ A1, . . . , A \ A5. Hence,

P(A) = P([5
k=1A \ Ak) =

5X

k=1

P(A \ Ak).

Note that

A \ Ak = {! : X1(!) +X2(!) � 3} \ {! : X2(!) = k}

= {! : X1(!) + k � 3} \ {! : X2(!) = k}.

Hence by independence,

P(A \ Ak) = P(X1 + k � 3, X2 = k)

= P(X1 + k � 3)P(X2 = k).

Now we note that P(X2 = k) = 1
5 for all k = 1, . . . , 5. Also,

P(X1 + k � 3) = P(X1 � 3� k)

= µ1([3� k,1))

=
1

3
�([3� k,1) \ [0, 3])

=
1

3
�([3� k, 3])

=
min{k, 3}

3
.
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Hence

P(A) =
5X

k=1

P(A\Ak) =
5X

k=1

P(X1+k � 3)P(X2 = k) =
5X

k=1

min{k, 3}

3

1

5
=

12

15
.

7.2.4 Restrictions and extensions of measures

This is complementary knowledge for a mathematically suspicious mind who
wonders how the law a random variable in Z should properly be seen as
the law of a random variable in R. It is safe to skip this for less suspicious
readers.

Let (S,S) be a measurable space. The restriction of S into a set U ⇢ S
is defined as the set family

S \ U = {B \ U : B 2 S}.

Proposition 7.2.10. The set family S \ U is a sigma-algebra on U .

Proof. Homework.

Let µ1 be a measure on a measurable space (S1,S1). The restriction of
µ1 into a measurable space (S0,S1 \ S0) such that S0 2 S1 is defined as the
set function

µ0(A) = µ1(A), A 2 S1 \ S0. (7.2.1)

The extension of µ1 into a measurable space (S2,S2) such that S1 ⇢ S2 and
S2 \ S1 ⇢ S1 is defined as the set function

µ2(A) = µ1(A \ S1), A 2 S2. (7.2.2)

Proposition 7.2.11. For any S0 2 S1, the restriction µ0 defined by (7.2.1)
is a measure on the measurable space (S0,S1 \ S0). If µ1(S0) = 1, then µ0 is

a probability measure.

Proof. Homework.

Proposition 7.2.12. For any S1 ⇢ S2 such that S2 \ S1 ⇢ S1, the exten-

sion µ2 defined by (7.2.1) is a measure on (S2,S2). Furthermore, if µ1 is a

probability measure, then so is µ2.

Proof. Homework.
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Example 7.2.13 (Bernoulli distribution on the real line). The Bernoulli
distribution with parameter p 2 [0, 1] defined in Example 7.2.7 is a prob-
ability measure µ on (Z, 2Z). Because µ({0, 1}) = 1, we find that the re-
striction of µ into {0, 1} is a probability measure on ({0, 1}, 2{0,1}). Because
B(R)\Z ⇢ 2Z, it follows that µ extends to a probability measure (R,B(R)).
In this sense, the Bernoulli distribution may be defined as a probability
measure on ({0, 1}, 2{0,1}), (Z, 2Z), or (R,B(R)). When we say that X is a
Bernoulli-distributed random variable in R, we may that the law of X is the
Bernoulli distribution on (R,B(R)).

Example 7.2.14. Because B(R)\Z ⇢ 2Z, it follows that the counting mea-
sure #Z on the countable set (Z, 2Z) can also be considered as a probability
measure on (R,B(R)), so that #Z(B) equals the number of points in B \ Z
for any Borel set B. We may also write #Z =

P
k2Z �k as a sum of Dirac

measures. This is why this distribution is sometimes called the Dirac comb.


