Probabilistic Method

Used to prove existence of combinatorial structures.

Set up a probabilistic experiment \& let ε be the event corresponding to the structure.
$\operatorname{Pr}[\varepsilon]>0 \Rightarrow$ the structure exists!
Many ways to show non-zero probabilities
$\mu=\mathbb{E}[x]$ then $\operatorname{Pr}[x \geqslant \mu]>0$ and $\operatorname{Pr}[x \leqslant \mu]>0$

Why? Otherwise $\mathbb{E}[x] \neq \mu$
Finding a Large Cut
Show that for any graph G there exists a cut (A, B) of size $\geqslant m / 2$
($m=$ number of edges in G,
size of cut is the number of crossing edges $\{u, v\}: v \in A, v \in B$ or $u \in B, v \in A\}$

Probabilistic experiment: put each vertex independently in A w.p. 1/2 f in B w.p. $1 / 2$

$$
\begin{aligned}
& X= \operatorname{size} \text { of } \operatorname{cut}(A, B) \\
& X= \sum_{e \in E} X_{e} \text { where } \\
& X_{e}=\left\{\begin{array}{ll}
1 & \text { if e crosses }(A, B) \\
0 & 0 / \omega \quad
\end{array} \begin{array}{l}
X_{e} \text { 's are pairwise } \\
\text { independent but } \\
\text { not 3-wise } \\
\text { independent! }
\end{array}\right. \\
& \operatorname{Pr}\left[X_{e}=1\right]=1 / 2 \quad \begin{array}{l}
\text { wi }
\end{array} \\
& \Rightarrow \operatorname{E}[X]=\operatorname{Pr}[X \geqslant m / 2]>0
\end{aligned}
$$

\Rightarrow there exists a cut of size $\geqslant m / 2$ in any graph G.

How do we efficiently find a large cut?
Let $p=\operatorname{Pr}[x \geqslant m / 2]$

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{x=0}^{m} x \cdot \operatorname{Pr}[x=x] \\
\frac{m}{2} & =\sum_{x=0}^{m / 2} x \cdot \operatorname{Pr}[x=x]+\sum_{x=m / 2}^{m} x \cdot \operatorname{Pr}[x=x] \\
& \leq\left(\frac{m}{2}-1\right) \operatorname{Pr}\left[x<\frac{m}{2}\right]+m \cdot \operatorname{Pr}\left[x \geqslant \frac{m}{2}\right] \\
\frac{m}{2} & \leq\left(\frac{m}{2}-1\right)(1-P)+m \cdot P
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \frac{m}{p} & \leq \frac{m}{k}-1+\frac{m p}{2}+p \\
0 & \leq-1+p(m / 2+1) \\
p & \geqslant \frac{1}{\left(\frac{m}{2}+1\right)}=p_{r}[\text { Success }]
\end{aligned}
$$

Therefore, we have a Las Vegas algorithm with run time $\sim \operatorname{Geom}(p)$

$$
\Rightarrow \text { Expected run time }=\frac{1}{p} \leqslant \frac{m}{2}+1
$$

We can also make it deterministic !

$$
\begin{aligned}
& \mathbb{E}[x]=\frac{1}{2}(\mathbb{E}[x \mid v \in A]+\mathbb{E}[x \mid v \in B]) \\
\Rightarrow & \mathbb{E}[x] \leq \max (\mathbb{E}[x \mid v \in A], \mathbb{E}[x \mid v \in B])
\end{aligned}
$$

This also holds if we condition on other vertices belonging to A or B.

The choice only depends on the edges between v \& already partioned vertices.

If u has more edges to A then put it in B otherwise put it in A

Linear time deterministic algorithm that finds a cut of size $\geqslant \mathrm{m} / 2$, by above analysis.

Finding a Large Independent Set

Every graph with average degree d contains an independent set of size $\geqslant n / 2 d$

$$
d=2 m / n \Rightarrow n / 2 d=n^{2} / 4 m
$$

For any graph G :
(1) Sample vertices with probability $1 / d$
(2) From the sampled graph, remove each edge along with one end point.

The remaining vertices form an independent set
$X=$ \# of vertices sampled in (1)
$4=$ \# of vertices removed in (2)
Independent set size $=x-y$

$$
\mathbb{E}[x]=n / d
$$

What is $\mathbb{E}[4]$?
$4=$ \# of edges with both end points sampled.
$u=\sum_{e \in E} y_{e}$ where for $e=\{u, v\}$
$u_{e}= \begin{cases}1 & \text { if } u \text { \& } v \text { are sampled } \\ 0 & \text { otherwise. }\end{cases}$

$$
\begin{aligned}
& \mathbb{E}\left[y_{e}\right]=P_{r}\left[y_{e}=1\right]=1 / d^{2} \\
& \Rightarrow \mathbb{E}[4]=m / d^{2}=\left(\frac{m}{d}\right) \cdot\left(\frac{n}{2 m}\right) \\
& \Rightarrow \mathbb{E}[4]=n / 2 d \\
\Rightarrow & \mathbb{E}[\text { size }]=\frac{n}{2 d} \\
\Rightarrow & \operatorname{Pr}[\text { size } \geqslant n / 2 d]>0
\end{aligned}
$$

\Rightarrow There exists an independent set of size $\geqslant n / 2 d$.

Dense Graphs with Large Girth:
Girth of a graph is the length of the smallest cycle.

3

4

3

Larger the girth, fewer the \# of edges
For any const. k, \exists an n-vertex graph G that
(1) has girth $\geqslant k$ and (For all)
(2) $\Omega\left(n^{1+1 / k}\right)$ edges.
n large enough
$G(n, p)$: n vertices \& each edge is present independently w.p.p
we set $p=\frac{n^{1 / k}}{n}$;
Let $x=$ edges in $G(n, p)$

$$
\mathbb{E}[x]=\binom{n}{2} \cdot p=\frac{n-1}{2} \cdot n^{1 / k}
$$

To guarantee that $G(n, p)$ has girth $\geqslant k$, we remove one edge from all cycles of length $k-1$ or less.

Let $y=\#$ of edges removed.
$u_{i}=$ \# of cycles of length i
$\varphi=\sum_{i=3}^{k-1} 4_{i}\binom{$ because we remove }{ one edge for every } decomposed:

$$
y_{i}=\sum_{c \in C_{i}} \varphi_{i, c} ; \psi_{i, c}=\left\{\begin{array}{c}
1 \text { if cycle } \\
c \text { exists in } \\
G \sim G(n, p) \\
0 / \omega \\
0 / \omega
\end{array}\right.
$$

$\mathbb{E}\left[u_{i, c}\right]=p^{i}$ (each edge needs to exist)
How many cycles of length i ?

$$
\left|c_{i}\right| \leq\binom{ n}{i} \cdot(i-1)!\cdot \frac{1}{2}
$$

choose i \#ways a cycle is distinct to arrange the same vertices i vertices in reverse

$$
\leq \frac{n!}{(n-i)!} \cdot \frac{1}{2} \leq \frac{1}{2} \cdot n^{i}
$$

Each cycle exists with probability p^{i}

$$
\begin{aligned}
\therefore E[y] & \leq \sum_{i=3}^{k-1} \frac{1}{2} \cdot n^{i} \cdot p^{i} \\
& =\sum_{i=3}^{k-1} \frac{1}{2} n^{i / k} \leq k \cdot n^{(k-1) / k}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \mathbb{E}[\# \text { edges }] & =\mathbb{E}[x-4] \\
& \geqslant\left(\frac{n-1}{2}\right) \cdot n^{1 / k}-k \cdot n^{(k-1) / k} \\
& \geqslant \frac{n^{1+1 / k}}{4}\left(\begin{array}{l}
\text { for } n \\
\text { large } \\
\text { enough }
\end{array}\right)
\end{aligned}
$$

